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Abstract

Previous work showed how moving particles that rest along their trajectory lead to time-
nonlocal advection—dispersion equations. If the waiting times have infinite mean, the model
equation contains a fractional time derivative of order between 0 and 1. In this article, we
develop a new advection—dispersion equation with an additional fractional time derivative of
order between 1 and 2. Solutions to the equation are obtained by subordination. The form of
the time derivative is related to the probability distribution of particle waiting times and the
subordinator is given as the first passage time density of the waiting time process which is
computed explicitly.
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1. Introduction

Continuous time random walks (CTRW) can be used to derive governing
equations for anomalous diffusion [1-4]. The CTRW is a stochastic process model
for the movement of an individual particle [5,6]. In the long-time limit, the process
converges to a simpler form whose probability densities solve the governing
equation, leading to a useful model for anomalous diffusion. For a simple random
walk with zero-mean, finite-variance particle jumps, the limit process is a Brownian
motion A(z) governed by the classical diffusion equation Op/0t = azp/ax2 where
p(x, t) is the probability density of the random variable 4(¢). For symmetric infinite-
variance jumps (i.e., those with probability density function tails that fall off like
|x|~'=* [7] with some index 0<x<2), the limit process A(f) is an a-stable Lévy
motion, and the governing equation becomes 0p/0t = 0*p/0|x|* [8]. When waiting
times between the jumps are introduced, the limiting process is altered via
subordination [9-11]. In this study, we examine the case where the waiting times
are independent of jump size, also called an ““‘uncoupled” CTRW. For infinite mean
waiting times (whose probability distribution is assumed to decay algebraically with
some index 0<y<1) the limit process is A(E(z)) where E(¢) is the inverse or first
passage time process for the y-stable subordinator. By virtue of its construction,
the process E(f) counts the number of particle jumps by time ¢>0, accounting for the
waiting time between particle jumps. In the scaling limit, E(¢) keeps track of the
possibly nonlinear link between real time and the operational time that a particle
actually spends in motion. The governing equation becomes 0'p/0f = 0"p/0|x|*
[2,3]. Some applications [12] seem to indicate a time derivative of order 1 <y<2. In
this paper, we develop one such equation by extending the CTRW approach to
processes with finite-mean waiting times, and compute the distribution of the
relevant first passage time process.

2. The model

In the usual CTRW formalism, the long-time limit for the waiting time process is a
y-stable subordinator D(¢) [2]. Then the inverse Lévy process E(f) = inf{x : D(x)>1}
counts the number of particle jumps by time >0, reflecting the fact that the time 7,
of the nth particle jump and the number N, = max{n : T, <t} of jumps by time ¢ are
also inverse processes. When the waiting times between particle jumps have heavy
tails with 0 <y <1 (i.e., infinite mean), subordination of the particle location process
A(?) via the inverse Lévy process E(?) is necessary in the long-time limit to account
for the amount of time that a particle is not participating in the motion process. The
subordination leads to a time derivative of order y in the governing equation of
motion [3]. When waiting times have heavy tails of order 1 <y<2, meaning that the
probability of waiting longer than ¢ falls off like 177, a different model is needed [13].
In this case, convergence of the waiting time process requires centering to the mean
waiting time w, which is not necessary when 0<y<1. Accounting for this leads
to a waiting time process W(¢) = D(t) + wt where D(¢) is a completely positively
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skewed? stable Lévy process with index p, so that W(r) is a Lévy process with drift.
The drift ensures that W (f) — oo with probability one as t — oo. Since y> 1, the
process W(t) is not strictly increasing, so it is proper to use Max(¢) = sup{ W (u) :
0<u<t} to represent the particle jump times. This substitution is explained as a
particle that makes more than one jump without intervening rest periods [13]. Then
the inverse or first passage time process H(¢) = inf{x : Max(x) >t} counts the number
of particle jumps. The first passage time process H(f) serves as the subordinator in
place of (and when y<1 is identical to) E(f). We show this in subsequent sections.

