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Abstract

Fractional order partial differential equations, as generalizations of classical integer order partial differential equa-
tions, are increasingly used to model problems in fluid flow, finance and other areas of application. In this paper we
discuss a practical alternating directions implicit method to solve a class of two-dimensional initial-boundary value frac-
tional partial differential equations with variable coefficients on a finite domain. First-order consistency, unconditional
stability, and (therefore) first-order convergence of the method are proven using a novel shifted version of the classical
Grünwald finite difference approximation for the fractional derivatives. A numerical example with known exact solu-
tion is also presented, and the behavior of the error is examined to verify the order of convergence.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Fractional derivatives are almost as old as their more familiar integer-order counterparts [30,40]. Frac-
tional diffusion equations have recently been applied to many problems in physics (see an excellent review
article by Metzler and Klafter [29]), finance [16,21,33,36,35], and hydrology [2,5,6,37,38]. Fractional space
derivatives are used to model anomalous diffusion or dispersion, where a particle plume spreads at a rate
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inconsistent with the classical Brownian motion model, and the plume may be asymmetric. When a frac-
tional derivative replaces the second derivative in a diffusion or dispersion model, it leads to enhanced dif-
fusion (also called superdiffusion). For fractional partial differential equations with constant coefficients,
analytical solutions are available using Laplace–Fourier transform methods [3,11,23,25]. However, many
practical problems require a model with variable coefficients [4,7,8,26]. This paper presents a practical
numerical method for solving multi-dimensional fractional partial differential equations with variable coef-
ficients, using a variation on the classical alternating-directions implicit (ADI) Euler method. We prove that
this method, using a novel shifted version of the usual Grünwald finite difference approximation for the
non-local fractional derivative operator, is first-order consistent and unconditionally stable for a fractional
diffusion/dispersion equation with Dirichlet boundary conditions. A numerical example is included, along
with its exact analytical solution, to validate the method and its order of convergence.

Consider the two-dimensional fractional diffusion (dispersion) equation
ouðx; y; tÞ
ot

¼ dðx; yÞ o
auðx; y; tÞ
oxa

þ eðx; yÞ o
buðx; y; tÞ
oyb

þ qðx; y; tÞ ð1Þ
on a finite rectangular domain xL < x < xH and yL < y < yH, with 1 < a 6 2 and 1 < b 6 2, d(x,y) > 0 and
e(x,y) > 0, and assume that this fractional diffusion equation has a unique and sufficiently smooth solution
under the following initial and boundary conditions (some results on existence and uniqueness are devel-
oped in [14]). Define the initial condition from u(x,y, t = 0) = f(x,y) for xL < x < xH, yL < y < yH, and
Dirichlet boundary conditions u(x,y, t) = B(x,y, t) on the boundary (perimeter) of the rectangular region
xL 6 x 6 xH, yL 6 y 6 yH, with the additional restriction that B(xL,y, t) = B(x,yL, t) = 0. In physical appli-
cations, this means that the left/lower boundary is set far enough away from an evolving plume that no
significant concentrations reach that boundary. The classical dispersion equation in two dimensions is given
by a = b = 2. The values of 1 < a < 2 or 1 < b < 2 model a super-diffusive process in that direction.

Eq. 1 uses a Riemann fractional derivative of order a, defined by
daf ðxÞ
dxa

¼ 1

Cðn� aÞ
dn

dxn

Z x

L

f ðnÞ
ðx� nÞaþ1�n dn; ð2Þ
where n is an integer such that n � 1 < a 6 n. In most of the related literature, the case L = 0 is called the Rie-
mann–Liouville form, and the caseL = �1 is the Liouville definition for the fractional derivative. Fractional
derivatives are nonlocal operators of convolution type [1,9,24]. The value of the fractional derivative at a point
x depends on the function values at all the points in the interval (�1,x). With our boundary conditions (and
zero-extending the solution functions for x < xL or y < yL) the Riemann and Liouville forms in (1) become
equivalent. For more details on fractional derivative concepts and definitions, see [30,32,40].

