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Abstract

Previous work showed how moving particles that rest along their trajectory lead to time-

nonlocal advection–dispersion equations. If the waiting times have infinite mean, the model

equation contains a fractional time derivative of order between 0 and 1. In this article, we

develop a new advection–dispersion equation with an additional fractional time derivative of

order between 1 and 2. Solutions to the equation are obtained by subordination. The form of

the time derivative is related to the probability distribution of particle waiting times and the

subordinator is given as the first passage time density of the waiting time process which is

computed explicitly.
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1. Introduction

Continuous time random walks (CTRW) can be used to derive governing
equations for anomalous diffusion [1–4]. The CTRW is a stochastic process model
for the movement of an individual particle [5,6]. In the long-time limit, the process
converges to a simpler form whose probability densities solve the governing
equation, leading to a useful model for anomalous diffusion. For a simple random
walk with zero-mean, finite-variance particle jumps, the limit process is a Brownian
motion AðtÞ governed by the classical diffusion equation qp=qt ¼ q2p=qx2 where
pðx; tÞ is the probability density of the random variable AðtÞ: For symmetric infinite-
variance jumps (i.e., those with probability density function tails that fall off like
jxj�1�a [7] with some index 0oao2), the limit process AðtÞ is an a-stable Lévy
motion, and the governing equation becomes qp=qt ¼ qap=qjxja [8]. When waiting
times between the jumps are introduced, the limiting process is altered via
subordination [9–11]. In this study, we examine the case where the waiting times
are independent of jump size, also called an ‘‘uncoupled’’ CTRW. For infinite mean
waiting times (whose probability distribution is assumed to decay algebraically with
some index 0ogo1) the limit process is AðEðtÞÞ where EðtÞ is the inverse or first
passage time process for the g-stable subordinator. By virtue of its construction,
the process EðtÞ counts the number of particle jumps by time tX0; accounting for the
waiting time between particle jumps. In the scaling limit, EðtÞ keeps track of the
possibly nonlinear link between real time and the operational time that a particle
actually spends in motion. The governing equation becomes qgp=qtg ¼ qap=qjxja

[2,3]. Some applications [12] seem to indicate a time derivative of order 1ogp2: In
this paper, we develop one such equation by extending the CTRW approach to
processes with finite-mean waiting times, and compute the distribution of the
relevant first passage time process.
2. The model

In the usual CTRW formalism, the long-time limit for the waiting time process is a
g-stable subordinator DðtÞ [2]. Then the inverse Lévy process EðtÞ ¼ inffx : DðxÞ4tg

counts the number of particle jumps by time tX0; reflecting the fact that the time Tn

of the nth particle jump and the number Nt ¼ maxfn : Tnptg of jumps by time t are
also inverse processes. When the waiting times between particle jumps have heavy
tails with 0ogo1 (i.e., infinite mean), subordination of the particle location process
AðtÞ via the inverse Lévy process EðtÞ is necessary in the long-time limit to account
for the amount of time that a particle is not participating in the motion process. The
subordination leads to a time derivative of order g in the governing equation of
motion [3]. When waiting times have heavy tails of order 1ogp2; meaning that the
probability of waiting longer than t falls off like t�g; a different model is needed [13].
In this case, convergence of the waiting time process requires centering to the mean
waiting time w, which is not necessary when 0ogo1: Accounting for this leads
to a waiting time process W ðtÞ ¼ DðtÞ þ wt where DðtÞ is a completely positively
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skewed4 stable Lévy process with index g; so that W ðtÞ is a Lévy process with drift.
The drift ensures that W ðtÞ ! 1 with probability one as t ! 1: Since g41; the
process W ðtÞ is not strictly increasing, so it is proper to use MaxðtÞ ¼ supfW ðuÞ :
0puptg to represent the particle jump times. This substitution is explained as a
particle that makes more than one jump without intervening rest periods [13]. Then
the inverse or first passage time processHðtÞ ¼ inffx :MaxðxÞXtg counts the number
of particle jumps. The first passage time process HðtÞ serves as the subordinator in
place of (and when go1 is identical to) EðtÞ: We show this in subsequent sections.
3. First passage time density