3. First passage time density

According to the previous section we model the waiting time process as a Lévy
process with drift; i.e., W (¢) has characteristic function

E[eW 0] = giwera-ie)
where w> 0 is the mean waiting time and « is a shape variable akin to the variance.
For the remainder of this paper we make the assumption w = 1, which entails no loss

of generality, since any mean time w can be recovered by a simple rescaling in time.
In order to compute the density of the process H we use the fact that

P{H(T)>s} = P{Max(s)< T}

for all s, 7>0. Theorem 1 in Ref. [14] shows that the distribution of the maximum
process M(s, T) = P{Max(s)< T} satisfies

u / / e T dr(M(s, T))ds
0 0

e i¢ + a(—iey }
_exp{zn/u [mf(é—ii) = (e + a(—igy)) <4 M

for all 2,u>0. The integrand has two poles in the upper complex halfplane, at & = id
and whenever x = i¢ + a(—i¢)”. That the second equality holds only once, follows
from the following Lemma (for a proof see Appendix A) investigating the inverse
function of az’ — z. This involves the following region. Let >0, 0<a<=/y and

sin(0) -l sin(a) },

asin(y0) asin(yo)

Q(oc)::{rem : —a<BO<o and

where we take sin(«)/asin(yo) = co when o = /7.

Lemma 1. Let a>0,1<y<2. There exists a unique holomorphic function q :
C\(—o0, —a(y — 1)(ay)7/(17"’)] — Q(n/y) such that

aq(z) —g(z) =z.
Furthermore, there exists an analytic function F with sup,- t'~'/7e"|F(t)| < oo for all
0<{<a(y — Day)"" such that [;° e " F(t)dt = 1/¢(z) for z>0.

“The skew is irrelevant in the normal case y = 2.
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Using the Lemma, we can simplify (1) to (see Appendix B)
o0 oo 1 —2/q(w)
us—AT
M(s, T =——=
/0 /0 &y (M, T ds =18

Let H(s,T)= P{H(T)<s} and recall that M(s,T) = P{Max(s)<T}. Then
H(s,T)= P{H(T)<s} = P{Max(s)>T} = 1 — M(s, 1), and hence we can integrate
by parts to get

/ / e T dr(M(s, T))ds = 4 / / e T M(s, T)dT ds
0 0 0 0
= / / e *T(1 — H(s, T))dsdT
0 0
=1/u—7 / / e T H(s, T)dsdT .
0 0

In other words, the Laplace—Laplace transform of the distribution function of the
first passage time process is given by

o oo 1 1 —2/q(u)
us—AT

H(s, T)dsdT = — — — 2141 _

/0 /0 ¢ (s, T)ds Wi MutA—al)

1= al’ ™"+ u/q(u) 2
 uwu+A—aily

In the following theorem, we invert this Laplace—Laplace transform to obtain an
expression for the cumulative distribution function of the first passage time process
(corresponding in our model to the “number of jumps by time 7).

Theorem 2. Let 1<y<2, let m be the function with Laplace transform m(u) = 1/q(u)
given by Lemma 1 and g, be the maximally skewed, standard y-stable density; i.e., the
Fourier transform of g, is g,(k) = e0" Then the cumulative distribution function of the
first passage time of a Lévy-stable waiting time process with drift is given by

0 Sm(s — u) t—u
H(s, t) = / g,(u)du + — g, — | du. (3)
(1—3)/(as)"/? o (aw)' 7"\ (au)'”

Remark 3. For >0,

H(s, 1)~ / g,(w)du = P(W(s)=1) 4)
(1—=5)/(as)'""

in view of the fact that W(s) is identically distributed with (as)l/ "W, + s where W, is

the stable random variable with density g,. If W(s) were an increasing process, the

left-hand and right-hand expressions in (4) would be equal. Hence the second term in

(3) accounts for the fact that W(s) is not monotone.
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4. The differential equations

In this section, we show that the density of the uncoupled CTRW limit process
solves a fractional partial differential equation with an extra time derivative term of
order 1 <y<2 on the right-hand side whose coefficient is negative. This is in contrast
to Mainardi and colleagues’ [15-18] investigation of the transition via fractional
derivatives from the second order hyperbolic equation to the first order parabolic
case. Our equations stay parabolic in nature (given an elliptic operator in space).