An implicit Euler method for solving one-dimensional fractional differential equations is discussed in
[26,28]. A shifted Grünwald finite difference scheme (3) is used to approximate the fractional space deriv-
ative in an implicit Euler method. Stability is proven for the implicit method, and also for an explicit Euler
method under the condition that Dt/Dxa is suitably bounded. It is proven that methods based on the unshif-
ted Grünwald approximation are unstable. A different method for solving 1D fractional partial differential
equations is pursued in the recent paper of Liu et al. [19]. They transform the partial differential equation
into a system of ordinary differential equations (Method of Lines), which is then solved using backward
differentiation formulas. Fix and Roop [15] and Ervin and Roop [13] develop finite element methods for
certain 1D partial differential equations with constant coefficients on the fractional derivative terms. Ervin
and Roop [14] extend this approach for multi-dimensional partial differential equations with constant coef-
ficients on the fractional derivative terms. Deng et al. [10] discuss a numerical solution of a fractional advec-
tion–dispersion equation based on a three-point approximation for the fractional deriviative. Lynch et al.
[20] apply an explicit method and a related semi-implicit method to solve a one-dimensional anomalous dif-
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fusion problem, with the boundary conditions specified on the left boundary. They estimate the fractional
derivative using the L2 method proposed by Oldham and Spanier [31], in which the fractional derivative of
order a is replaced by an (a � 2) fractional integral of the second derivative, the fractional integral is esti-
mated by some variant of the Grünwald formula, and the second derivative is approximated by the stan-
dard three-point centered finite difference formula. Langlands and Henry [18] discuss similar numerical
methods for time-fractional diffusion equations ocu(x, t)/otc = o2u(x, t)/ox2. Yuste and Acedo [41] prove sta-
bility of an explicit Euler method for the time-fractional diffusion equation under the condition that Dtc/Dx2

is suitably bounded.
2. Numerical method

It was shown in [26] that using the usual (i.e., unshifted) Grünwald formula to discretize the one-dimen-
sional dispersion equation results in an unstable finite difference scheme. Since the one dimensional case
may be viewed as a special case of the two dimensional problem when e(x,y, t) = 0 (or d(x,y, t) = 0), we in-
fer that the use of the usual Grünwald formula will produce an unstable method (a fact that can also be
shown directly by an argument similar to Proposition 2.3 in [26]).

Therefore we start with a right-shifted Grünwald approximation to the fractional derivative term and in
this paper we show that this leads to a stable (and convergent) alternating-directions implicit (ADI) imple-
mentation for the two-dimensional implicit Euler formulation. The right-shifted Grünwald formula for
1 < a 6 2 is [26]
oauðx; y; tÞ
oxa

¼ 1

Cð�aÞ lim
Nx!1

1

ha
XNx

k¼0

Cðk � aÞ
Cðk þ 1Þ uðx� ðk � 1Þh; y; tÞ; ð3Þ
where Nx is a positive integer, h = (x � xL)/Nx and C(Æ) is the gamma function. We also define the �normal-
ized� Grünwald weights by
ga;k ¼
Cðk � aÞ

Cð�aÞCðk þ 1Þ ¼ ð�1Þk
a

k

� �
ð4Þ
and remark that these normalized weights only depend on the order a and the index k. (For example, the first
four terms of this sequence are given by ga,0 = 1, ga,1 = �a, ga,2 = a(a � 1)/2!, ga,3 = �a(a � 1)(a � 2)/3!.)

For the numerical approximation scheme, define tn = nDt to be the integration time 0 6 tn 6 T,
Dx = h > 0 is the grid size in x-direction, Dx = (xH � xL)/Nx, with xi = xL + iDx for i = 0, . . . ,Nx; Dy > 0
is the grid size in y-direction, Dy = (yH � yL)/Ny, with yj = yL + jDy for j = 0, . . . ,Ny. Define uni;j as the
numerical approximation to u(xi,yj, tn). Similar notation gives di;j ¼ dðxi; yjÞ; ei; j ¼
eðxi; yjÞ; qni;j ¼ qðxi; yj; tnÞ. The initial conditions are set by u0i;j ¼ fi;j ¼ f ðxi; yjÞ. The Dirichlet boundary con-
dition at x = xL by un0;j ¼ Bn

0;j ¼ BðxL; yj; tnÞ, and similarly for the Dirichlet boundary conditions on the
other three sides of the rectangular region.