According to the previous section we model the waiting time process as a Lévy
process with drift; i.e., W ðtÞ has characteristic function

E½eixW ðtÞ� ¼ etðiwxþað�ixÞgÞ ;

where w40 is the mean waiting time and a is a shape variable akin to the variance.
For the remainder of this paper we make the assumption w ¼ 1; which entails no loss
of generality, since any mean time w can be recovered by a simple rescaling in time.
In order to compute the density of the process H we use the fact that

PfHðTÞ4sg ¼ PfMaxðsÞoTg

for all s;TX0: Theorem 1 in Ref. [14] shows that the distribution of the maximum
process Mðs;TÞ ¼ PfMaxðsÞoTg satisfies

u

Z 1

0

Z 1

0

e�us�lT dT ðMðs;TÞÞds

¼ exp
1

2p

Z 1

u

Z 1

�1

l
xðx� ilÞ

ixþ að�ixÞg

xðx � ðixþ að�ixÞgÞÞ
dx dx

� �
ð1Þ

for all l; u40: The integrand has two poles in the upper complex halfplane, at x ¼ il
and whenever x ¼ ixþ að�ixÞg: That the second equality holds only once, follows
from the following Lemma (for a proof see Appendix A) investigating the inverse
function of azg � z: This involves the following region. Let a40; 0oapp=g and

OðaÞ:¼ reiy : �aoyoa and
sinðyÞ

a sinðgyÞ
org�1o

sinðaÞ
a sinðgaÞ

� �
;

where we take sinðaÞ=a sinðgaÞ ¼ 1 when a ¼ p=g:

Lemma 1. Let a40; 1ogp2: There exists a unique holomorphic function q :
Cnð�1;�aðg� 1ÞðagÞg=ð1�gÞ

� ! Oðp=gÞ such that

aqðzÞg � qðzÞ ¼ z :

Furthermore, there exists an analytic function F with supt40 t1�1=geztjF ðtÞjo1 for all

0ozoaðg� 1ÞðagÞg=ð1�gÞ such that
R1
0 e

�ztF ðtÞdt ¼ 1=qðzÞ for z40:
4The skew is irrelevant in the normal case g ¼ 2:
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Using the Lemma, we can simplify (1) to (see Appendix B)Z 1

0

Z 1

0

e�us�lT dT ðMðs;TÞÞds ¼
1� l=qðuÞ

u þ l� alg
:

Let Hðs;TÞ ¼ PfHðTÞpsg and recall that Mðs;TÞ ¼ PfMaxðsÞoTg: Then
Hðs;TÞ ¼ PfHðTÞpsg ¼ PfMaxðsÞXTg ¼ 1� Mðs; tÞ; and hence we can integrate
by parts to getZ 1

0

Z 1

0

e�us�lT dT ðMðs;TÞÞds ¼ l
Z 1

0

Z 1

0

e�us�lT Mðs;TÞdT ds

¼ l
Z 1

0

Z 1

0

e�us�lT ð1� Hðs;TÞÞdsdT

¼ 1=u � l
Z 1

0

Z 1

0

e�us�lT Hðs;TÞdsdT :

In other words, the Laplace–Laplace transform of the distribution function of the
first passage time process is given byZ 1

0

Z 1

0

e�us�lT Hðs;TÞdsdT ¼
1

ul
�

1� l=qðuÞ

lðu þ l� algÞ

¼
1� alg�1 þ u=qðuÞ

uðu þ l� algÞ
: ð2Þ

In the following theorem, we invert this Laplace–Laplace transform to obtain an
expression for the cumulative distribution function of the first passage time process
(corresponding in our model to the ‘‘number of jumps by time t’’).