We begin with a related result concerning the first passage time density. We say
that a mild solution to a fractional partial differential equation is a function whose
Laplace transform solves the equivalent algebraic equation in Laplace—Laplace
space. The following theorem employs the Caputo derivative (d/d¢)’, which can be
defined for 1<y<2 by requiring that (d/d7)’ F(f) has Laplace transform A"F(1) —
Z7VF0) — 2772F'(0) where F(2) is the Laplace transform of F(f), see for example
Refs. [19,20].

Theorem 4. There exists a unique distribution [ such that the density
u(t,s) = dH(s, t)/ds of the first passage time distribution H(s,t) in (3) is the unique
mild solution to

d\’ d d
—a (m) ) + 5 ut,9) = = 3 u(t,5) + () (5)
with conditions: u(0,s) = 6(s); u(t,0) = u,(0,s) = 0 Vs, t>0; and s—u(t,s) is a prob-
ability density for all t>0. For any other distribution f Eq. (5) has no solution.

We now extend this result to incorporate more general spatial derivative
operators. When the CTRW particle jumps are in the generalized domain of
attraction of an operator stable limit with probability distribution v, the long-time
limiting particle location process A(t) is operator stable with distribution v’ [21]. For
a simple random walk, the density p(x,¢) of A(¢) defines a strongly continuous
semigroup (7(¥)), on L'(R?) via the formula T(1)f (x) = Jf(x=y)p(y,6)dy. If Lis
the generator of this semigroup, then C(x,?) = T(¢)f(x) also solves the abstract
Cauchy problem dC/dt = LC; C(0) =f. For an uncoupled CTRW with infinite
mean waiting times, the limiting particle location is given by the subordinated
process A(E(?)). The density h(x,t) of this process solves a fractional Cauchy
problem (d/d¢)’h = Lh where 0<y <1 [22]. The next theorem extends this result to
1 <y<2. Theorem 4.1 in Ref. [13] shows that the long-time CTRW limit process in
this case is A(H(?)), and Corollary 4.2 in Ref. [13] shows that this limit process has
density f0°° p(x, s)d(H(t,s)). The next theorem shows that this density is the Green’s
function solution to a fractional partial differential equation (6) with time derivative
of order 1 <y<?2. This result extends Theorem 3.1 in Ref. [22] showing that these
CTRW limits provide stochastic solutions of fractional Cauchy problems with time
derivative of order 1 <y<2.

Theorem 5. Let L be the generator of an operator stable semigroup (1(1));5¢ on
LY(RY) such that for f € L'\(RY), Lf = 7~ (L(k)f (k)). Let a>0,1<y<2. Then there
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exists a unique distribution g such that

dy\’ d
_a (dz) (1) + o C(1) = LC(t) + o(t)g ©

with conditions
CO)=f, C(@0)=0, C(@)eL"(RY

for all t=0 has a mild solution and this unique solution is given by

Clt,x) = /0 T) (Vo (H(1,5))

For any other distribution g Eq. (6) has no solution.

5. Examples

In this section we give two examples showing how the more differentiated scaling
in time influences the resulting model.