If the shifted Grünwald estimates are substituted into the two-dimensional diffusion problem (1) to get
the implicit Euler approximation, the resulting finite difference equations are
unþ1
i;j � uni;j

Dt
¼ di;j

ðDxÞa
Xiþ1

k¼0

ga;ku
nþ1
i�kþ1;j þ

ei;j
ðDyÞb

Xjþ1

k¼0

gb;ku
nþ1
i;j�kþ1 þ qnþ1

i;j . ð5Þ
Eq. 5 may be written as
unþ1
i;j � di;jDt

ðDxÞa
Xiþ1

k¼0

ga;ku
nþ1
i�kþ1;j �

ei;jDt

ðDyÞb
Xjþ1

k¼0

gb;ku
nþ1
i;j�kþ1 ¼ uni;j þ qnþ1

i;j Dt. ð6Þ
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Define the following fractional partial difference operators:
da;xunþ1
i;j ¼ di;j

ðDxÞa
Xiþ1

k¼0

ga;ku
nþ1
i�kþ1;j;
which is an O(Dx) approximation to the ath fractional derivative as shown in Theorem 2.4 in [26] (this as-
sumes a zero boundary condition at the lower edge of the domain), and similarly,
db;yunþ1
i;j ¼ ei;j

ðDyÞb
Xjþ1

k¼0

gb;ku
nþ1
i;j�kþ1
is an O(Dy) approximation to the bth fractional derivative term. With these operator definitions, the impli-
cit Euler finite difference method may be written in the operator form
ð1� Dtda;x � Dtdb;yÞunþ1
i;j ¼ uni;j þ qnþ1

i;j Dt. ð7Þ
The above two-dimensional implicit Euler method has local truncation error of the form
O(Dt) + O(Dx) + O(Dy). In a manner similar to the proof for the one-dimensional case (Theorem 2.7 in
[26], Theorem 3.3 in this paper), it can be shown to be unconditionally stable. Thus, according to the
Lax Equivalence Theorem, the method is convergent. However, at each time step, this implicit formulation
requires the solution of a very large non-sparse linear system of equations with (Nx � 1) Æ (Ny � 1) un-
knowns, which is computationally intensive. The problem becomes more computationally demanding as
finer grid resolutions and/or higher spatial dimensions are considered.

One standard method in the classical multi-dimensional PDEs is the use of ADI methods, where the
difference equations are specified and solved in one directions at a time. For the ADI methods (and in
similar fashion for the splitting methods), the operator form is written in a directional separation prod-
uct form
ð1� Dtda;xÞð1� Dtdb;yÞunþ1
i;j ¼ uni;j þ qnþ1

i;j Dt; ð8Þ
which introduces an additional perturbation error equal to
ðDtÞ2ðda;xdb;yÞunþ1
i;j . ð9Þ
Eq. 8 may be written in the matrix form
STUnþ1 ¼ Un þ Rnþ1; ð10Þ

where the matrices S and T represent the operators (1 � Dtda,x) and (1 � Dtdb,y), and
Un ¼ ½un1;1; un2;1; . . . ; unNx�1;1; u
n
1;2; u

n
2;2; . . . ; u

n
Nx�1;2; . . . ; u

n
1;Ny�1; u

n
2;Ny�1; . . . ; u

n
Nx�1;Ny�1�

T

and the vector Rn+1 absorbs the forcing term and the boundary conditions in the discretized equation.
Computationally, the ADI method for the above form is then set up and solved by the following iterative

scheme. At time tn+1:

(1) First solve the problem in the x-direction (for each fixed yj) to obtain an intermediate solution u�i;j
from
ð1� Dtda;xÞu�i;j ¼ uni;j þ qnþ1
i;j Dt; ð11Þ
(2) then solve in the y-direction (for each fixed xi)
ð1� Dtdb;yÞunþ1
i;j ¼ u�i;j. ð12Þ
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The initial and boundary conditions for the numerical solutions unþ1
i;j and uni;j are defined from the given

initial and Dirichlet boundary conditions. Prior to carrying out step one of solving (11), the boundary con-
ditions for the intermediate solution u�i;j should be set from Eq. (12) (which incorporates the values of unþ1

i;j

at the boundary). Otherwise the order of convergence will be adversely affected. Specifically, assume that
the Dirichlet boundary conditions are given by the function B(x,y, t) on the boundary of the rectangular
region xL < x < xH,yL < y < yH. For example, on the right boundary we write unþ1

Nx;j
¼ Bnþ1

Nx;j
, and compute

the boundary values for u* from
u�Nx;j
¼ ð1� Dtdb;yÞBnþ1

Nx;j
for use in setting up and solving the sets of equations defined by (11). See the proof of Theorem 3.3 for more
details.

Below we show that the ADI for the implicit Euler method, as defined by (8) or (10), or equivalently by
(11) and (12), is consistent and stable and therefore, by the Lax Equivalence theorem (p.45 in [34]), it is
convergent.

