

6.1-6.2 Joint Distribution Function

For any two random variables X and Y , the *joint cumulative probability distribution function* of X and Y by

$$F(a, b) = P\{X \leq a, Y \leq b\}, \quad -\infty < a, b < \infty$$

The distribution of X (and Y) can be obtained from the joint distribution of X and Y as follows:

$$\begin{aligned} F_X(a) &= P\{X \leq a\} \\ &= P\{X \leq a, Y < \infty\} \\ &= P\left(\lim_{b \rightarrow \infty} \{X \leq a, Y \leq b\}\right) \\ &= \lim_{b \rightarrow \infty} P\{X \leq a, Y \leq b\} \\ &= \lim_{b \rightarrow \infty} F(a, b) \\ &\equiv F(a, \infty) \end{aligned}$$

$$\begin{aligned} F_Y(b) &= P\{Y \leq b\} \\ &= \lim_{a \rightarrow \infty} F(a, b) \\ &\equiv F(\infty, b) \end{aligned}$$

All joint probability statements about X and Y can, in theory, be answered in terms of their joint distribution function. For instance,

$$\begin{aligned} P\{a_1 < X \leq a_2, b_1 < Y \leq b_2\} \\ = F(a_2, b_2) + F(a_1, b_1) - F(a_1, b_2) - F(a_2, b_1) \end{aligned} \tag{1.2}$$

whenever $a_1 < a_2, b_1 < b_2$.

Discrete Random Variables

In the case when X and Y are both discrete random variables, it is convenient to define the *joint probability mass function* of X and Y by

$$p(x, y) = P\{X = x, Y = y\}$$

The probability mass function of X can be obtained from $p(x, y)$ by

$$\begin{aligned} p_X(x) &= P\{X = x\} \\ &= \sum_{y:p(x,y)>0} p(x, y) \end{aligned}$$

Similarly,

$$p_Y(y) = \sum_{x:p(x,y)>0} p(x, y)$$

EXAMPLE 1b

Suppose that 15 percent of the families in a certain community have no children, 20 percent have 1 child, 35 percent have 2 children, and 30 percent have 3. Suppose further that in each family each child is equally likely (independently) to be a boy or a girl. If a family is chosen at random from this community, then B , the number of boys, and G , the number of girls, in this family will have the joint probability mass function shown in Table 6.2.

TABLE 6.2: $P\{B = i, G = j\}$

<i>i</i>	<i>j</i>	0	1	2	3	Row sum = $P\{B = i\}$
0		.15	.10	.0875	.0375	.3750
1		.10	.175	.1125	0	.3875
2		.0875	.1125	0	0	.2000
3		.0375	0	0	0	.0375
Columnsum = $P\{G = j\}$.3750	.3875	.2000	.0375	

Continuous Random Variables

We say that X and Y are *jointly continuous* if there exists a function $f(x, y)$, defined for all real x and y , having the property that, for every set C of pairs of real numbers (that is, C is a set in the two-dimensional plane),

$$P\{(X, Y) \in C\} = \iint_{(x,y) \in C} f(x, y) dx dy \quad (1.3)$$

The function $f(x, y)$ is called the *joint probability density function* of X and Y .

PROPERTIES

$$\begin{aligned} 1. \quad F(a, b) &= P\{X \in (-\infty, a], Y \in (-\infty, b]\} \\ &= \int_{-\infty}^b \int_{-\infty}^a f(x, y) dx dy \end{aligned}$$

$$2. \quad f(a, b) = \frac{\partial^2}{\partial a \partial b} F(a, b)$$

$$3. \quad f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$4. \quad f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

EXAMPLE 1c

The joint density function of X and Y is given by

$$f(x, y) = \begin{cases} 2e^{-x}e^{-2y} & 0 < x < \infty, 0 < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

Compute (a) $P\{X > 1, Y < 1\}$, (b) $P\{X < Y\}$, and (c) $P\{X < a\}$.

Solution. (a)

$$\begin{aligned}
 P\{X > 1, Y < 1\} &= \int_0^1 \int_1^\infty 2e^{-x}e^{-2y} dx dy \\
 &= \int_0^1 2e^{-2y} \left(-e^{-x}\right|_1^\infty dy \\
 &= e^{-1} \int_0^1 2e^{-2y} dy \\
 &= e^{-1}(1 - e^{-2})
 \end{aligned}$$

(b)

$$\begin{aligned}
 P\{X < Y\} &= \iint_{\substack{(x,y) \\ (x < y)}} 2e^{-x}e^{-2y} dx dy \\
 &= \int_0^\infty \int_0^y 2e^{-x}e^{-2y} dx dy \\
 &= \int_0^\infty 2e^{-2y}(1 - e^{-y}) dy \\
 &= \int_0^\infty 2e^{-2y} dy - \int_0^\infty 2e^{-3y} dy \\
 &= 1 - \frac{2}{3} \\
 &= \frac{1}{3}
 \end{aligned}$$

(c)

$$\begin{aligned}
 P\{X < a\} &= \int_0^a \int_0^\infty 2e^{-2y}e^{-x} dy dx \\
 &= \int_0^a e^{-x} dx \\
 &= 1 - e^{-a}
 \end{aligned}$$

We can also define joint probability distributions for n random variables in exactly the same manner as we did for $n = 2$. For instance, the joint cumulative probability distribution function $F(a_1, a_2, \dots, a_n)$ of the n random variables X_1, X_2, \dots, X_n is defined by

$$F(a_1, a_2, \dots, a_n) = P\{X_1 \leq a_1, X_2 \leq a_2, \dots, X_n \leq a_n\}$$