Example 6. Consider a random walk composed of zero-mean, finite-variance
Gaussian jumps with intervening waiting times that are in the domain of attraction
of a Gaussian with unit mean and variance. In this case, the first passage time density
of the Gaussian waiting times (with drift) is well known; see, for example, Ref. [23].
The governing equation becomes

- d—ZC(z y+ 3 )—gzd—z(?(z )+ 8()
GBI T eI = g g

with C(0,x) = f(x) and 0C /0t = 0 when ¢ = 0. The solution is given by

“r 1 (t— s)2) 1 < X2 >
cxy=[ ° - — 2 Vdsuf
(&) /o S dras exp( das ) J4nDs P\ " 42s sxf

with ‘%’ being the convolution operator in Xx.

Example 7. To generalize the previous example, let the waiting times be regularly
varying with unit mean and infinite variance, so the limit of waiting times D(¢)
converges to a Lévy motion with index 1 <y<?2. Furthermore, let the jump sizes be
symmetric and heavy tailed with index 1<a<2. Then the particle position density
C(x, t), assuming an initial particle distribution C(0, x) = f(x) and 0C /0t = 0 when
t =0, follows

o

—a (%)vca, x) +% Ct,x) = —v % Ct,x) + a%' Ct,x) + (1) . %)
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Fig. 1. Solutions to Example 6 with pulse initial condition. Solid lines are with ¢ = 0.1 and dashed lines
are for a = 1, shown for various ¢ and with diffusion parameter & set to 1.

The mild solution is given by

o= [ (S5 or duton.

These two examples show that the particle motion has classical advective
(drift) motion with additional dispersion in both space and time. In the first
example, the effect of the second time derivative vanishes for large time. Note,
however, that when the coefficient on the second time derivative a is larger,
the density is more peaked at the origin and has more weight in the tails (Fig. 1).
The main effect of the parameter y, when less than two, is to cause particles
to spend heavy-tailed amounts of time in an immobile state that decays very
slowly (Fig. 2). The density of the first passage time, which provides a map between
the number of jumps (a particle’s operational time) and the clock time, shows
fewer jumps at any time for lower values of y. For smaller values of 7y, the time
dispersion is noticeable for prolonged time periods (Fig. 2), hence the effect
of the p-order derivative is important for longer periods. The solution to
Example 7 is obtained by subordinating the shifted Lévy motion against these
densities.

6. Conclusions

The study of classical random walks and, more recently, CTRW, has focused on
the spatial dispersion of the particles. Temporal dispersion in the limit process is
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Fig. 2. First passage time densities d(H(s,?)) corresponding to y-stable waiting time processes with
a = 0.1 and unit drift. In the model, the first passage time tracks the random number of jumps at time z.

commonly assumed to be restricted to the infinite-mean waiting time CTRW
[6,9,1,4]. However, by viewing the time process in a similar mathematical light as the
space process, one sees that the time ““drift” follows a different scaling procedure
than the time dispersion. The time drift measures the linear portion of the map
between clock time and the number of jumps, resulting in the familiar first time
derivative in the governing equation of motion. If deviations in the waiting times
have a power law distribution with finite mean but infinite variance, then the effects
of the deviations do not disappear in the limit, and the governing equation has an
additional time operator of order 1<7y<?2. If deviations in the waiting times have
finite mean and variance, this procedure leads to an additional second-order time
derivative. The resulting model gives a sharper description of space-time diffusive
processes.

Appendix A. Proof of Lemma 1

First we show uniqueness. Let 0<o<m/y,

: 1/(p=1)
Iy = L@ et 0<0<a
asin(y0)

; /(=1
F,,={(m> ei(’:—oc<0<oc}.
asin(yo)

Then 0Q(a) = I'=I'_ + I', — I'; is clearly a simply closed path around Q(«) (see for
example Ref. [24, Theorem 10.40]). Let

and

pi2)y=az’ —z.
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o (SO N g (i@ NI g (sin0) T
asin(y0) asin(y0) asin(y0)

- /G=1) ~ 1/G=1
= a(—sm(e) )} cos(y0) — <—s1n(0) ) cos(0)

Then

asin(y0) asin(y0)