To prove the consistency of the ADI-Euler method, note that the three difference operators used in (5)
each have a local truncation error with O(Dt), O(Dx), and O(Dy) respectively. The O(Dt) for the time deriv-
ative term is obtained from the classical Taylor�s expansion. The O(Dx) and O(D y) for the local truncation
error of the fractional derivative terms was proved in [26]. The only remaining term in the local error for the
ADI-Euler method, is the additional perturbation error of (9). Theorem 3.1 below shows that ðda;xdb;yÞunþ1

i;j

converges to the mixed fractional derivative linearly, as O(Dx) + O(Dy). Therefore the local truncation
error of the ADI-Euler method (8) is O(Dt) + O(Dx) + O(Dy).
3. Consistency and stability

In this section, we demonstrate that the alternating directions implicit Euler method is both consistent
and unconditionally stable for the fractional initial-boundary value problem (1). We begin with the proof of
consistency. As mentioned in the previous section, this depends on the mixed fractional derivative term. For
any positive integer l, let W l;1ðR2Þ denote the collection of all functions f 2 ClðR2Þ whose partial derivatives
up to order l are in L1ðR2Þ and whose partial derivatives up to order l � 1 vanish at infinity.

Define the Liouville form of a fractional derivative of some non-integer order a > 0 by
o
a

ora
f ðrÞ ¼ 1

Cðn� aÞ
o
n

orn

Z r

�1
f ðnÞðr � nÞn�a�1dn; ð13Þ
where n is an integer such that n � 1 < a < n. Then it easy to see that
oa

ora
f ðrÞ ¼ 1

Cðn� aÞ
on

orn

Z 1

0

nn�a�1f ðr � nÞdn
and if F½f �ðkÞ ¼ f̂ ðkÞ ¼
R
eikxf ðxÞdx denotes the Fourier transform of some L1-function f then oa

ora f ðrÞ has
Fourier transform ð�ikÞaf̂ ðkÞ (see for example [40]). Since the mixed derivative oboa

oxaoyb f ðx; yÞ has Fourier-
transform ð�ikÞað�ilÞbf̂ ðk; lÞ it follows that
ob

oyb
oa

oxa
f ðx; yÞ ¼ oa

oxa
ob

oyb
f ðx; yÞ.
The one-dimensional fractional derivative can be approximated by the shifted Grünwald-formula
oa

ora
f ðrÞ ¼ h�a

X1
m¼0

ð�1Þm
a

m

� �
f ðr � ðm� pÞhÞ þOðhÞ
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for any fixed integer p P 0. See [39] for the case p = 0 and [26] for the general case. The following result
shows that an O(h) approximation also holds for the mixed fractional derivative.

For non-integers a,b > 0, integers p,q P 1 and grid sizes hx,hy > 0 let
Da;b
hx ;hy ;p;q

f ðx; yÞ ¼
X1
n¼0

X1
m¼0

ð�1Þnþm a

n

� �
b

m

� �
f ðx� ðn� pÞhx; y � ðm� qÞhyÞ ð14Þ
define the shifted mixed Grünwald formula. The next result proves this formula is a first-order consistent
approximation to the mixed fractional derivative. This implies that the additional perturbation error (9) for
the ADI method is O((hx + hy)Dt) which is small compared to the approximation errors for the other terms
in (5). Hence we do not sacrifice much accuracy when we replace the full implicit Euler scheme by a more
efficient ADI method.

Theorem 3.1. Let r > a + b + 3 be an integer. Then for f 2 W r;1ðR2Þ
o
b

oyb
o
a

oxa
f ðx; yÞ ¼ h�a

x h�b
y Da;b

hx ;hy ;p;q
f ðx; yÞ þOðhx þ hyÞ ð15Þ
uniformly in ðx; yÞ 2 R2.

Proof. We adapt the argument used in [39,26]. See also [27]. LetF½f �ðk; lÞ ¼ f̂ ðk; lÞ ¼
R
R2eiðkxþlyÞf ðx; yÞdxdy

denote the Fourier transform of f 2 L1ðR2Þ. Note that for any a; b 2 R we have
F
�
f ðx� a; y � bÞ

