

7.1- 4 Confidence Intervals (CIs)

Suppose that the distribution of a random variable X depends on an unknown parameter Θ and let X_1, X_2, \dots, X_n be a random sample from this distribution. The idea is to find two statistics $L(X_1, X_2, \dots, X_n)$ and $U(X_1, X_2, \dots, X_n)$ such that the estimated parameter Θ lies between L and U with a prescribed probability (called the **confidence level** or the **confidence coefficient**), that is such that

$$P(L(X_1, X_2, \dots, X_n) \leq \Theta \leq U(X_1, X_2, \dots, X_n)) = 1 - \alpha$$

where α is a small positive number.

α	$1 - \alpha$	confidence level ($1 - \alpha$)100%	$\alpha/2$
0.01	.99	99%	0.005
0.05	.95	95%	0.025
0.10	.90	90%	0.05

If we take a sample, so that $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$, and compute $l = L(x_1, x_2, \dots, x_n)$ and $u = U(x_1, x_2, \dots, x_n)$, then we can say that Θ is between l and u with confidence $100(1 - \alpha)$ %. The interval $[l, u]$ is called a **confidence interval (CI)**.

The phrase "with confidence $100(1 - \alpha)$ %" means that if the process of estimation was repeated many times in approximately $100(1 - \alpha)$ % cases the obtained confidence interval would contain an estimated parameter.

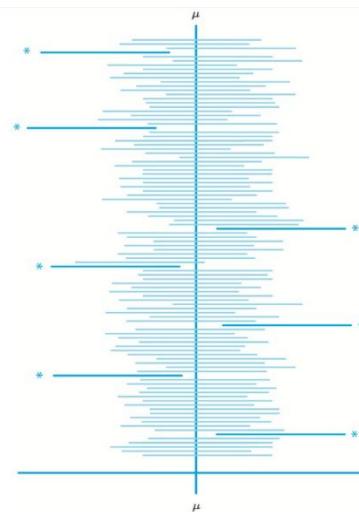


Figure 7.3 One hundred 95% CIs (asterisks identify intervals that do not include μ).

Problem: Suppose that X_1, X_2, \dots, X_n is a random sample from normal distribution with unknown mean μ and known standard deviation σ . Find a $100(1 - \alpha)\%$ interval for μ .

Solution: The statistics \bar{X} has a normal distribution with mean μ and standard deviation σ/\sqrt{n} and hence $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$ has the standard normal distribution. Given α , let $z_{\alpha/2}$ be a number such that $P(Z > z_{\alpha/2}) = \alpha/2$ [Table A.5 row ∞ , or $\text{invNorm}(1 - \alpha/2)$]. Then

$$P\left(-z_{\alpha/2} < \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < z_{\alpha/2}\right) = 1 - \alpha$$

Solving the double inequality for μ gives that

$$P\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Answer: A $(1 - \alpha)100\%$ confidence interval (CI) for μ is $\left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$ or $\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

General construction: Suppose that X_1, X_2, \dots, X_n is a random sample from a certain distribution with unknown parameter θ . In order to construct a $(1 - \alpha)100\%$ confidence interval (CI) for θ we need to

1. Find a statistic $h(X_1, X_2, \dots, X_n; \theta)$ that depends on a random sample and θ , and such that we know its distribution
2. Find numbers $a < b$ such that $P(a < h(X_1, X_2, \dots, X_n; \theta) < b) = 1 - \alpha$
3. Solve the inequality $a < h(X_1, X_2, \dots, X_n; \theta) < b$ for θ

Statistics and Their Distributions

Sample mean $\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{\sum_{i=1}^n X_i}{n}$

Sample variance $S^2 = \frac{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2}{n-1} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$

Sample proportion $\hat{p} = \frac{\text{number of successes in } n \text{ trials}}{n} = \frac{X}{n}$

1. THEOREM (CLT, Section 5.4). Suppose that X_1, X_2, \dots, X_n is a random sample from **any distribution** with mean μ and standard deviation σ . If **n is large** then both

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \quad \text{and} \quad Z = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

have **approximately standard normal distribution** (this follows from CLT)

2. THEOREM. Suppose that X_1, X_2, \dots, X_n is a random sample from **a dichotomous distribution** that takes only two values

$$\begin{cases} 1 & \text{with probability } p = P(\text{success}) \\ 0 & \text{with probability } q = 1 - p = P(\text{failure}) \end{cases}$$

Let $X = X_1 + X_2 + \dots + X_n$ (number of successes in n trials) and $\hat{p} = \frac{X}{n}$. If **n is large** then the statistic

$$Z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$

has **approximately standard normal distribution** (Sections 3.4 and 6.1)

3. THEOREM (Section 5.5). Suppose that X_1, X_2, \dots, X_n is a random sample from **normal distribution** with mean μ and standard deviation σ . **For any n** the statistics

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$$

has **standard normal distribution**

4. THEOREM (Section 7.3). Suppose that X_1, X_2, \dots, X_n is a random sample from **normal distribution** with mean μ and standard deviation σ . **For any n** the statistics