' sin(6) ?/(=1) . sin(0) 1/(=1) .
+1 (a <a e 0)> sin(y0) — (a e 6)) sin(0)

= ( sin(0) )w—‘)(smw) Cos(ye))—c"s(@))

asin(y0) sin(y0)
B sin(@) \ "/ Vsin((y — 1))
- <a sin(y@)) sin(y0)

A quick calculation shows that for 0<f<m/y, 6 sin(f)/sin(yf) is an increasing
function which implies that O (sin(0)/asin(y0))"/%~D sin((y — 1))/ sin([y/(y —
D](y — 1)0) is also increasing. Since

_(sin(@) OV sin((y — Do) 2=
i (a sin(y0)> “ingoy 40— D

we have that the image of I’y under p is a path on the negative real axis,

i Yo=1 _
pI's) = l—( sin(®) ) M,—a(? - 1)(ay)"’"/(l_}')] :

asin(yo) sin(ya)

Investigating p(I",) we see that for z € I',,

_ sin(e) \/0D 0 sin(a) \ /0D Y
)= a(a Sin(?“)) T <a sin(yac)) ¢
: 16-1) /o
- (aZ?f(?jx)) (ssilnn(s/og) (cos(y0) + 1 sin(p0)) — cos(0) — i sin(@))
_( sin(®) 1/(—=1) sin(e) cos(y0) _(sin(a)sin(y0) .
= (cicn) (Mo e+ o).

Using again that 0 sin(0)/sin(y0) is increasing for >0, the imaginary part is
positive iff 6 is positive. Furthermore,

sin(e) \ 07V / sin(x)
eI ( sin(w)) (Sin(w) - 1)

for all z € I';, and this lower bound tends to infinity as o — n/y. Hence we obtain for
o large enough that p(I',) is a closed contour going once counterclockwise around the
origin, which implies that p(I') is a closed contour going once counterclockwise
around the origin.
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Fix w € C\(—o0, —a(y — 1)(ay)’/1™"], and then choose a<7/y (x depends on w)
such that p(I') goes around w. Using the counting formula for zeros and poles, we see
that there is exactly one z € Q(x) (see for example Ref. [25, Theorem 13.2.2]) such
that p(z) = w. Furthermore (see for example Ref. [26, p. 153]),

=p~\( r'©)
W= = [

is a holomorphic function on C\(—o0, —a(y — 1)(ay)’/1="].

Next, we show that 1/¢ is the Laplace transform of an analytic function f on
(0, 00) with /'=1/7¢=@!£(¢) bounded for > — a(y — 1)(ay)’/" 7.

Since ag(z)’ — g(z) = z we have that for |z| large enough, (a + 1)|q(z)|" > |ag(z)" —
q(z)| = |z|. Furthermore, ¢(z) € Q(n/y) and thus ¢(z) is bounded away from zero.
Hence there exists M >0 such that

Mlg(2)]" > |z| (A.1)
for all z¢(—oo —a(y — D(ay)/""]. Let

rg)=4——=—q(z)y " ——

@)= ( ) 4G ayq(z)y) ' =1
using the fact that dg/dz = 1/(dp/dz). The function z—1/ayq(z)’"" — 1 has a single
pole at z = —a(y — 1)(ay)”’"™ and is bounded off a neighborhood of that pole.
Choose w<0 such that w> —a(y — 1)(ap)/"™. Then for X,={re?
r>0,—a<d<oa} we have that

) 1

sup  |[(z—w)r(z)]= sup <o

z€0+Z547/2 Z€0+Zs4n) Q(Z)z ayq(z)y—l -

for all 0<d<mn/2. Let Cy ={z€ C:R(z)>0}. By the analytic representation
theorem for Laplace transforms [27, Theorem 2.6.1] there exists a holomorphic
function f*: Cy — C such that sup..¢, [e”*f(z)| <oo and

r(z) = /000 e “f(de.