Theorem 2. Let 1ogp2; let m be the function with Laplace transform ~mðuÞ ¼ 1=qðuÞ

given by Lemma 1 and gg be the maximally skewed, standard g-stable density; i.e., the

Fourier transform of gg is ĝgðkÞ ¼ e
ðikÞg : Then the cumulative distribution function of the

first passage time of a Lévy-stable waiting time process with drift is given by

Hðs; tÞ ¼

Z 1

ðt�sÞ=ðasÞ1=g
ggðuÞdu þ

Z s

0

mðs � uÞ

ðauÞ1=g
gg

t � u

ðauÞ1=g

 !
du : (3)

Remark 3. For tb0;

Hðs; tÞ �

Z 1

ðt�sÞ=ðasÞ1=g
ggðuÞdu ¼ PðW ðsÞXtÞ (4)

in view of the fact thatW ðsÞ is identically distributed with ðasÞ1=gW g þ s whereW g is
the stable random variable with density gg: If W ðsÞ were an increasing process, the
left-hand and right-hand expressions in (4) would be equal. Hence the second term in
(3) accounts for the fact that W ðsÞ is not monotone.
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4. The differential equations

In this section, we show that the density of the uncoupled CTRW limit process
solves a fractional partial differential equation with an extra time derivative term of
order 1ogp2 on the right-hand side whose coefficient is negative. This is in contrast
to Mainardi and colleagues’ [15–18] investigation of the transition via fractional
derivatives from the second order hyperbolic equation to the first order parabolic
case. Our equations stay parabolic in nature (given an elliptic operator in space).
We begin with a related result concerning the first passage time density. We say

that a mild solution to a fractional partial differential equation is a function whose
Laplace transform solves the equivalent algebraic equation in Laplace–Laplace
space. The following theorem employs the Caputo derivative ðd=dtÞg; which can be
defined for 1ogp2 by requiring that ðd=dtÞgF ðtÞ has Laplace transform lg ~F ðlÞ �
lg�1F ð0Þ � lg�2F 0ð0Þ where ~F ðlÞ is the Laplace transform of F ðtÞ; see for example
Refs. [19,20].

Theorem 4. There exists a unique distribution f such that the density

uðt; sÞ ¼ dHðs; tÞ=ds of the first passage time distribution Hðs; tÞ in (3) is the unique

mild solution to

�a
d

dt

� �g

uðt; sÞ þ
d

dt
uðt; sÞ ¼ �

d

ds
uðt; sÞ þ f ðsÞdðtÞ (5)

with conditions: uð0; sÞ ¼ dðsÞ; uðt; 0Þ ¼ utð0; sÞ ¼ 0 8s; t40; and s 7!uðt; sÞ is a prob-

ability density for all t40: For any other distribution f Eq. (5) has no solution.

We now extend this result to incorporate more general spatial derivative
operators. When the CTRW particle jumps are in the generalized domain of
attraction of an operator stable limit with probability distribution n; the long-time
limiting particle location process AðtÞ is operator stable with distribution nt [21]. For
a simple random walk, the density pðx; tÞ of AðtÞ defines a strongly continuous
semigroup ðTðtÞÞtX0 on L1ðRdÞ via the formula TðtÞf ðxÞ ¼

R
f ðx � yÞpðy; tÞdy: If L is

the generator of this semigroup, then Cðx; tÞ ¼ TðtÞf ðxÞ also solves the abstract
Cauchy problem dC=dt ¼ LC;Cð0Þ ¼ f : For an uncoupled CTRW with infinite
mean waiting times, the limiting particle location is given by the subordinated
process AðEðtÞÞ: The density hðx; tÞ of this process solves a fractional Cauchy
problem ðd=dtÞgh ¼ Lh where 0ogo1 [22]. The next theorem extends this result to
1ogp2: Theorem 4.1 in Ref. [13] shows that the long-time CTRW limit process in
this case is AðHðtÞÞ; and Corollary 4.2 in Ref. [13] shows that this limit process has
density

R1
0 pðx; sÞdsðHðt; sÞÞ: The next theorem shows that this density is the Green’s

function solution to a fractional partial differential equation (6) with time derivative
of order 1ogp2: This result extends Theorem 3.1 in Ref. [22] showing that these
CTRW limits provide stochastic solutions of fractional Cauchy problems with time
derivative of order 1ogp2:

Theorem 5. Let L be the generator of an operator stable semigroup ðTðtÞÞtX0 on

L1ðRdÞ such that for f 2 L1ðRdÞ; Lf ¼ F�1ðL̂ðkÞf ðkÞÞ: Let a40; 1ogp2: Then there
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exists a unique distribution g such that

�a
d

dt

� �g

CðtÞ þ
d

dt
CðtÞ ¼ LCðtÞ þ dðtÞg (6)

with conditions

Cð0Þ ¼ f ; C0ð0Þ ¼ 0; CðtÞ 2 L1ðRdÞ

for all tX0 has a mild solution and this unique solution is given by

Cðt;xÞ ¼

Z 1

0

TðsÞf ðxÞdsðHðt; sÞÞ :

For any other distribution g Eq. (6) has no solution.
5. Examples

In this section we give two examples showing how the more differentiated scaling
in time influences the resulting model.

