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This paper develops appropriate boundary conditions for the two-sided fractional diffusion 
equation, where the usual second derivative in space is replaced by a weighted average 
of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting 
boundary conditions for two-sided fractional diffusion involve a balance of left and 
right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler 
methods are detailed, and steady state solutions are derived. Steady state solutions 
for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo 
flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the 
steady-state solution is singular at one or both of the end-points. For Caputo flux and 
reflecting boundary conditions, the steady-state solution is a constant function. Numerical 
experiments illustrate the convergence of these numerical methods. Finally, the influence of 
the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville 
and Caputo fluxes is discussed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Two-sided fractional diffusion equations replace the second derivative with a weighted average of positive (left) and 
negative (right) fractional derivatives. The most familiar case is the Riesz derivative, or fractional Laplacian in one dimension, 
where the weights on the positive and negative fractional derivatives are equal. Two-sided fractional diffusion equations are 
important in many applications. Benson et al. [7] apply a two-sided fractional diffusion equation to model transport in 
heterogeneous porous media, in the flow direction. A dataset from Cape Cod is fit using the Riesz fractional derivative, and 
another dataset from a laboratory sandbox experiment is fit using a model where the weight on the positive fractional 
derivative is three times larger than the weight on the negative fractional derivative. A more highly heterogeneous dataset 
from the Macrodispersion Experimental Site in Columbus MS is fit by Benson et al. [8] by a fractional diffusion model 
with all the weight on the positive fractional derivative. However, Meerschaert, Benson, and Baeumer [31] show that plume 
spreading transverse to the flow direction follows a two-sided fractional diffusion equation. W. Chen [11] uses the Riesz 
fractional derivative to model diffusing particles in a turbulent velocity field, and demonstrates the classical Kolmogorov 
scaling. D. del-Castillo-Negrete, Carreras, and Lynch [14] use the Riesz fractional derivative to model tracer diffusion in 
plasma turbulence. Mittnik and Rachev [35] apply a symmetric stable model, governed by a Riesz fractional derivative, to 
high frequency asset returns.

Stable and consistent numerical methods for space fractional diffusion equations and wave equations are necessary for 
solving many practical problems in turbulence transport models [15], hydrology [33,52], biomedical acoustics [47], and non-
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local diffusion/peridynamics [13,16,45] in bounded domains. Most available numerical schemes assume Dirichlet boundary 
conditions (BCs) [33,34,39]. However, many problems involving space fractional diffusion equations in bounded domains 
require mass conservation. Dirichlet BCs, which impose a fixed value at the boundary, do not conserve mass. As a result, 
considerable effort has been spent on developing mass-preserving, reflecting (Neumann) BCs for space fractional diffusion 
equations [5,6,12,19]. In particular, Baeumer et al. [5] proposed explicit Euler schemes for one-sided space fractional diffu-
sion equations in one dimension using either a positive Riemann–Liouville derivative or a positive Patie–Simon derivative in 
the unit interval, assuming reflecting BCs.

Fractional diffusion using the Riesz derivative in space and a Caputo derivative in time subject to a reflecting boundary 
condition was discussed by Krepysheva et al. [26] from both a microscopic (particle) and macroscopic (field) perspective. 
That paper considered symmetric diffusion on a semi-infinite domain. More general continuous time random walks (CTRWs) 
in a bounded domain were discussed by Burch and Lehoucq [9], while prescribed fractional flux BCs were considered in 
Zhang et al. [52] from a hydrology perspective. A nonlocal normal derivative was introduced in Dipierro et al. [19] to model 
reflecting boundaries associated with the two-sided fractional Laplacian.

In this paper, we develop effective numerical methods for two-sided fractional diffusion equations with Neumann or 
Dirichlet boundary conditions. In Section 2, we formulate the two-sided Riemann–Liouville and Patie–Simon fractional dif-
fusion equations, write both in a conservation form, and develop reflecting and absorbing boundary conditions for these two 
diffusion equations. In Section 3, we propose explicit and implicit Euler schemes for these diffusion equations, extending 
the results of Baeumer et al. [5] for the one-sided equations. In Section 4, we prove that the explicit Euler schemes are 
conditionally stable, and that the implicit Euler schemes are unconditionally stable, using the Gerschgorin circle theorem. In 
Section 5, we compute the kernels and steady-state solutions for the fractional diffusion equations using both the Riemann–
Liouville and Patie–Simon fractional derivatives. Numerical experiments are presented in Section 6, followed by discussion 
in Section 7 and conclusions in Section 8.

2. Space-fractional diffusion equations

We consider space-fractional diffusion equations with a combination of positive and negative Riemann–Liouville frac-
tional derivatives on a bounded domain [L, R]:

∂

∂t
u(x, t) = pCDα

L+ u(x, t) + qCDα
R− u(x, t) + s(x, t) (2.1)

where 1 < α ≤ 2, where C > 0 is the diffusion coefficient, p, q ≥ 0, and p +q = 1, while s(x, t) is a source term. The positive 
and negative Riemann–Liouville derivatives are defined by

D
α
L+ u(x, t) = ∂n

∂xn
In−α

L+ u(x, t) = 1

�(n − α)

∂n

∂xn

x∫
L

u(y, t)

(x − y)α−n+1 dy (2.2a)

D
α
R− u(x, t) = (−1)n ∂n

∂xn
In−α

R− u(x, t) = (−1)n

�(n − α)

∂n

∂xn

R∫
x

u(y, t)

(y − x)α−n+1 dy (2.2b)

where In−α
L+ and In−α

R− are the positive (left) and negative (right) Riemann–Liouville fractional integrals of order (n − α), 
respectively, and n = �α� and α �= n. If α = 2, then the positive and negative Riemann–Liouville derivatives in (2.1) reduce 
to the ordinary second derivative. In the symmetric case (p = q = 1/2), the symmetric space-fractional diffusion equation

∂

∂t
u(x, t) = C

cα

∂α

∂|x|α u(x, t) + s(x, t) (2.3)

is recovered, where

∂α

∂|x|α u(x, t) = cα

�(n − α)

∂n

∂xn

R∫
L

u(y, t)

|x − y|α−1 dy (2.4)

is the Riesz derivative (fractional regional Laplacian) defined on a bounded interval [17,27] and cα = 1/(2| cos(πα/2)|).
We also consider an alternative space-fractional diffusion equation

∂

∂t
u(x, t) = pCDα

L+ u(x, t) + qCDα
R− u(x, t) + s(x, t) (2.5)

where for 1 < α < 2

Dα
L+ u(x, t) = ∂

∂x
∂α−1

L+ u(x, t) = 1

�(2 − α)

∂

∂x

x∫
u′(y, t)

(x − y)α−1 dy (2.6a)
L
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Dα
R− u(x, t) = − ∂

∂x
∂α−1

R− u(x, t) = 1

�(2 − α)

∂

∂x

R∫
x

u′(y, t)

(y − x)α−1 dy (2.6b)

are the Patie–Simon [37] (also called the mixed Caputo [6, Definition 1]) fractional derivatives and

∂α
L+ u(x, t) = 1

�(n − α)

x∫
L

u(n)(y, t)

(x − y)α−n+1 dy (2.7a)

∂α
R− u(x, t) = (−1)n

�(n − α)

R∫
x

u(n)(y, t)

(y − x)α−n+1 dy (2.7b)

are the positive (left) and negative (right) Caputo derivatives [23, Theorem 2.1], respectively.