Furthermore,

22/ Z0-D/y

<o0.

sup |zz'/7r(z)| =

R(z)>0 q(z)* ayq(zy ™" —

Using the complex representation theorem ([27, Theorem 2.5.1] with b = 1/y and
q(z) = z'/71(z)) there exists g € C[0, 00) with sup,-,¢~"/7|g(t)| < oo such that

[o¢]
2Mipzy = / e “y(f)de.
0
By the uniqueness of the Laplace transform f = g and hence

sup |~ 7e ! (1) < 00 .
=0
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Clearly, F(f) = —f(1)/t € L'(0,00) and hence, using Fubini,

/0 ) e F(rdt = — / h /0 h e Vf(t)dtds = — / ” r(s)ds = 1/q(z)

for z>0. Thus the Laplace transform of F(¢) is 1/¢g and the growth conditions follow
with { = —w. O

Appendix B. Simplifying the Laplace—Laplace transform of the maximum process

Clearly, z>0 implies g(z) >0. Thus the second pole of the integrand of (1),
A i& + a(—ig&y
(€ — i) x(x — (i€ + a(=i&)")
is at ¢ = ig(x). For I', = {ne'’ : 0<0<n} there exists M >0 such that
lim / i i€ + a(=i¢)’
=00 2 [p |E(E —i2) x(x — (i€ + a(—i&)"))
< lim —/ gdi: lim M/2n=0.
F’l n n—oo

d¢

Thus, we can apply the residue theorem and obtain

1 [® 2 i + a(—i¢y
ﬂ/_m & — D xx — GE + i) &

1 ! —1 + a(—i&y !
= Jim 5= /[]r €~ i) x(x— & + a1 &
B S N J —1 + a(g(x))~!
C X = (=A+ad) ig(x) =i x(—i + iyag(x)’ ")
B ( —A+al N ! —1+ a(q(x))'f—‘)
 \x(x+ 2 —ad’) " x(g(x) = A) (1 —yag(xy ")) "

Since ¢ is an inverse function we can compute its derivative

Cayg(x)y T -1

as in the proof of Lemma 1. Thus for u>ai’ — 2,

(et b 1t atoy!
[ (eem) =0 &

\ 1 4ax!
=[In(1 + (4 — al’ xZo—i/ ————dx
(In(1 + ( )/X)] o @ — (= 1)
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= —In(1 + (Z — aZ)Ju) — [In(1 — /)],

_ 1—A/qw) \ . (u—ul/qu)
N 1n<l + (- ai"")/u) N ln(u + - a)ﬂ’) '

Using L’Hopital’s rule, we see that for ad’ — >0, lim,_, ,;»_; In((u — ud/q(u))/(u +
A —al))< oo, since the expression inside the logarithm tends to a finite constant as
u — a/’ — A. Then it is not hard to show that the above equality holds for all u>0
(integrate from u to al’ — /. — ¢ and @A’ — A + ¢ to infinity and then let ¢ — 0). Thus,
using (1),

—us—A1
/0 /0 e dr(M(s,T))ds = 7 5 -

Appendix C. Proof of Theorem 2
Clearly, the inverse in u of (2) is given by’
s
H(s,2) =1 —al™h / exp(—r(L — ai’))dr
0

+ /S m(s — r)exp(—r(A — alA’))dr
0

1 —exp(=s(4 —al"))
- A

+ /S m(s — r)exp(—r(4 — al’))dr.
0

Inverting with respect to A is a bit more delicate. Using the complex inversion
formula (see for example Ref. [28, Theorem 7.6]) we obtain

e (1 —exp(—s(i — all))
/ H(s, r)dr—%/+iw7< 1

+ / (s — r)exp(—r( — ")) dr> di
0

1 e’ —exp(—s(A — al’))
% c+HIR j* ( A )