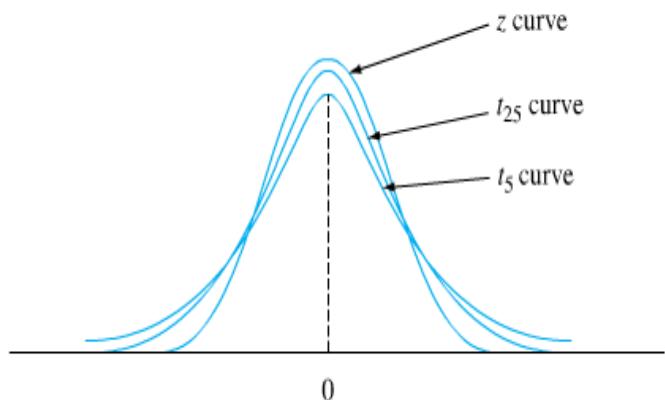
$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

has a so called **(Student's) t distribution** with $v = n - 1$ degrees of freedom (df).

Properties of t Distributions

Let t_ν denote the density function curve for ν df.

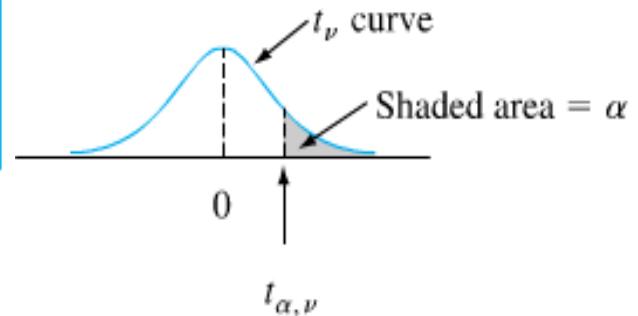
1. Each t_ν curve is bell-shaped and centered at 0.
2. Each t_ν curve is more spread out than the standard normal (z) curve.
3. As ν increases, the spread of the corresponding t_ν curve decreases.
4. As $\nu \rightarrow \infty$, the sequence of t_ν curves approaches the standard normal curve (so the z curve is often called the t curve with $df = \infty$).



Notation

Let $t_{\alpha, \nu}$ = the number on the measurement axis for which the area under the t curve with ν df to the right of $t_{\alpha, \nu}$ is α ; $t_{\alpha, \nu}$ is called a **t critical value**.

Critical values $t_{\alpha, \nu}$ for a t distribution are in Table A.5



5. THEOREM (Section 7.4). Suppose that X_1, X_2, \dots, X_n is a random sample from **normal distribution** with mean μ and standard deviation σ . **For any n** the statistics

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2}$$

has a **chi-squared (χ^2) distribution** with $v = n - 1$ degrees of freedom (df).

Recall from section 4.4 that

Let v be a positive integer. Then a random variable X is said to have a **chi-squared distribution** with parameter v if the pdf of X is the gamma density with $\alpha = v/2$ and $\beta = 2$. The pdf of a chi-squared rv is thus

$$f(x; v) = \begin{cases} \frac{1}{2^{v/2}\Gamma(v/2)} x^{(v/2)-1} e^{-x/2} & x \geq 0 \\ 0 & x < 0 \end{cases} \quad (4.10)$$

The parameter v is called the **number of degrees of freedom (df)** of X . The symbol χ^2 is often used in place of “chi-squared.”

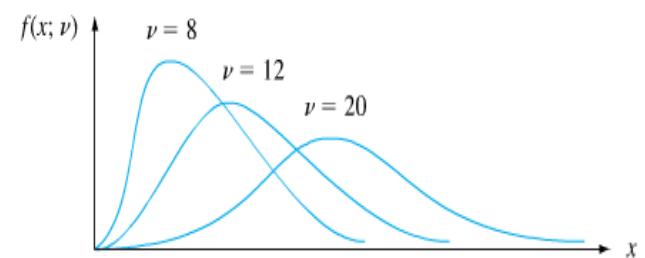
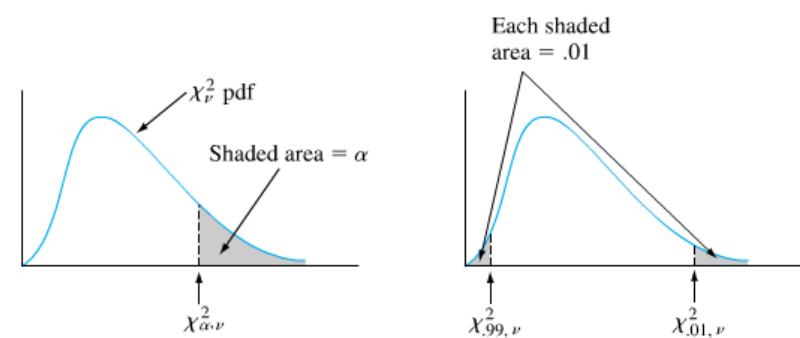


Figure 7.9 Graphs of chi-squared density functions

Notation

Let $\chi_{\alpha, v}^2$, called a **chi-squared critical value**, denote the number on the measurement axis such that α of the area under the chi-squared curve with v df lies to the right of $\chi_{\alpha, v}^2$.