Remark 2.1. For 1 < α < 2, the Riemann–Liouville and Patie–Simon derivatives are related via

Dα
L+ u(x, t) = D

α
L+ u(x, t) − u(L, t)

(x − L)−α

�(1 − α)
(2.8a)

Dα
R− u(x, t) = D

α
R− u(x, t) + u(R, t)

(R − x)−α

�(1 − α)
, (2.8b)

see [5, Equation (6.6)].

2.1. Conservation form

From a physical point of view, u(x, t) may represent the concentration of an ensemble of particles. This concentration is 
governed by a local mass conservation (continuity) equation

∂

∂t
u(x, t) + ∂

∂x
F (x, t) = 0 (2.9)

where F (x, t) is a flux function (generalized Fick’s law) [15,25,36,44] that accounts for nonlocal diffusion. Comparing (2.9)
with (2.1) and (2.5) with no source (s(x, t) = 0), the flux function is given by

F RL(x, t) = qCDα−1
R− u(x, t) − pCDα−1

L+ u(x, t) (2.10a)

FC (x, t) = qC∂α−1
R− u(x, t) − pC∂α−1

L+ u(x, t) (2.10b)

respectively, where F RL(x, t) is a Riemann–Liouville flux and FC (x, t) is a Caputo flux. Note that ∂
[
D

α−1
R− u(x, t)

]
/∂x =

−D
α
R− u(x, t) for 1 < α ≤ 2. A similar relationship holds for the negative Caputo derivative. The continuity equation (2.9)

complemented with either the Riemann–Liouville flux (2.10a) or Caputo flux (2.10b) is the conservation form. For traditional 
diffusion (α = 2), both the Riemann–Liouville flux and Caputo flux reduce to the classical Fick’s law. An expression similar to 
(2.10a), written using a pseudo-differential operator on the entire real line, was given in Paradisi et al. [36, Equation (2.5)], 
while the Caputo flux (2.10b) was proposed for hydrology applications in Zhang et al. [52] (we have corrected a minus sign 
error in that formula).

Remark 2.2. Both the Riemann–Liouville flux (2.10a) and Caputo flux (2.10b) are nonlocal since the flux at a point x de-
pends on concentration values at locations remote from x. The negative derivatives in (2.10a) and (2.10b) model particle 
movements from locations to the right of x (negative jumps), while the positive derivatives in (2.10a) and (2.10b) model 
particle movements from locations to the left of x (positive jumps). Hence, imposing a zero-flux condition is equivalent to 
balancing these negative and positive particle movements. The Riemann–Liouville flux is the gradient of a sum of fractional 
integrals, whereas the Caputo flux is the sum of fractionally integrated gradients. Since fractional integration and spatial 
differentiation do not commute on a bounded interval, the Riemann–Liouville and Caputo fluxes for a given function usually 
differ. For example, the Caputo flux for a constant function is zero, while the Riemann–Liouville flux of a constant function 
is non-constant and may be singular at one or more boundary points depending on the weights p and q.
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2.2. Reflecting (no-flux) boundary conditions

Using the flux functions defined in (2.10), we can identify a no-flux BC by setting F (x, t) = 0 at the boundary. Setting 
F (x, t) = 0 at x = L and x = R in (2.10) yields reflecting BCs:

RL: pDα−1
L+ u(x, t) = qDα−1

R− u(x, t) for x = L and x = R for all t ≥ 0 (2.11a)

C: p∂α−1
L+ u(x, t) = q∂α−1

R− u(x, t) for x = L and x = R for all t ≥ 0. (2.11b)

These boundary conditions are nonlocal since the BC at x = L or x = R depends on all values of u(x, t) in the interval [L, R]. 
By Remark 2.2, these boundary conditions impose a balance of negative and positive particle movements.

The special case p = 1 was considered in Baeumer et al. [5], yielding the no-flux BC

RL: Dα−1
L+ u(x, t) = 0 for x = L and x = R for all t ≥ 0 (2.12a)

C: ∂α−1
L+ u(x, t) = 0 for x = L and x = R for all t ≥ 0. (2.12b)

For the special case q = 1, the positive Riemann–Liouville and Caputo derivatives Dα−1
L+ and ∂α−1

L+ are replaced by the 
negative Riemann–Liouville and Caputo derivatives Dα−1

R− and ∂α−1
R− , respectively. In the symmetric (fractional Laplacian) 

case p = q, we have

RL: Dα−1
L+ u(x, t) = D

α−1
R− u(x, t) for x = L and x = R for all t ≥ 0 (2.13a)

C: ∂α−1
L+ u(x, t) = ∂α−1

R− u(x, t) for x = L and x = R for all t ≥ 0. (2.13b)

Unlike the one-sided cases, reflecting boundary conditions for the symmetric diffusion equation involves a balance of two 
fractional derivatives of order (α − 1).

2.3. Reflecting/absorbing, absorbing/reflecting, and absorbing BCs

We also consider reflecting on the left boundary and absorbing on the right boundary (reflecting/absorbing BCs)

RL: pDα−1
L+ u(x, t) = qDα−1

R− u(x, t) for x = L and u(R, t) = 0 for all t ≥ 0 (2.14a)

C: p∂α−1
L+ u(x, t) = q∂α−1

R− u(x, t) for x = L and u(R, t) = 0 for all t ≥ 0, (2.14b)

and absorbing on the left and reflecting on the right (absorbing/reflecting BCs)

RL: u(L, t) = 0 and pDα−1
L+ u(x, t) = qDα−1

R− u(x, t) for x = R for all t ≥ 0 (2.15a)

C: u(L, t) = 0 and p∂α−1
L+ u(x, t) = q∂α−1

R− u(x, t) for x = R for all t ≥ 0. (2.15b)

The special case of p = 1 and q = 0 of these BCs was considered in Baeumer et al. [5]. Absorbing (Dirichlet) BCs on both 
boundaries u(L, t) = u(R, t) = 0 will also be considered.

2.4. Conservation of mass

The no-flux (reflecting) BCs given by (2.11) imply that the total mass is conserved. Given a linear operator A on the 
Banach space X = L1[L, R], the domain Dom(A) is the set of f ∈ X for which A f exists in X . For the operators considered 
in the Proposition below, we assume that the Cauchy problem ∂

∂t u = Au has a strong solution for any initial condition 
u0 ∈ Dom(A).

Proposition 2.3. Let M0 = ∫ R
L u(x, t) dx be the total mass and let Dα

RL = pCDα
L+ + qCDα

R− and Dα
P S = pCDα

L+ + qCDα
R− be the 

fractional operators on the right-hand side of (2.1) and (2.5), respectively, with s(x, t) = 0 and reflecting boundary condition (2.11a)
or (2.11b), respectively. Let Dom(Dα

RL) and Dom(Dα
P S ) be the domains of Dα

RL and Dα
P S , respectively. Given a non-negative initial 

condition u(x, 0) = u0(x) ∈ Dom(Dα
RL) for (2.1) or u(x, 0) = u0(x) ∈ Dom(Dα

P S) for (2.5), the total mass is conserved.