�
ðk; lÞ ¼ eiakeiblf̂ ðk; lÞ.
Moreover, we have the well known result that for any c > 0
ð1þ zÞc ¼
X1
m¼0

c

m

� �
zm ð16Þ
is absolute convergent for jzj 6 1.
It is readily verified that
Z

R2

X1
n¼0

X1
m¼0

ð�1Þnþm a
n

� �
b
m

� �
f ðx� ðn� pÞhx; y � ðm� qÞhyÞ

�����
�����dxdy

6 kf k1
X1
n¼0

a
n

� �����
����

 ! X1
m¼0

b
m

� �����
����

 !
< 1.
Consequently, the right-hand side of (14) defines an element of L1ðR2Þ.
Thus we can take the Fourier transform in (14) to obtain
F h�a
x h�b

y Da;b
hx;hy ;p;qf

h i
ðk; lÞ ¼ h�a

x h�b
y

X1
n¼0

X1
m¼0

ð�1Þnþm a
n

� �
b
m

� �
eikðn�pÞhxeilðm�qÞhy f̂ ðk; lÞ

¼ h�a
x e�ikphx

X1
n¼0

ð�1Þn a
n

� ��
eikhx
�n !

h�b
y e�ilqhy

X1
m�0

ð�1Þm b
m

� ��
eilhy
�m !

f̂ ðk; lÞ

¼ e�ikphxh�a
x

�
1� eikhx

�a
e�ilqhy h�b

y

�
1� eilhy

�b
f̂ ðk; lÞ

¼ ð�ikÞað�ilÞbxa;pð�ikhxÞxb;qð�ilhyÞf̂ ðk; lÞ;



M.M. Meerschaert et al. / Journal of Computational Physics 211 (2006) 249–261 255
where
xa;pðzÞ ¼ epz
1� e�z

z

� �a

and xb;qðzÞ ¼ eqz
1� e�z

z

� �b

.

Hence
F h�a
x h�b

y Da;b
hx ;hy ;p;q

f
h i

ðk; lÞ �F
ob

oyb
oa

oxa
f

� 	
ðk; lÞ ¼ ð�ikÞað�ilÞb xa;pð�ikhxÞxb;qð�ilhyÞ � 1

� �
f̂ ðk; lÞ

¼ ûðhx; hy ; k; lÞ.

Observe that for c > 0 there exists a constant C = C(c) > 0 such that
1� eix

�ix

� �c

� 1

����
���� 6 Cjxj for all x 2 R. ð17Þ
Moreover, since
xa;pð�ixÞxb;qð�iyÞ � 1
�� �� 6 xb;qð�iyÞ

�� �� xa;pð�ixÞ � 1
�� ��þ xb;qð�iyÞ � 1

�� ��

and jxb,q(�iy)j 6 C for some constant C > 0 and all y 2 R, we get from (17) that
xa;pð�ixÞxb;qð�iyÞ � 1
�� �� 6 C1ðjxj þ jyjÞ 6 C2kðx; yÞk2;
where i(x,y)i2 denotes the Euclidean norm.
In view of the inequality i(khx, lhy)i2 6 (hx + hy)i(k, l)i2 we therefore get
jûðhx; hy ; k; lÞj 6 Cðhx þ hyÞjkjajljbkðk; lÞk2jf̂ ðk; lÞj 6 Cðhx þ hyÞ
�
1þ kðk; lÞk2

�aþbþ1jf̂ ðk; lÞj. ð18Þ
Moreover, since f 2 W r;1ðR2Þ the Riemann–Lebegue lemma implies that for some constant M > 0
jf̂ ðk; lÞj 6 M 1þ kðk; lÞk2ð Þ�r
and hence
jûðhx; hy ; k; lÞj 6 Cðhx þ hyÞ 1þ kðk; lÞk2ð Þaþbþ1�r.
Since the right hand side of this inequality is integrable we conclude from Fourier inversion that
h�a
x h�b

y Da;b
hx;hy ;p;q

f ðx; yÞ � ob

oyb
oa

oxa
f ðx; yÞ

����
���� ¼ c2

Z
R2

e�iðxkþylÞûðhx; hy ; k; lÞdkdl
����

����
6 c2

Z
R2

ûðhx; hy ; k; lÞ
�� ��dkdl

6 C1ðhx þ hyÞ
Z
R2

ð1þ kðk; lÞk2Þ
aþbþ1�rdkdl ¼ C2ðhx þ hyÞ
independent of ðx; yÞ 2 R2 and the proof is complete. h

The stability proof is based on showing that each one-dimensional system is unconditionally stable. The
argument is similar to Theorem 2.7 in [26].