Further, the n random variables are said to be *jointly continuous* if there exists a function $f(x_1, x_2, \dots, x_n)$, called the *joint probability density function*, such that, for any set C in n -space,

$$P\{(X_1, X_2, \dots, X_n) \in C\} = \iint_{(x_1, \dots, x_n) \in C} \cdots \int f(x_1, \dots, x_n) dx_1 dx_2 \cdots dx_n$$

EXAMPLE If The multinomial distribution

One of the most important joint distributions is the multinomial distribution, which arises when a sequence of n independent and identical experiments is performed. Suppose that each experiment can result in any one of r possible outcomes, with respective probabilities p_1, p_2, \dots, p_r , $\sum_{i=1}^r p_i = 1$. If we let X_i denote the number of the n experiments that result in outcome number i , then

$$P\{X_1 = n_1, X_2 = n_2, \dots, X_r = n_r\} = \frac{n!}{n_1!n_2!\dots n_r!} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r} \quad (1.5)$$

whenever $\sum_{i=1}^r n_i = n$.

Example As an application of the multinomial distribution, suppose that a fair die is rolled 9 times. The probability that 1 appears three times, 2 and 3 twice each, 4 and 5 once each, and 6 not at all is

$$\frac{9!}{3!2!2!1!1!0!} \left(\frac{1}{6}\right)^3 \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^0 = \frac{9!}{3!2!2!} \left(\frac{1}{6}\right)^9 \quad \blacksquare$$

Independent Random Variables

The random variables X and Y are said to be *independent* if, for any two sets of real numbers A and B ,

$$P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\} \quad (2.1)$$

Hence, in terms of the joint distribution function F of X and Y , X and Y are independent if

$$F(a, b) = F_X(a)F_Y(b) \quad \text{for all } a, b$$

When X and Y are discrete random variables, the condition of independence (2.1) is equivalent to

$$p(x, y) = p_X(x)p_Y(y) \quad \text{for all } x, y \quad (2.2)$$

In the jointly continuous case, the condition of independence is equivalent to

$$f(x, y) = f_X(x)f_Y(y) \quad \text{for all } x, y$$

(these statements require proves)

EXAMPLE 2c

A man and a woman decide to meet at a certain location. If each of them independently arrives at a time uniformly distributed between 12 noon and 1 P.M., find the probability that the first to arrive has to wait longer than 10 minutes.

Solution: Since X and Y are independent, $f(x, y) = f_X(x)f_Y(y) = \left(\frac{1}{60}\right)^2$, $0 < x, y < 60$, and 0 otherwise. Hence

$$P\{|X - Y| < 10\} = P\{Y < X - 10\} + P\{Y > X + 10\} = 2 \int_{10}^{60} \int_0^{y-10} \left(\frac{1}{60}\right)^2 dx dy = 25/36$$

EXAMPLE 2f

If the joint density function of X and Y is

$$f(x, y) = 6e^{-2x}e^{-3y} \quad 0 < x < \infty, 0 < y < \infty$$

and is equal to 0 outside this region, are the random variables independent? What if the joint density function is

$$f(x, y) = 24xy \quad 0 < x < 1, 0 < y < 1, 0 < x + y < 1$$

and is equal to 0 otherwise?

Solution:

a) $f_X(x) = 2 e^{-2x}, x > 0; f_Y(y) = 3 e^{-3y}, y > 0;$

$f_X(x)f_Y(y) = 6 e^{-2x}e^{-3y}, x, y > 0$. Hence $f_X(x)f_Y(y) = f(x, y)$, INDEPENDENT

b) $f_X(x) = \int_0^{1-x} 24xy \, dy = 12x(1-x^2), 0 < x < 1; f_Y(y) = 12y(1-y^2), 0 < y < 1$

$f_X(x)f_Y(y) \neq f(x, y)$, DEPENDENT

Proposition 2.1. The continuous (discrete) random variables X and Y are independent if and only if their joint probability density (mass) function can be expressed as

$$f_{X,Y}(x, y) = h(x)g(y) \quad -\infty < x < \infty, -\infty < y < \infty$$

The concept of independence may, of course, be defined for more than two random variables. In general, the n random variables X_1, X_2, \dots, X_n are said to be independent if, for all sets of real numbers A_1, A_2, \dots, A_n ,

$$P\{X_1 \in A_1, X_2 \in A_2, \dots, X_n \in A_n\} = \prod_{i=1}^n P\{X_i \in A_i\}$$

As before, it can be shown that this condition is equivalent to

$$\begin{aligned} & P\{X_1 \leq a_1, X_2 \leq a_2, \dots, X_n \leq a_n\} \\ &= \prod_{i=1}^n P\{X_i \leq a_i\} \quad \text{for all } a_1, a_2, \dots, a_n \end{aligned}$$

Finally, we say that an infinite collection of random variables is independent if every finite subcollection of them is independent.

Exercises

6.22. The joint density function of X and Y is

$$f(x, y) = \begin{cases} x + y & 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

- (a) Are X and Y independent?
- (b) Find the density function of X .
- (c) Find $P\{X + Y < 1\}$.

6.27. If X_1 and X_2 are independent exponential random variables with respective parameters λ_1 and λ_2 , find the distribution of $Z = X_1/X_2$. Also compute $P\{X_1 < X_2\}$.