Proof. Using the definition of the generator for the corresponding C0 semigroups on the Banach space L1(L, R) [32, Sec-
tion 3.3], the time derivative may be moved inside the integral

∂M0

∂t
=

R∫
L

∂

∂t
u(x, t)dx =

R∫
L

Dαu(x, t)dx,

where Dα =Dα or Dα . Then apply the conservation form (2.9),
RL P S
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∂M0

∂t
= −

R∫
L

∂

∂x
F (x, t)dx

= F (L, t) − F (R, t).

Since F (L, t) = F (R, t) = 0 for all t by (2.12), ∂M0/∂t = 0 and M0 = ∫ R
L u0(x) dx for all t ≥ 0. �

Remark 2.4. Note that a zero-flux boundary condition is a sufficient, but not necessary condition for mass conservation. 
A more general condition is F (L, t) = F (R, t), where the flux leaving the right boundary re-enters the domain at the left 
boundary (and vice versa).

Remark 2.5. It is also interesting to consider fractional boundary value problems in higher dimensions. Gunzburger et al. 
[24] model turbulent flows using a modified Navier–Stokes equation, where the diffusive operator is replaced by a fractional 
Laplacian. Epps and Cushman-Roisin [20] use a generalized Boltzmann kinetic theory to derive a fractional Laplacian term 
for the mean friction force arising in a turbulent flow in three dimensions. Viswanathan et al. [50] model the flight of the 
Albatross using a fractional Laplacian in two dimensions. Lischke et al. [27] provide a review of the fractional Laplacian, 
and numerical methods for Dirichlet boundary value problems. At present, the formulation of the corresponding Neumann 
problem for the vector fractional Laplacian is an area of active research. However, in certain cases, the results of this paper 
can be applied in higher dimensions. Consider the vector fractional diffusion equation

∂

∂t
u(x, t) =

d∑
i=1

[
piCi

∂α

∂xα
i

u(x, t) + qi Ci
∂α

∂(−xi)
α

u(x, t)

]
+ s(x, t) (2.16)

where the vector x = (x1, . . . , xd) and pi + qi = 1 for 1 ≤ i ≤ d. If we consider the boundary value problem on a rectangle, 
we can apply absorbing or reflecting boundary conditions in each dimension, in the forms considered in this paper. Details 
will be included in a follow-up paper.

3. Finite-difference approximations

To discretize (2.1), we can use either an explicit or implicit Euler scheme combined with the shifted Grünwald estimate 
[34]:

D
α
L+ f (x j) = h−α

j+1∑
i=0

gα
i f

(
x j−i+1

) +O(h) (3.1a)

D
α
R− f (x j) = h−α

n− j+1∑
i=0

gα
i f

(
x j+i−1

) +O(h) (3.1b)

where h = (R − L)/n is the grid spacing, x j = L + hj are the n + 1 grid points, and

gα
i = (−1)i�(α + 1)

�(i + 1)�(α − i + 1)
(3.2)

are the Grünwald weights [32, Equation (2.4)]. The resulting explicit Euler scheme is given by

u
(
x j, tk+1

) = u
(
x j, tk

) + pC�t

hα

j+1∑
i=0

gα
i u

(
x j−i+1, tk

) + qC�t

hα

n− j+1∑
i=0

gα
i u

(
x j+i−1, tk

) + �ts
(
x j, tk

)
. (3.3)

Defining a row vector containing the solution at time tk = k�t via uk = [u(xi, tk)] along with the source sk = [�t s(xi, tk)]
yields

uk+1 = uk + β+uk B+ + β−uk B− + sk (3.4)

where β+ = pCh−α�t , β− = qCh−α�t , and B± are (n + 1) × (n + 1) iteration matrices, which will be written explicitly 
below. These iteration matrices depend upon both the flux function and the boundary conditions. The explicit scheme (3.4)
may be written compactly as

uk+1 = uk A + sk (3.5)

where A = I + β+B+ + β−B− .
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Applying an implicit Euler discretization to (2.1) yields

uk+1 = uk + β+uk+1 B+ + β−uk+1 B− + sk+1, (3.6)

where B± are the same iteration matrices utilized in (3.4). This implicit scheme may be written as

uk+1M = uk + sk+1, (3.7)

where M = I − β+B+ − β−B− . The discretization of (2.5) leads to the same iteration equations (3.5) and (3.7), but with a 
slightly different iteration matrix, which will be written explicitly below.

3.1. Iteration matrices: Riemann–Liouville flux

We first consider the explicit and implicit Euler schemes associated with (2.1) subject to reflecting BCs. The entries of 
B+ are given by [5, Equation 4.2]

bi, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gα
j−i+1 if 0 < j < n and i ≤ j + 1

1 if i = 1 and j = 0

1 − α if i = j = 0

−gα−1
n−i if j = n and i ≤ n

0 otherwise.

(3.8)

The entries for column j = 0 prevent mass from leaving the left boundary x = L, while the entries for j = n prevent mass 
from leaving the right boundary x = R . The fraction of mass that would otherwise leave the domain is deposited at the 
boundary, thereby modeling inelastic collisions at x = L and x = R . Comparing the second and third terms in (3.3), we see 
that the entries of B− associated with the negative Riemann–Liouville fractional derivative are [bn−i,n− j].

Next, consider the reflecting/absorbing BCs given by (2.14a). The iteration matrix Bra+ for the one-sided Riemann–
Liouville derivative with these BCs is simply (3.8) with all entries in column j = n set equal to zero. The iteration matrix 
Bar+ for the one-sided Riemann–Liouville derivative with absorbing/reflecting BCs (2.15a) is (3.8) with all entries in column 
j = 0 set equal to zero. Finally, the iteration matrix Baa+ for the one-sided Riemann–Liouville derivative with absorbing BCs 
u(L, t) = u(R, t) = 0 is (3.8) with all entries in both columns j = 0 and j = n set equal to zero. Comparing the second and 
third terms in (3.3), we see that replacing i and j by n − i and n − j reverses the roles for r and a. Hence, the entries of 
Bra− , Bar− , and Baa− are simply bar

n−i,n− j , b
ra
n−i,n− j , and baa

n−i,n− j , respectively.

3.2. Iteration matrices: Caputo flux

In Section 6 of [5], an explicit Euler scheme was proposed to solve (2.5) in the special case q = 0 subject to Dirich-
let (absorbing) and Neumann (reflecting) BCs. Absorbing/reflecting and reflecting/absorbing BCs were also considered. For 
reflecting BCs (2.11b), the iteration matrix B = [

bi, j
]

is given by [5, Equation 6.11]

bi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gα
j−i+1 if 0 < j < n and i ≤ j + 1

1 if i = 1 and j = 0

−1 if i = j = 0

−gα−1
j if i = 0 and 0 < j < n

−gα−2
n−1 if i = 0 and j = n

−gα−1
n−i if j = n and 0 < i ≤ n

0 otherwise,

(3.9)

and then the entries of B− are 
[
bn−i,n− j

]
. As in the Riemann–Liouville flux case, the iteration matrices for reflecting/ab-

sorbing and absorbing/reflecting BCs are simply (3.9) with all entries in the n-th column or zeroth column set to zero, 
respectively [5, Equations 6.15 and 6.17]. Finally, for absorbing BCs u(L, t) = u(R, t) = 0, the iteration matrix is given by (3.9)
with all entries in columns j = 0 and j = n set to zero.