Theorem 3.2. Each one-dimensional implicit system defined by the linear difference Eqs. (11) and (12) is

unconditionally stable for all 1 < a < 2.
Proof. At each gridpoint yk, for k = 1, . . . ,Ny � 1, consider the linear system of equations defined by (11).
This system of equations may be written as AkUk

* = Uk
n + DtQk

n+1 where, incorporating the boundary
conditions from (12), we have
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Uk
� ¼ ½u�1;k; u�2;k; . . . ; u�Nx�1;k�

T
;

Uk
n þ DtQk

nþ1 ¼ ½un1;k þ qnþ1
1;k Dt; u

n
2;k þ qnþ1

2;k Dt; . . . ; u
n
Nx�1;k þ qnþ1

Nx�1;kDt þ DNx�1;kga;0ð1� Dtdb;yÞBnþ1
Nx ;k

�T
and Ak = [Ai,j] is the (Nx � 1) · (Nx � 1) matrix of coefficients resulting from the system of difference equa-
tions at the gridpoint yk, where the matrix entries along the ith row are defined from (11). For example, for
i = 1 the equation becomes
�D1;kga;2u
�
0;k þ ð1� D1;kga;1Þu�1;k � D1;kga;0u

�
2;k ¼ un1;k þ qnþ1

1;k Dt
for i = 2 we have
�D2;kga;3u
�
0;k � D2;kga;2u

�
1;k þ ð1� D2;kga;1Þu�2;k � D2;kga;0u

�
3;k ¼ un2;k þ qnþ1

2;k Dt
and for i = Nx � 1 we get
�DNx�1;kga;Nx
u�0;k �DNx�1;kga;Nx�1u

�
1;k þ � � � þ ð1�DNx�1;kga;1Þu

�
Nx�1;k �DNx�1;kga;0u

�
Nx ;k

¼ unNx�1;k þ qnþ1
Nx�1;k;
where the coefficients
Di;k ¼
di;kDt
ðDxÞa .
Therefore the resulting matrix entries Ai,j for i = 1, . . . ,Nx � 1 and j = 1, . . . ,Nx � 1 are defined by
Ai;j ¼

�Di;kga;i�jþ1 for j 6 i� 1;

1� Di;kga;1 for j ¼ i;

�Di;kga;0 for j ¼ iþ 1;

0 for j > iþ 1.

8>>><
>>>:
We will now apply the Greshgorin theorem (cf. [17], pp. 135–136) to conclude that every eigenvalue of
the matrix Ak has a magnitude strictly larger than 1.

Note that ga,1 = �a, and for 1 < a < 2 and i 6¼ 1 we have ga,i > 0. Substituting z = �1 into (16) yieldsP1
i¼0ga;i ¼ 0, and then it follows that �ga;1 >

Pk¼N
k¼0;k 6¼1ga;i for any N > 1. According to the Greschgorin

theorem, the eigenvalues of the matrix Ak are in the disks centered at Ai,i = 1 � Di,k ga,1 = 1 + Di,ka, with
radius
ri ¼
XNx�1

l¼1;l 6¼i

jAi;lj 6
Xiþ1

l¼1;l 6¼i

Di;kga;i�lþ1 < Di;ka.
Hence every eigenvalue k of the matrix Ak has a real part larger than 1, and therefore a magnitude larger
than 1. Hence, the spectral radius of each matrix Ak

�1 is less than one. This proves that the method is stable
(cf. [42], pp. 13–15).

Similar results hold for the finite difference equations defined by (12). When sweeping in the alternate
direction (i.e., with the xk grid point fixed) to solve for un+1 from u*, the resulting system is then defined by
CkUk

n+1 = Uk
*, where
Uk
� ¼ ½u�k;1; u�k;2; . . . ; u�k;Ny�1�

T
;

Uk
nþ1 ¼ ½unþ1

k;1 ; unþ1
k;2 ; . . . ; u

nþ1
k;Ny�1�

T

and Ck = [Ci,j] is the matrix of coefficients resulting from the system of difference equations at the gridpoint
xk for k = 1, . . . ,Nx � 1. (Note that the Uk

* and Uk
n+1 are defined differently than the solution vectors in
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the previous sweep direction due to re-arrangement of gridpoints in the y-direction.) The entries of the ma-
trix Ck are defined from (12), for i = 1, . . . ,Ny � 1 and j = 1, . . . ,Ny � 1 by
Ci;j ¼

�Ek;igb;i�jþ1 for j 6 i� 1;

1� Ek;igb;1 for j ¼ i;

�Ek;igb;0 for j ¼ iþ 1;

0 for j > iþ 1;

8>>><
>>>:
where the coefficients
Ek;i ¼
ek;iDt

ðDyÞb
.