Critical values for a chi-squared distribution are in Table A.5



$(1-\alpha)100\%$ Confidence Intervals

ARBITRARY POPULATION; LARGE SAMPLE

1. For the mean μ of any population when σ is known and the sample size n is large

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right)$$

or, equivalently, by $\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$.

2. For the mean μ of any population when σ is not known and the sample size n is large

$$\bar{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

DICHOTOMOUS POPULATION; LARGE SAMPLE

3. For the population proportion p when the sample size is large

Let $\tilde{p} = \frac{\hat{p} + z_{\alpha/2}^2/2n}{1 + z_{\alpha/2}^2/n}$. Then a **confidence interval for a population proportion p** with confidence level approximately $100(1 - \alpha)\%$ is

$$\tilde{p} \pm z_{\alpha/2} \frac{\sqrt{\hat{p}\hat{q}/n + z_{\alpha/2}^2/4n^2}}{1 + z_{\alpha/2}^2/n} \quad (7.10)$$

where $\hat{q} = 1 - \hat{p}$ and, as before, the $-$ in (7.10) corresponds to the lower confidence limit and the $+$ to the upper confidence limit.

Approximate formula: $\hat{p} \pm z_{\alpha/2} \sqrt{\hat{p}\hat{q}/n}$

NORMAL POPULATION

4. For the mean μ of normal population when σ is known; any sample size

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \right)$$

or, equivalently, by $\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$.

5. For the mean μ of normal population when σ is not known; any sample size

$$\left(\bar{x} - t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}}, \bar{x} + t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}} \right)$$

or, more compactly, $\bar{x} \pm t_{\alpha/2,n-1} \cdot s/\sqrt{n}$.

6. For the variance σ^2 of normal population when the mean μ is not known; any sample size

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$$

NOTE: We do not cover one sided confidence intervals (confidence bounds), prediction intervals, or tolerance intervals

EXERCISES

4. A CI is desired for the true average stray-load loss μ (watts) for a certain type of induction motor when the line current is held at 10 amps for a speed of 1500 rpm. Assume that stray-load loss is normally distributed with $\sigma = 3.0$.

- Compute a 99% CI for μ when $n = 100$ and $\bar{x} = 58.3$.
- Compute an 82% CI for μ when $n = 100$ and $\bar{x} = 58.3$.
- How large must n be if the width of the 99% interval for μ is to be 1.0?

14. The article “Evaluating Tunnel Kiln Performance” (*Amer. Ceramic Soc. Bull.*, Aug. 1997: 59–63) gave the following summary information for fracture strengths (MPa) of $n = 169$ ceramic bars fired in a particular kiln: $\bar{x} = 89.10$, $s = 3.73$.

- Calculate a (two-sided) confidence interval for true average fracture strength using a confidence level of 95%. Does it appear that true average fracture strength has been precisely estimated?
- Suppose the investigators had believed a priori that the population standard deviation was about 4 MPa. Based on this supposition, how large a sample would have been required to estimate μ to within .5 MPa with 95% confidence?

23. The Pew Forum on Religion and Public Life reported on Dec. 9, 2009, that in a survey of 2003 American adults, 25% said they believed in astrology.

- Calculate and interpret a confidence interval at the 99% confidence level for the proportion of all adult Americans who believe in astrology.
- What sample size would be required for the width of a 99% CI to be at most .05 irrespective of the value of \hat{p} ?

25. A state legislator wishes to survey residents of her district to see what proportion of the electorate is aware of her position on using state funds to pay for abortions.

- What sample size is necessary if the 95% CI for p is to have a width of at most .10 irrespective of p ?
- If the legislator has strong reason to believe that at least 2/3 of the electorate know of her position, how large a sample size would you recommend?

33. The article “Measuring and Understanding the Aging of Kraft Insulating Paper in Power Transformers” (*IEEE Electrical Insul. Mag.*, 1996: 28–34) contained the following observations on degree of polymerization for paper specimens for which viscosity times concentration fell in a certain middle range:

418 421 421 422 425 427 431
434 437 439 446 447 448 453
454 463 465

- a. Construct a boxplot of the data and comment on any interesting features.
- b. Is it plausible that the given sample observations were selected from a normal distribution?
- c. Calculate a two-sided 95% confidence interval for true average degree of polymerization (as did the authors of the article). Does the interval suggest that 440 is a plausible value for true average degree of polymerization? What about 450?

44. The amount of lateral expansion (mils) was determined for a sample of $n = 9$ pulsed-power gas metal arc welds used in LNG ship containment tanks. The resulting sample standard deviation was $s = 2.81$ mils. Assuming normality, derive a 95% CI for σ^2 and for σ .

ANSWERS:

4. c. (57.5, 58.1); d. (57.9, 58.7); e. 239
14. a. (88.54, 89.66); b. 246
23. a. (22.5%, 27.5%); b. 2655
25. a. 358; b. 342
33. a. b. – use TI-83; c. (430.51, 446.08)
44. for σ^2 (360, 28.98); for σ (1.9, 5.4)