3.3. Consistency of boundary conditions

In this subsection, we show that the iteration matrices (3.8) and (3.9) are consistent with the reflecting boundary con-
ditions (2.11a) and (2.11b), respectively, as h → 0 and �t → 0. We restrict our attention to the explicit Euler scheme since 
the argument for implicit Euler is identical. Assuming no source term, the update equation for either diffusion equation at 
the right boundary j = n is
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u
(
xn, tk+1

) = u (xn, tk) + β+
n∑

i=0

bi,nu (xi, tk) + β−
n∑

i=0

bn−i,0u (xi, tk) (3.10)

First, consider the iteration matrix for the explicit Euler schemes associated with the space-fractional diffusion equation 
using Riemann–Liouville flux (2.1). Evaluating (3.10) yields

u
(
xn, tk+1

) = u (xn, tk) − pC�t

hα

n∑
i=0

gα−1
n−i u (xi, tk) + qC�t

hα
(u (xn−1, tk) + (1 − α)u (xn, tk)) ,

which is equivalent to

h
u

(
xn, tk+1

) − u (xn, tk)

�t
= − pC

hα−1

n∑
i=0

gα−1
n−i u (xi, tk) + qC

hα−1

1∑
i=0

gα−1
i u (xn+i−1, tk) .

The first term on the right hand side is just the Grünwald approximation of Dα−1
L+ u(x, tk) at x = R multiplied by −pC , 

while the second term is the Grünwald approximation of Dα−1
R− u(x, tk) at x = R multiplied by qC . As h → 0, the Grünwald 

approximation of Dα−1
L+ u(x, tk) is consistent with (2.2a) at x = R in both the L1 and supremum norms [4, Theorem 3.3]. 

For additional details regarding the second term, see [6, Proposition 19]. As �t → 0 and h → 0, the left hand side ap-
proaches zero, yielding pDα−1

L+ u(x, t) = qDα−1
R− u(x, t) at x = R . Writing out the update equation at the left boundary j = 0

and performing a similar argument yields the same boundary condition at x = L.
Now consider the space-fractional diffusion equation using Caputo flux (2.5). Applying (3.10) yields

u
(
xn, tk+1

) = u (xn, tk) − pC�t

hα

(
−gα−2

n−1 u (x0, tk) −
n∑

i=1

gα−1
n−i u (xi, tk)

)
+ qC�t

hα
(u (xn−1, tk) − u (xn, tk)) .

Applying the identity gα
n − gα−1

n = −gα−1
n−1 [5, Equation (6.9)] and rearranging yields

h
u

(
xn, tk+1

) − u (xn, tk)

�t

= − pC

hα−1

(
n∑

i=0

gα−1
n−i u (xi, tk) − gα−2

n u (x0, tk)

)
+ qC

hα−1

(
1∑

i=0

gα−1
i u (xn+i−1, tk) − gα−2

1 u (xn, tk)

)
.

The first term on the right hand side is the Grünwald approximation of ∂α−1
L+ u(x, tk) multiplied by −pC at x = R , while the 

second term is the Grünwald approximation of ∂α−1
R− u(x, tk) at x = R multiplied by qC [6, Section 6]. Let �t → 0, yielding 

p∂α−1
L+ u(x, t) = q∂α−1

R− u(x, t) at x = R . Applying a similar argument to the update equation at the left boundary j = 0 yields 
the same boundary condition at x = L.

4. Stability analysis

4.1. Riemann–Liouville flux

To prove conditional stability of the explicit Euler scheme (3.5) and unconditional stability of the implicit Euler 
scheme (3.7), we estimate the eigenvalues of the matrices A and M using the Gerschgorin circle theorem [3, Theorem 9.1]. 
The following Lemma is used.

Lemma 4.1. The radii of the Gerschgorin circles of the matrix B+ = [bi, j] given by (3.8)

ri =
n∑

j=0, j �=i

∣∣bi, j
∣∣ (4.1)

are given by

ri =

⎧⎪⎨
⎪⎩

α − 1 if i = 0

α if 0 < i < n

1 if i = n,

(4.2)

while the radii of the Gerschgorin circles of the matrix B− = [bn−i,n− j] are rn− j .
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Proof. Using (3.2) we can see that gα
0 = 1, gα

1 = −α, gα
i > 0 for all i > 1, gα−1

0 = 1, and gα−1
i < 0 for all i > 0. Hence all 

the off-diagonal entries in both B+ and B− are non-negative, allowing us to neglect the absolute value in (4.1). Then write

r0 =
n−1∑
j=1

gα
j+1 − gα−1

n

=
n∑

j=2

gα
j − gα−1

n

=gα−1
n − 1 + α − gα−1

n

=α − 1

where we used [43, Equation 20.4]

n∑
j=0

gα
j = gα−1

n . (4.3)

Next, consider rows 0 < i < n:

ri =1 +
n−1∑

j=i+1

gα
j−i+1 − gα−1

n−i

=1 +
n−i∑
j=2

gα
j − gα−1

n−i

=1 − 1 + α + gα−1
n−i − gα−1

n−i

=α.

For row i = n, we have rn = 1 since there is only one off-diagonal entry. Finally, the radii of the Gerschgorin circles of the 
matrix B− are

n∑
j=0, j �=i

bn−i,n− j =
n∑

j=0, j �=n−i

bn−i, j = rn−i,

completing the proof. �
Remark 4.2. The Gerschgorin radii associated with Bar+ , Bra+ , and Baa+ are less than or equal to the radii of B+ since the 
entries of Bar+ , Bra+ , and Baa+ are either those of B+ or zero. The same is true for Bar− , Bra− , and Baa− .

Proposition 4.3. The explicit Euler method (3.4) for (2.1) subject to any combination of absorbing and reflecting BCs is stable if 
�t/hα ≤ 1/(αC) over the region L ≤ x ≤ R and 0 ≤ t ≤ T .

Proof. First consider the case of reflecting BCs. By the Gerschgorin circle theorem [3, Theorem 9.1], it suffices to show the 
eigenvalues of A are inside the closed unit disk. Using (4.2), the radii of the Gerschgorin circles for the matrix A are given 
by

Ri =

⎧⎪⎨
⎪⎩

β+(α − 1) + β− if i = 0

β+α + β−α if 0 < i < n

β+ + β−(α − 1) if i = n,

(4.4)

while the diagonal entries of A are

ai,i =

⎧⎪⎨
⎪⎩

1 − β+ (α − 1) − β− if i = 0

1 − (β+ + β−)α if 0 < i < n

1 − β+ − β− (α − 1) if i = n.

(4.5)

Hence ai,i + Ri = 1 for all i, while ai,i − Ri,i = 1 − 2Ri . To ensure |λi| ≤ 1 and stability, we require 1 − 2Ri ≥ −1, or Ri ≤ 1. 
Since the largest Ri is α(β+ + β−), we require
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α (β+ + β−) ≤ 1,

which is true by hypothesis. The cases of absorbing/reflecting, reflecting/absorbing, and absorbing BCs are similar, using 
Remark 4.2. �
Remark 4.4. The same explicit stability condition was shown for the fractional diffusion equation with Dirichlet BCs in [34]. 
For the case of α = 2 with a diffusion coefficient C = 1, we recover the well-known stability constraint for the diffusion 
equation with both Dirichlet (absorbing) and Neumann (reflecting) BCs [41]:

β = �t

h2
≤ 1

2
. (4.6)

For the case of α = 1 and C = 1, we recover the stability constraint for the transport equation with both Dirichlet (absorbing) 
and Neumann (reflecting) BCs:

β = �t

h
≤ 1. (4.7)

Proposition 4.5. The implicit Euler method for (2.1) subject to any combination of absorbing and reflecting BCs for 1 < α ≤ 2 is 
unconditionally stable for all �t and any grid spacing h.