Similar arguments show that each eigenvalue of of the matrix Ck has a real part (hence, also a magni-
tude) strictly larger than one. Therefore, the spectral radius qðC�1

k Þ < 1, and hence this system is also
unconditionally stable. h

Next we show that, if the operators (1 � Dtda,x) and (1 � Dtdb,y) in (8) commute, the ADI-Euler method
is unconditionally stable. The requirement for the commutativity of these two operators is also a common
assumption in establishing stability/convergence of the ADI methods in the classical (i.e., a = b = 2) two-
dimensional diffusion equation (see for example [12]). Note that the commutativity of these operators
means that the matrices S and T in (10) commute. For example, if the diffusion coefficients are of the form
d = d(x) and e = e(y), then these operators (matrices) commute.

We also remark that the ADI-Euler formulation of (10) is useful for the theoretical analysis of the
method, while the formulation according to (11) and (12) is used in the actual computer implimentation.

The matrix S is a block diagonal matrix of (Ny�1) · (Ny�1) blocks whose blocks are the square
(Nx�1) · (Nx � 1) super-triangular Ak matrices resulting from Eq. (11). We may write S ¼
diagðA1;A2; . . . ;ANy�1Þ.

The matrix T is a block super-triangular matrix of (Ny � 1) · (Ny � 1) blocks whose non-zero blocks are
the square (Nx � 1) · (Nx � 1) diagonal matrices resulting from Eq. (12). That is, we may write T = [Ti,j],
where each Ti,j is an (Nx � 1) · (Nx � 1) matrix, such that for j > i + 1 Ti,j = 0, and for j 6 i + 1 each Ti,j is a
diagonal matrix T i;j ¼ diagððC1Þi;j; ðC2Þi;j; . . . ; ðCNx�1Þi;jÞ, where the notation (Ck)i,j refers to the (i, j)th entry
of the matrix Ck defined previously.

Theorem 3.3. The ADI-Euler method, defined by (10), is unconditionally stable for 1 < a < 2, 1 < b < 2 if the
matrices S and T commute.
Proof. Since S ¼ diagðA1; . . . ;A2;ANy�1Þ, the eigenvalues of the matrix S are in the union of the Greschgo-
rin disks for the matrices Ak�s. Applying the argument of Theorem 3.2, it follows that every eigenvalue of
the matrix S has a real-part (and a magnitude) larger than 1. Therefore, the magnitude of every eigenvalue
of the inverse matrix S�1 is less than 1, and hence the spectral radius of the matrix S�1 is less than 1.

Similarly, the eigenvalues of the matrix T are in the union of the Greschgorin disks for the matrices Ck�s.
Again the argument of Theorem 3.2 may be applied to show that the spectral radius of the matrix T�1 is less
than 1.

Note that Eq. (10) implies that an error �0 in U0 results in an error �n at time tn in Un given by
�n ¼ ðST Þ�n
�0.
Since matrices S and T commute, we may write the above equation as
�n ¼ S�nT�n�0.
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Since the spectral radius of each matrix S�1 and T�1 is less than one, it follows that S�n ! 0 and T�n ! 0
as n ! 1, where 0 is the zero (or null) matrix (see Theorem 1.4 in [42]). Therefore the ADI-Euler method is
stable. h

Since the ADI-Euler method is consistent and unconditionally stable, the numerical solution produced by
the ADI-Euler method converges to the exact solution, and this convergence is O(Dx + Dy + Dt). But note
that, in order to obtain this rate of convergence, the boundary conditions for the intermediate solution U*

should be set according to (12), prior to solving the system in step one of the numerical algorithm defined by
(11), as detailed in the proof of Theorem 3.2.

Remark 3.4. The system matrices (11) and (12) are super-triangular. That is, these matrices are the sum of
a super-diagonal matrix and a lower triangular matrix. In the numerical implementation, these systems can
be efficiently solved by first performing a backward sweep to reduce the system to a lower triangular system.
This is then followed by a forward (explicit) sweep to solve a triangular system to obtain the solution. The
computational work is approximately equivalent to solving two triangular systems. To solve a triangular
n · n matrix, n(n + 1)/2 arithmetic operations (multiplication or division flops) are required [17]. So the
computational work (flops) is approximately n(n + 1) operations. Note that, this is significantly less
computations than a full Gaussian elimination operation which requires n3/2 + O(n2) arithmetic
operations. We also note that an operational count shows that approximately NxNy(Nx + Ny + 1) flops
are needed to solve the collections of these super-triangular systems to advance the numerical solution from
time level tn to tn + 1 for this ADI method. This compares very favorably with approximately (NxNy)