/m(s—r)—/ ReThexp( r(A —al’))dldr
cHR 4

the second equality holding due to Fubini since

s At
/ (s — r)| / ™ | exp(—r(2 — ai?y)| dJdr
0 +

c+iR |/“|

SAs the Laplace transform in 2 has to stay bounded as 4 — oo, we see that convolution with the
function m has to have the following effect for all s>0:

mx exp(—s(A — al’)) ~ exp(—s(A — al’))/ A .
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s/2 () — al’
— eC[/ |m(s _ r)| |eXp( r(; ar ))l d;\, dr
0 cHR 4]

, R
—i—e”/ ms—n) [ 1KRECEZ @G5,

2 cHR | 4]

s/2 _ _ y
<e(‘t sup |m(r)|/ / |exp( }’(i a)‘ ))' drdi
s/2<r<s c+iR JO |/1|

s/2<r<sJc+iR |}|

<o0.

Making a change of variables we see that on the right-hand side we have an
expression akin to the formula for the inversion of the Fourier transform.

1 e (1 — exp(—s(4 — a).y))> di

27 Jesin & 2

K 1 At )

+ / m(s — r)— / € exp(—r(h — ai’))dAdr
0 2mi ¢
eL[ o0

HR A
‘ iut (1 —exp(—s(iu + ¢ — a(iu + c)y)))
2 ¢ . 3 du
27 J o0 (i + ¢)
s et oo e o ,
* / m(s — r)e_/ e exp(—r(iu + ¢ — a(iu + ¢)')) dudr. (C.1)
0 _

21 J_o iu—+c

Now the Fourier transform of a shifted y-stable distribution is

/ oo ik 11 -9, il —1_r dx — e-ikrratky
-0 (a)'7 7"\ (ar)'V?

Since e7“*g,(x) is bounded for all x € R for some ¢>0 (e.g., Ref. [29, Theorem 4.7.1])
we obtain that

* —iux e X—=r __ a—r(iuteta(iute))
e 9\~ dx=e .
—c0 (ar)'”” (ar)'”

Hence, the expressions in (C.1) are indeed inverse Fourier transforms and

& (1 — exp(—s(iv + ¢ — aliu + C)""'))) du

) o (iu + ¢)
s ct o (3 _ 1 )Y
n / m(s — r)e—/ it exp(—r(iu + ¢ —a(iu+ c)")) dudr
0 2n w+c

Y | X—s
=1t— ——g, [ ——= ] dxdw
/—oo /—oo (as)'? 9 ((as)l/7>
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s ! 1 xX—r
+ m(s—r — g, | ——— |dxdr.
/0 ( )/—oo (ar)'? % ((ar)”’)
Therefore,

| xX—s Sm(s —r) t—r
H(s,t)=1-— /_OOWQ); (W) dx + A (ar)1/~, 9y <(ar)1/7) dr
< X—ys *m(s —r) (—r
_ d N d
/t (as)l/, ((as)l/y> X+A (ar)l/"/ 9y <(ar)1/v> r

” ms — t—u
- /(rs)/ws)” o +/ )1/ / ((au)l/v> du. O (C2)

Appendix D. Proof of Theorem 4

Assume there exists a solution to (5). Using the Caputo derivative and the fact that
u(0, s) = d(s), the Laplace—Laplace transform of (d/d#)"u(t, s) is 2ti(2,r) — A~'. Then
it follows easily that

Since s—>u(t,s) is a probability density, |a(z,r)|<1. Hence, the Laplace-Laplace
transform for each r is analytic in the right halfplane in 2. Thus 1 — a2’ ™' + f(r) = 0
if r+ 4 —al’” =0 or equivalently, A = ¢(r), ¢ given by Lemma 1. Hence

Fr =" ).