Proof. As in the explicit scheme proof, we use [3, Theorem 9.1]. First, note that the off-diagonal entries mi, j of M are 
simply −β+bi, j − β−bn−i,n− j . Hence, the radii of the Gerschgorin circles for the matrix M are also given by (4.4), while the 
diagonal entries of M are

mi,i =

⎧⎪⎨
⎪⎩

1 + β+ (α − 1) + β− if i = 0

1 + (β+ + β−)α if 0 < i < n

1 + β+ + β− (α − 1) if i = n.

(4.8)

The complex absolute values of the eigenvalues λi of M are bounded by mi,i − Ri ≤ |λi| ≤ mi,i + Ri . Clearly, mi,i − Ri = 1 for 
all 0 ≤ i ≤ n, while mi,i + Ri = 1 + 2Ri,i > 1. Hence, |λi| ≥ 1, implying that every eigenvalue of the inverse matrix M−1 has 
complex absolute values less than or equal to 1. The proof for other combinations of BCs is similar. �
4.2. Caputo flux

In this section, we prove stability of the explicit and implicit Euler schemes for (2.5).

Lemma 4.6. The radii of the Gerschgorin circles of the matrices B+ and B− with entries specified by (3.9) and 
[
bn−i,n− j

]
, respectively, 

are given by

ri =
{

1 if i = 0 or i = n

α if 0 < i < n.
(4.9)

Proof. Again, note that all the off-diagonal entries are positive. First, consider row i = 0:

r0 = −
n−1∑
j=1

gα−1
j + gα−2

n−1

=1 −
n−1∑
j=0

gα−1
j + gα−2

n−1

=1 − gα−2
n−1 + gα−2

n−1 = 1,

where (4.3) is used in the third line. Next, consider rows 0 < i < n:

ri =1 +
n−1∑

j=i+1

gα
j−i+1 − gα−1

n−i

=1 +
n−i∑
j=2

gα
j − gα−1

n−i

=1 − 1 + α + gα−1
n−i − gα−1

n−i = α.
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Finally, if i = n, then there is a single entry rn = −gα−1
0 = 1. Since B− has entries [bn−i,n− j] and r0 = rn = 1, it follows that 

B− also has Gerschgorin radii given by (4.9). �
Proposition 4.7. The explicit Euler method for (2.5) subject to any combination of absorbing and reflecting BCs is stable if �t/hα ≤
1/(αC) over the region L ≤ x ≤ R and 0 ≤ t ≤ T .

Proof. As with (4.3), we consider the case of reflecting BCs. Note that

ai,i =
{

1 − (β+ + β−) if i = 0 or i = n

1 − (β+ + β−)α if 0 < i < n,

with Gerschgorin radii given by (4.10). Hence, ai,i + Ri = 1 for all i and we require Ri ≤ 1 to bound all eigenvalues in the 
unit disk. Hence, α (β+ + β−) ≤ 1, which is satisfied by hypothesis. The other three cases are similar since the Gerschogorin 
radii are bounded above by (4.9). �
Proposition 4.8. The implicit Euler scheme for (2.5) subject to any combination of absorbing and reflecting BCs for 1 < α ≤ 2 is 
unconditionally stable for all �t.

Proof. Using (4.9), the radii of the Gerschgorin circles for the matrix M with reflecting BCs are given by

Ri =
{

(β+ + β−) if i = 0 or i = n

α (β+ + β−) if 0 < i < n,
(4.10)

while the diagonal entries of M are

mi,i =
{

1 + (β+ + β−) if i = 0 or i = n

1 + (β+ + β−)α if 0 < i < n.

Hence, mi,i − Ri = 1, while mi,i + Ri = 1 + 2Ri ≥ 1. Application of the Gerschgorin theorem places all eigenvalues of M in 
the set |λi | ≥ 1, implying that the spectral radius of M−1 is less than or equal to one. The proof with other combinations of 
BCs is similar. �
5. Steady-state solutions

In this section, we compute the steady-state solutions u∞(x) that satisfy (2.1) and (2.5), and particular steady-state 
solutions that satisfy reflecting (no-flux) BCs. We first compute the kernel (null-space) of the two-sided Riemann–Liouville 
and Patie–Simon derivatives, and then construct steady-state solutions that satisfy reflecting BCs using functions in the 
kernel.

5.1. Riemann–Liouville flux

In the one-sided case (p = 1), the kernel (null-space) of the Riemann–Liouville derivative on the interval [−1, 1] was 
computed in Baeumer et al. [6]

ker
(
D

α
−1+

) = c0(x + 1)α−2 + c1(x + 1)α−1, (5.1)

where c0 and c1 are arbitrary constants. The only steady state solution with a total mass of one that satisfies reflecting BCs 
is u∞(x) = 21−α(α −1)(1 + x)α−2, which is singular at the left end-point x = −1 and regular at the right end-point x = 1. To 
check (5.1), note that since the Riemann–Liouville derivative (2.2a) is the second derivative of the 2 − α Riemann–Liouville 
integral, the Riemann–Liouville derivative of a function can be identically zero if and only if the 2 − α Riemann–Liouville 
integral is linear. Then apply the Riemann–Liouville integral of order 2 − α to both terms, which yields a linear function 
in x. The second derivative of this expression is identically zero. A similar argument holds for the one-sided negative case 
(q = 1), yielding u∞(x) = 21−α(α − 1)(1 − x)α−2, which is regular at x = −1 and singular at x = 1.

In this section, we derive the steady-state solution of (2.1) with s = 0 on the interval [−1, 1]
pDα

−1+ u∞(x) + qDα
1− u∞(x) = 0 (5.2)

subject to a reflecting BC at both boundaries:

pDα−1
−1+ u∞(x) = qDα−1

1− u∞(x) for x = −1 and 1. (5.3)

The kernel and steady state solution may be derived using the method of orthogonal polynomials [2,40], see also [38, 
Section 6.4].
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Definition 5.1. The Jacobi polynomials Pμ,ν
m (x) of order m ≥ 0 are m-th degree polynomials orthogonal with respect to the 

weight (1 − x)μ(1 + x)ν on the interval [−1, 1], where μ, ν > −1. These polynomials may be defined via [1, Equation 
(22.3.2)]

Pμ,ν
m (x) = �(μ + m + 1)

m!�(μ + ν + m + 1)

m∑
k=0

(
m

k

)
�(μ + ν + m + k + 1)

2k�(μ + k + 1)
(x − 1)k. (5.4)

In particular, Pμ,ν
0 (x) = 1 and Pμ,ν

1 (x) = (μ + ν + 2)x/2 + (μ − ν)/2.

Definition 5.2. The two-sided Jacobi polyfractonomials used by Mao and Karniadakis [30] Q μ,ν
m (x) are defined by

Q μ,ν
m (x) = (1 − x)μ(1 + x)ν Pμ,ν

m (x) (5.5)

where Pμ,ν
m (x) is defined by (5.4).