3/2
arithmetic operations needed by the Gaussian elimination to solve the full (NxNy) · (NxNy) matrix that
results from the implicit Euler discretization.
Remark 3.5. Implicit Euler methods may be preferable to explicit methods due to their unconditional sta-
bility. Although the explicit methods are faster for a given step size in time, it is usually necessary to use a
much smaller step size Dt to maintain stability. The condition for stability of an explicit Euler solution to
the space-fractional diffusion equation ou/ot = oau/oxa is that Dt/Dxa < 1/a, see [28]. Stability of the explicit
Euler method for the time-fractional diffusion equation ocu/otc = o2u/ox2 requires that Dtc/Dx2 < Cc, see
[18]. It would be interesting to compare the implicit methods of this paper against a multivariable version
of the explicit methods in [20]. It would also be useful to extend the stability results for explicit Euler meth-
ods to space–time fractional diffusion equations ocu/otc = oau/oxa, and one suspects that stability for such
methods will require Dtc/Dxa to be suitably bounded. Another efficient method is to approximate the frac-
tional derivative by the first few terms of the Grünwald approximation [10]. This method should be used
with caution. First of all, the remaining terms of the Grünwald approximation are only negligable when
a is near an integer value. Second and perhaps more important in applications, truncating the Grünwald
approximation results in a method that is not mass-preserving.
4. A numerical example

The fractional differential equation
ouðx; y; tÞ
ot

¼ dðx; yÞ o
1.8uðx; y; tÞ
ox1.8

þ eðx; yÞ o
1.6uðx; y; tÞ
oy1.6

þ qðx; y; tÞ
was considered on a finite rectangular domain 0 < x < 1, 0 < y < 1, for 0 6 t 6 Tend with the diffusion
coefficients
dðx; yÞ ¼ Cð2.2Þx2.8y=6 ¼ 0.18363375x2.8y



Table 1
Maximum error behavior versus gridsize reduction for the example problem at time Tend = 1

Dt Dx = Dy Maximum error Error rate

0.10000 0.10000 0.00126285 –
0.05000 0.05000 0.000673253 1.88
0.02500 0.02500 0.000348242 1.93
0.01250 0.01250 0.000176599 1.97
0.00625 0.00625 0.0000881217 2.00
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and
eðx; yÞ ¼ 2xy2.6=Cð4.6Þ ¼ 0.1494624672xy2.6
and the forcing function
qðx; y; tÞ ¼ �ð1þ 2xyÞe�tx3y3.6
with the initial conditions
uðx; y; 0Þ ¼ x3y3.6
and Dirichlet boundary conditions on the rectangle in the form u(0,y, t) = u(x, 0, t) = 0, u(1,y, t) = e�ty3.6,
and u(x, 1, t) = e�tx3 for all t P 0.

The exact solution to this two-dimensional fractional diffusion equation is given by
uðx; y; tÞ ¼ e�tx3y3.6;
which may be verified by direct differentiation and substitution in the fractional differential equation, using
the formula
o
a

oxa
xp½ � ¼ Cðp þ 1Þ

Cðp þ 1� aÞ x
p�a
for this Riemann–Liouville fractional derivative (2) with L = 0.
Table 1 shows the maximum absolute numerical error, at time t = 1.0, between the exact analytical solu-

tion and the numerical solution obtained by applying the ADI-Euler method discussed in this paper. The
algorithm was implemented using the Intel Fortran compiler on a Dell Pentium PC. All computations were
performed in single precision. The last column of the figure shows the order of the convergence of the method
as the grid is refined (as all step sizes are halved), which is computed as the ratio of the maximum abso-
lute error at the previous larger grid size to the current grid size. The (almost) linear reduction in the max-
imum error is observed, as expected from the order O(Dt) + O(Dx) + O(Dy) of the convergence of the
method.

Note that this example problem does not meet the requirement for the commutativity of the operators in
(8) which was used to establish the stability of the ADI-Euler method. The linear convergence of the numer-
ical solution for this example suggests that the stability results may be extended beyond the requirement for
commutativity.
5. Conclusions

Two-dimensional fractional order partial differential equations may be solved by an implicit alternating
directions method. If a shifted version of the Grünwald finite difference approximation formula for frac-
tional derivatives is used in an implicit Euler method, then the resulting ADI method is unconditionally
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stable and converges linearly. The method is unstable if the usual Grünwald formula is used. Additionally,
to obtain the linear convergence, the boundary conditions for the intermediate solution must be treated
carefully.
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