Since the range of A—>aA’ — A contains the right halfplane, f is uniquely determined,
and so is f.
The first passage time distribution has Laplace-Laplace transform

00 o0 a1
/ / efrsfiTH(S, T)deT: 1 —az +V/CI(V)
0 0

r(r + A —al’)
by (2). Since H(0,T) = 0 for all 7>0 we have that
oo 00 y 1— 1p—1
/ / Ty (H(s. T dT = L=+ 1/40) (D.1)
0 0 r+ /1 — ai’

and hence the density of the first passage time distribution has the same
Laplace-Laplace transform as the solution to the differential equation and it is
therefore a mild solution. O



B. Baeumer et al. | Physica A 350 (2005) 245-262 259
Appendix E. Proof of Theorem 5

Taking the Fourier transform of (6) we obtain

d\’ . d - A .
u (@ C(tK) + 5 Cla ) = L C( ) + 603k

Taking the Laplace transform in ¢ yields

—ai’COL ) + al’ "\ (k) + AC (k) — £ k) = E()C k) + §(K) -
Thus
é(i,k) _JK) — Cfi"* AfUC)f g(k) '
—ai ¥ A — LK)

Since C(/) € L'(R?) we know that its Fourier transform has to be bounded for all
R(4)>0. This implies that the numerator of the above equation has to be zero
whenever the denominator is equal to zero, or whenever ¢(—L(k)) = 1. Hence

§(k) = (=1 + ag(—L(k)) " (k) = —L(k)f (k) /q(—L(k))
is uniquely determined. Thus,
1 —a’ ™" — L(k)/q(—L(k))
—a)’ + A — L(k) 710

To see that C(z) = fgo T(s)f dy(H(t,s)) has the same Fourier—Laplace transform,
take the Fourier transform and observe that

Ci k) =

k) = /0 ~ lih) dy(H (1, 5)f (k) .

But this is the Laplace transform in s of the first passage time density evaluated at
—L(k) times f(k), i.e., taking the Laplace transform in ¢, using (D.1) we see that

GGk = /0 b /0 " e A0 g (H (1, ) de (k)
_ L—al™" — L) /q(=L(k))
- —al’ + ) — L(k) Sk

and therefore C(¢,x) is indeed the mild solution of (6).
Finally we prove that g is a distribution. The proof depends on the fact that for
some positive real constant C we have

|L(k)| < Cmax{||k|, |k||*} for all k € R?. (E.1)
To see this, use the Lévy Representation [7] to write

(ei’“ _ ok >¢(dx),

. 1
Lk:ika——kAk+/ -
(k) 2 1+ [|x||?

x#0
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where a € R?, 4 is a nonnegative definite matrix, and ¢ is a o-finite Borel measure on
R\{0} such that

/ min{1, [|x|*}$(dx) < oo . (E.2)
x#0

The integral term I in the Lévy Representation satisfies |I|<|I| + |1,| with

. ikx
I = / (elkx — 1= >¢( )
" o<t 1+ [

=1 +1,
where
| = / @ — 1~ ikx)(dx)
0<|x||<l
1
< / S WP ()
0<|lx|<1
<Cylk|?
and
o] = ik/ (x )¢( >‘
0<xl<1 1+|| I
lx1?
<JIkI ( $(d)
o<ixf <1 \1 =+ [|lx]1?
<Gkl ,
while

_ ke 1kx
'12'_/ux>1(e e ||2>¢( <

<D+D+D|k|,

where D = ¢{x : ||x||>1} <oo using the fact that |¢¥*| =1 and llx]l /(1 + Ix]*)<1
for || x|l =1. Then (E.1) holds.

Since §(k) = —L(k)f (k)/q(—L(k)) and |q(z)|=M,|z|"/" for almost all z € R? by
(A.1) we have

—L(k)
q(—L(k))

and note that 1 — 1/y>0. Using (E.1) we obtain

— 1=1/y
<120

1G(k)| < M| (k) max{ || k|| =17, |1k |22/}
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and then it follows easily that for some D >0 we have

/(1 + 1k11*) P gk) dk < 00 .

Now Example 7.12 (b) on p. 191 of Ref. [30] shows that g is a tempered
distribution. [
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