An identity involving Q μ,ν
m (x) and the two-sided fractional integral is given by Podlubny [38, Theorem 6.4] with r = 0

and k = −1:

1∫
−1

(
cos (γ π) sgn(x − t) + sin(πγ )

tan(ν̃π/2)

)
Q −γ +ν̃/2,γ +ν̃/2−1

m (t)

|x − t|ν̃ dt = Am Pγ +ν̃/2−1,−γ +ν̃/2
m (x), (5.6)

where 0 < ν̃ < 1, 0 < γ < 1, and

Am = π�(m + ν̃)

m!�(ν̃) sin(ν̃π/2)
. (5.7)

Using (5.6), we will characterize the kernel ker(Dα
RL) of the two-sided Riemann–Liouville derivative. First, we need a tech-

nical lemma.

Lemma 5.3. Let 1 < α < 2, p + q = 1, and let m ≥ 0 be an integer. Then

pI2−α
−1+ Q μ,ν

m (x) + qI2−α
1− Q μ,ν

m (x) = Cm Pν,μ
m (x) (5.8)

where I2−α
−1+ and I2−α

1− are the positive and negative Riemann–Liouville fractional integrals of order (2 −α), respectively, and

μ + ν = α − 2 (5.9a)

p − q = cot

(
π

(
α − 1

2
− μ

))
tan

(
α − 1

2
π

)
(5.9b)

Cm = sin(π(α − 1)/2)�(m + α − 1)

m! sin(π(α − 1)/2 − πμ)
. (5.9c)

Proof. In (5.6), let W± = ± cos(πγ ) + sin(πγ )/ tan(ν̃π/2), ν̃ = α − 1, and define

μ = −γ + α − 1

2
(5.10a)

ν = γ − 1 + α − 1

2
. (5.10b)

Split (5.6) into two terms and divide both sides by �(2 − α), yielding

W+ I2−α
−1+ Q μ,ν

m (x) + W− I2−α
1− Q μ,ν

m (x) = Am

�(2 − α)
Pν,μ

m (x). (5.11)

By the Euler reflection formula �(2 − α)�(α − 1) = π/ sin(π(α − 1)) and the double angle formula for the sine,

Ãm = Am

�(2 − α)
= 2�(m + α − 1) cos((α − 1)π/2)

m! , (5.12)

yielding

W+ I2−α
−1+ Q μ,ν

m (x) + W− I2−α
1− Q μ,ν

m (x) = Ãm Pν,μ
m (x). (5.13)

Now divide both sides of (5.13) by W+ + W− and let
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p = W+
W+ + W−

= sin(πγ ) + cos(πγ ) tan((α − 1)π/2)

2 sin(πγ )
(5.14a)

q = W−
W+ + W−

= sin(πγ ) − cos(πγ ) tan((α − 1)π/2)

2 sin(πγ )
(5.14b)

which is valid for 0 < γ < 1. Solve (5.10a) for γ = (α − 1)/2 − μ and subtract (5.14b) from (5.14a), yielding (5.9b). Add 
(5.10a) and (5.10b), yielding (5.9a). Finally, divide (5.12) by W+ + W− , yielding (5.9c). �
Remark 5.4. Ervin et al. [21, Lemma 4.3] use the Gauss hypergeometric function 2 F 1(a, b; c; z) to reach a similar result in 
the special case of m = 0 on the interval [0,1].

Armed with Lemma 5.3, we can now compute the two-sided Riemann–Liouville derivative of the family of functions 
defined by Q μ,ν

m (x).

Theorem 5.5. Let Dα
RL = pDα

−1+ + qDα
1− be the two-sided Riemann–Liouville derivative on [−1, 1], with 1 < α < 2, p + q = 1, and 

let m ≥ 0 be an integer. Then

Dα
RL Q μ,ν

m (x) = Cm
∂2

∂x2
Pν,μ

m (x), (5.15)

where Q μ,ν
m (x) is given by (5.5) and μ, ν , and Cm satisfy (5.9).

Proof. Apply the second derivative operator to (5.8). By (2.2), the theorem follows. �
Corollary 5.6. The kernel of the two-sided Riemann–Liouville derivative on [−1, 1] is given by ker(Dα

RL) = c0 Q μ,ν
0 (x) + c1xQ μ,ν

0 (x), 
where Q μ,ν

0 (x) = (1 − x)μ(1 + x)ν .

Proof. Let m = 0 in Theorem 5.5. The right-hand side of (5.15) vanishes since Pν,μ
0 (x) is a constant. Likewise, let m = 1 in 

the same theorem. Since Pν,μ
1 (x) is linear with respect to x, the right hand side of (5.15) also vanishes. �

Theorem 5.7. The kernel of the two-sided Riemann–Liouville derivative on the interval [−1, 1] is given by

ker(Dα
RL) = c0(1 − x)μ(1 + x)ν + c1x(1 − x)μ(1 + x)ν (5.16)

with parameters μ and ν satisfy (5.9a) and (5.9b). In particular, the steady state solution u∞(x) subject to reflecting BCs (2.11) with 
L = −1 and R = 1 is

u∞(x) = M0(1 − x)μ(1 + x)ν

B(μ + 1, ν + 1)21+μ+ν
(5.17)

where B(μ + 1, ν + 1) is the beta function [22, Equation 2.5] and M0 = ∫ 1
−1 u0(x) dx.

Proof. The kernel (5.16) follows immediately from Corollary 5.6. To demonstrate (5.17), the Riemann–Liouville flux 
F RL(x, t) = −p∂/∂xI2−α

−1+ u∞(x) + q∂/∂xI2−α
1− u∞(x) = 0, which is satisfied by c0 Q μ,ν

0 (x). Letting M0 = ∫ 1
−1 u0(x) dx, we have

M0 =
1∫

−1

c0(1 − x)μ(1 + x)ν dx

= 21+μ+νc0

1∫
0

yν(1 − y)μ dy

= 21+μ+νc0 B (μ + 1, ν + 1) ,

yielding the constant c0. �
Remark 5.8. In the one-sided case (p = 1 and q = 0), (5.9a) and (5.9b) yield μ = 0 and ν = α − 2. Evaluating the kernel 
(5.16) with these parameters yields

ker(Dα
RL) = c0(1 + x)α−2 + c1x(1 + x)α−2

= (c0 − c1)(x + 1)α−2 + c1(x + 1)α−1,
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which agrees with the known one-sided solution (5.1). Likewise, if p = 0 and q = 1, then (5.9a) and (5.9b) yield μ = α − 2
and ν = 0, and (5.16) evaluates to ker(Dα

RL) = (c0 + c1)(1 − x)α−2 − c1(1 − x)α−1.

Remark 5.9. In the symmetric case (p = q = 1/2), μ = ν = α/2 − 1, yielding the kernel

ker(Dα
RL) = c0(1 − x2)α/2−1 + c1x(1 − x2)α/2−1,

which, in general, is singular at both x = −1 and x = 1. Setting c1 = c0, yields ker(Dα
RL) = c0(1 + x)α/2(1 − x)α/2−1, which 

is regular at x = −1 and singular at x = 1. Setting c1 = −c0 yields ker(Dα
RL) = c0(1 + x)α/2−1(1 − x)α/2, which is singular at 

x = −1 and regular at x = 1. The steady-state solution (5.17) with reflecting BCs with B(α/2, α/2) = (�(α/2))2 /�(α) is

u∞(x) = M0
�(α)

2α−1 (�(α/2))2
(1 − x2)α/2−1, (5.18)

which is symmetric about x = 0. If α = 1, then (5.18) is proportional to the arc sine density [22, Equation 4.4] on the interval 
[−1, 1].

5.2. Caputo flux

As with Riemann–Liouville flux, the kernel of the one-sided (p = 1) Patie–Simon derivative was computed in Baeumer et 
al. [6],

ker
(
Dα

−1+
) = c0 + c1(x + 1)α−1, (5.19)

where c0 and c1 are arbitrary constants. Unlike (5.1), (5.19) is regular at both end-points. The only steady solution with total 
mass of one that satisfies reflecting BCs (2.12b) is u∞(x) = 1/2. In this section, we compute the kernel of the two-sided 
Patie–Simon derivative ker

(
Dα

P S

)
pDα

−1+ u∞(x) + qDα
1+ u∞(x) = 0. (5.20)

This task requires another technical lemma.

Lemma 5.10. Let μ and ν satisfy (5.10). Then

x∫
−1

(1 − y)μ(1 + y)ν dy = 2μ

1 + ν
(1 + x)1+ν

2 F 1(−μ,1 + ν;2 + ν; (1 + x)/2), (5.21)

where the Gauss hypergeometric function 2 F 1(a, b; c; w) has an integral representation given by [23, Section 1.6]

2 F 1(a,b; c; w) = �(c)

�(b)�(c − b)

1∫
0

zb−1(1 − z)c−b−1(1 − zw)−a dz (5.22)

with 0 < b < c.

Proof. Let z = (y + 1)/(x + 1) in (5.21), yielding

x∫
−1

(1 − y)μ(1 + y)ν dy = (x + 1)ν+12μ

1∫
0

zν(1 − zw)μ dz,

where w = (1 + x)/2. Compare to (5.22) with a = −μ, b = 1 + ν and c = 2 + ν and note that �(1 + ν)�(1)/�(2 + ν) =
1/(1 + ν), yielding (5.21). �
Theorem 5.11. The kernel of the two-sided Patie–Simon derivative on the interval [−1, 1] is given by

ker
(
Dα

P S

) = c0 + c1(1 + x)1+ν
2 F 1(−μ,1 + ν;2 + ν; (1 + x)/2) (5.23)

with parameters μ and ν satisfy (5.9a) and (5.9b). In particular, the steady state solution u∞(x) subject to reflecting BCs (2.11b) with 
L = −1 and R = 1 is u∞(x) = M0/2, where M0 is the total mass.
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Proof. Let Dα
P S = pDα

−1+ + qDα
1− be the two-sided Patie–Simon derivative and define

u(x) = c0 + c1

x∫
−1

Q μ,ν
0 (y)dy.

By (2.6),

Dα
P S u∞(x) = (

pDα
−1+ + qDα

1−
)

u(x)

= ∂

∂x

(
pI2−α

−1+ + qI2−α
1−

) ∂

∂x
u(x)

= ∂

∂x

(
pI2−α

−1+ + qI2−α
1−

)
c1 Q μ,ν

0 (x).

By (5.8), we have

Dα
P S u∞(x) = c1C0

∂

∂x
Pν,μ

0 (x) = 0.

Then invoke (5.21), thus proving (5.23). Of the two terms in (5.23), only u∞(x) = c0 satisfies the reflecting BCs (2.11b). Then ∫ 1
−1 c0 dx = M0, yielding c0 = M0/2. �

Remark 5.12. Ervin et al. [21, Corollary 4.1] also computed the kernel of Dα
P S on [0, 1], yielding similar expressions involving 

the Gauss hypergeometric function.

Remark 5.13. In the one-sided case (p = 1 and q = 0), μ = 0 and ν = α − 2. Evaluating (5.23) yields

ker
(
Dα

P S

) = c0 + c1(1 + x)α−1
2 F 1(0,α − 1;α; (1 + x)/2)

= c0 + c1(x + 1)α−1

which agrees with (5.19).

6. Numerical experiments

6.1. One-sided fractional derivative

In our first experiment, we use the method of manufactured solutions (MOMS) to test the convergence of the one-sided 
fractional diffusion equations using both the Riemann–Liouville derivative and the Patie–Simon given by (2.1) and (2.5), 
respectively. We assume reflecting boundary conditions at both x = −1 and x = 1. To construct an initial condition, we first 
identify the domains of the positive Riemann–Liouville derivative and positive Patie–Simon derivative that satisfy reflecting 
BCs on the interval [−1, 1] [6, Table 1, Rows 6 and 4]:

Dom
(
D

α
−1+ , N N

) =
{

f ∈ X : f = Iα−1+ g − I1
−1+ g(1)

p+
1 (1)

p+
α (x) + cp+

α−2(x), g ∈ X

}
(6.1a)

Dom
(
∂α
−1+ , N N

) =
{

f ∈ X : f = Iα−1+ g − I1
−1+ g(1)

p+
1 (1)

p+
α (x) + cp+

0 (x), g ∈ X

}
(6.1b)

where N N denotes the Neumann BCs in (2.12a) and (2.12b), p+
α (x) = (1 + x)α/�(α + 1), c ∈R, and X is some suitable space 

of functions (e.g., X = L1[−1, 1]). By choosing g(x) = −(1 + x)β where β > 0 in (6.1a) and (6.1b) and c = 0, we construct an 
initial condition

u0(x) = 2β

1 + β
p+
α (x) − �(1 + β)p+

α+β(x). (6.2)

Since Dom
(
D

α
−1+ , N N

)
= Dom

(
∂α
−1+ , N N

)
for c = 0, (6.2) is a valid initial condition for both (2.1) and (2.5). The manufac-

tured source term s(x, t) is given by

s(x, t) = −e−t
(

u0(x) + 2β

1 + β
− �(β + 1)p+

β (x)

)
, (6.3)

yielding an exact analytical solution
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Fig. 1. Panel (a) compares the exact solution (6.4) of (2.1) using the Riemann–Liouville derivative with the numerical solution using n = 100 grid points and 
α = 1.5. The numerical solution of (2.5) using the Patie–Simon derivative with the same parameters is very similar.

u(x, t) = u0(x)e−t . (6.4)

Equations (2.1) and (2.5) are discretized using the explicit Euler scheme (3.4) and simulated with a uniform grid of 
n points, where n = 50, 100, 200, 400, and 800 with α = 1.5 and β = 2. A time-step satisfying �t ≤ hα/α is chosen 
and the relative L2 error between the exact and numerical solutions is computed after 2000 timesteps. Fig. 1a compares 
the exact solution (6.4) with the numerical solution using n = 100 grid points, while Fig. 1b displays the relative L2 er-
ror as a function n for both models. In panel a, there is good agreement between the numerical and analytical solution, 
although there is some disagreement near the right boundary. The numerical solution of (2.5) using the Patie–Simon deriva-
tive with the same parameters behaves in the same manner. As the grid is refined (n increases), the numerical solutions 
using either the Riemann–Liouville and Patie–Simon derivatives converge to the exact solution, as shown in panel b. The 
numerical convergence rate for both the Riemann–Liouville and Patie–Simon diffusion equations, which is given by the 
negative of the slope of Fig. 1b, is approximately one, which agrees with the truncation error of the shifted Grünwald es-
timate. The measured numerical convergence rate of the Patie–Simon diffusion equation suggests that the truncation error 
associated with the iteration matrix (3.9) is O(h) even though this scheme contains an approximation of gα−1

j+1 [5, Equa-
tion (6.8)].

6.2. Two-sided fractional derivative

In the following numerical experiments, we used �x = 1/500 with n = 1000 grid-points and the implicit scheme (3.7)
with a time-step of �t = 0.0025. We have verified these results by reproducing these results using the explicit Euler scheme 
(3.5) with a time-step of �t = 0.0002, which satisfies the stability limit in Proposition 4.3. A tent function initial condition

u0(x) =
{

5 − 25|x| for |x| < 0.2,

0 otherwise,
(6.5)

with mass M0 = 1.
Fig. 2 shows numerical solutions for the fractional diffusion equation with Riemann–Liouville flux using α = 1.5 and 

reflecting BCs at both end-points. The weight p varies from a) p = 1, b) p = 0.75, c) p = 0.5, and d) p = 0.25, and solutions 
are shown at t = 0 (solid), t = 0.05 (dotted), t = 0.1 (dash-dotted) and t = 2 (dashed), while the steady-state solution (5.17)
is shown with circles. In the one-sided case shown in panel a, the numerical solution is singular at x = −1 but regular at 
x = 1. In contrast, the numerical solutions in panels b), c), and d) are singular at both x = −1 and x = 1.

Fig. 3 displays solutions of the fractional diffusion equation (Caputo flux) with α = 1.5 and p = 0.25 using a) absorbing 
BCs, b) absorbing-reflecting BCs, c), reflecting-absorbing BCs, and d) reflecting BCs at t = 0 (solid), t = 0.05 (dotted), t = 0.1
(dash-dotted) and t = 2 (dashed). In panel d), the steady-state solution u∞(x) = 1/2 is shown (circles). In panels a, b, 
and c, the numerical solutions tend toward a steady state of zero. In panel d, which uses reflecting BCs, the numerical
solutions tend toward a steady state of u∞(x) = 1/2. Unlike solutions using the Riemann–Liouville flux, the solutions using 
Caputo flux are regular at both end-points for all BC choices. Numerical solutions using the Riemann–Liouville flux and 
absorbing BCs are identical to Fig. 3a for the same choice of α and p since the two derivatives are equal in this case 
by (2.8).
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Fig. 2. Solutions of the fractional diffusion equation (Riemann–Liouville flux) with α = 1.5, C = 1, and reflecting BCs at both end-points. The parameter 
p varies from (a) p = 1, (b) p = 0.75, (c) p = 0.5, and (d) p = 0.25. t = 0 (solid), t = 0.05 (dotted), t = 0.1 (dash-dotted) and t = 2 (dashed), and the 
steady-state solution (circles).

7. Discussion

For diffusion with Riemann–Liouville flux shown in Fig. 2, the presence of the reflecting boundary has a profound im-
pact on the solution as time evolves: there is a build-up of mass near the wall, yielding a steady state solution that 
exhibits a singularity at each boundary. From a particle point of view, there is a build-up of particles at both boundaries 
for 0 < p < 1. In contrast, the diffusion equation with Caputo flux equipped with reflecting BCs in Fig. 3d has a constant 
steady state solution for all 0 ≤ p ≤ 1, agreeing with both the classical diffusion case (α = 2) and the one-sided fractional 
diffusion equation with Caputo flux [5]. Consideration of the steady state behavior can be a useful guide in model selec-
tion.

Remark 7.1. The explicit and implicit Euler schemes given in Section 3 are low-order with an error term O(h). High-order, 
stable schemes for fractional BVPs with absorbing BCs were proposed in [4,10,46]. It would be interesting to augment 
these high-order schemes with reflecting boundary conditions, yielding efficient, high-order methods for problems with 
a range of boundary conditions. Development of spectral methods for reflecting BCs using orthogonal polynomials (i.e., 
poly-fractonomials), which are currently limited to Dirichlet (absorbing) BCs [29,30,51,42], would also be interesting. As 
noted in [30], the two-sided polyfractonomials Q μ,ν

m (x) capture the singular behavior of the Riemann–Liouville operator 
near the boundary.

Remark 7.2. Section 4 has shown stability for the explicit and implicit Euler schemes. Since these methods are also con-
sistent, these schemes are convergent by the Lax equivalence theorem [41]. Several results establishing well-posedness 
in the weak sense of steady-state space-fractional diffusion equations subject to reflecting boundary conditions have re-
cently appeared. Wang et al. [48] showed weak well-posedness for the one-sided Riemann–Liouville steady-state diffusion 
equation with a positive α − 1 derivative at x = L and a negative α − 1 derivative at x = R . Ma [28] established weak well-
posedness of the two-sided steady-state Patie–Simon diffusion equation (two-sided Caputo flux) with a fractional Robin 
BC that employs the α − 1 Caputo derivative using the Lax–Milgram theorem. This fractional Robin BC reduces to (2.11b)
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Fig. 3. Solutions of the fractional diffusion equation (Caputo flux) with α = 1.5, C = 1, and p = 0.25 using a) absorbing BCs, b) absorbing-reflecting BCs, 
c), reflecting-absorbing BCs, and d) reflecting BCs at t = 0 (solid), t = 0.05 (dotted), t = 0.1 (dash-dotted) and t = 2 (dashed). In panel d), the steady-state 
solution u∞(x) = 1/2 is shown (circles).

for an appropriate choice of coefficients. Wang et al. [49] extended these results to the steady-state Riemann–Liouville 
diffusion equation using a similar approach. Deng et al. [18] also established weak well-posedness for the symmetric time-
dependent diffusion equation using a different definition of the fractional Laplacian where the integration extends over all 
of Rn .

Unlike the one-sided case [6], well-posedness in the strong sense for Cauchy problems using the two-sided time-
dependent diffusion equations subject to reflecting BCs remains an open problem. To prove well-posedness, the approach 
of Baeumer et al. [6] may be fruitful, which requires identification of the domains of the two-sided fractional derivatives 
Dom(Dα

RL) and Dom(Dα
P S) for each pair of boundary conditions. The kernels computed in Section 5 may be used to con-

struct these domains. It may be possible to use the kernels computed in Section 5 to construct these domains and then show 
that Dα

RL and Dα
P S equipped with reflecting BCs generate strongly continuous contraction semi-groups on an appropriate 

space of functions (e.g., L1[L, R] or C[L, R]).

8. Conclusions

This paper has established appropriate absorbing (Dirichlet) and reflecting (Neumann) boundary conditions for two ver-
sions of the two-sided, space-fractional diffusion equation, thus extending the scheme developed for the one-sided case in 
Baeumer et al. [5]. By expressing the fractional diffusion equation in conservation form, two flux functions were identified: 
the Riemann–Liouville flux and the Caputo flux. A conditionally stable explicit Euler scheme and an unconditionally stable 
implicit Euler scheme were proposed using the shifted Grünwald estimate from Meerschaert and Tadjeran [33], and stability 
was demonstrated using the Gerschgorin circle theorem. Steady state solutions subject to reflecting BCs using Riemann–
Liouville flux are singular at one or more of the end-points, while steady-state solutions subject to reflecting BCs using 
Caputo flux are constant functions. Numerical experiments illustrated the convergence of the explicit and implicit methods. 
Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and 
Caputo fluxes was discussed.
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