Example 6. Consider a random walk composed of zero-mean, finite-variance
Gaussian jumps with intervening waiting times that are in the domain of attraction
of a Gaussian with unit mean and variance. In this case, the first passage time density
of the Gaussian waiting times (with drift) is well known; see, for example, Ref. [23].
The governing equation becomes

�a
d2

dt2
Cðt;xÞ þ

d

dt
Cðt;xÞ ¼ D

d2

dx2
Cðt;xÞ þ dðtÞg

with Cð0;xÞ ¼ f ðxÞ and qC=qt ¼ 0 when t ¼ 0: The solution is given by

Cðt;xÞ ¼

Z 1

0

t

s

1ffiffiffiffiffiffiffiffiffiffi
4pas

p exp �
ðt � sÞ2

4as

� �
1ffiffiffiffiffiffiffiffiffiffiffi
4pDs

p exp �
x2

4Ds

� �
ds%f ;

with ‘%’ being the convolution operator in x.

Example 7. To generalize the previous example, let the waiting times be regularly
varying with unit mean and infinite variance, so the limit of waiting times DðtÞ

converges to a Lévy motion with index 1ogo2: Furthermore, let the jump sizes be
symmetric and heavy tailed with index 1oap2: Then the particle position density
Cðx; tÞ; assuming an initial particle distribution Cð0;xÞ ¼ f ðxÞ and qC=qt ¼ 0 when
t ¼ 0; follows

�a
d

dt

� �g

Cðt;xÞ þ
d

dt
Cðt; xÞ ¼ �v

d

dx
Cðt; xÞ þ

qa

qjxja
Cðt;xÞ þ dðtÞg : (7)
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Fig. 1. Solutions to Example 6 with pulse initial condition. Solid lines are with a ¼ 0:1 and dashed lines
are for a ¼ 1; shown for various t and with diffusion parameter D set to 1.
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The mild solution is given by

Cðt;xÞ ¼

Z 1

0

1

s1=a
ga

x � vs

s1=a

� �
%f dsðHðt; sÞÞ :

These two examples show that the particle motion has classical advective
(drift) motion with additional dispersion in both space and time. In the first
example, the effect of the second time derivative vanishes for large time. Note,
however, that when the coefficient on the second time derivative a is larger,
the density is more peaked at the origin and has more weight in the tails (Fig. 1).
The main effect of the parameter g; when less than two, is to cause particles
to spend heavy-tailed amounts of time in an immobile state that decays very
slowly (Fig. 2). The density of the first passage time, which provides a map between
the number of jumps (a particle’s operational time) and the clock time, shows
fewer jumps at any time for lower values of g: For smaller values of g; the time
dispersion is noticeable for prolonged time periods (Fig. 2), hence the effect
of the g-order derivative is important for longer periods. The solution to
Example 7 is obtained by subordinating the shifted Lévy motion against these
densities.
6. Conclusions

The study of classical random walks and, more recently, CTRW, has focused on
the spatial dispersion of the particles. Temporal dispersion in the limit process is
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Fig. 2. First passage time densities dsðHðs; tÞÞ corresponding to g-stable waiting time processes with
a ¼ 0:1 and unit drift. In the model, the first passage time tracks the random number of jumps at time t.
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commonly assumed to be restricted to the infinite-mean waiting time CTRW
[6,9,1,4]. However, by viewing the time process in a similar mathematical light as the
space process, one sees that the time ‘‘drift’’ follows a different scaling procedure
than the time dispersion. The time drift measures the linear portion of the map
between clock time and the number of jumps, resulting in the familiar first time
derivative in the governing equation of motion. If deviations in the waiting times
have a power law distribution with finite mean but infinite variance, then the effects
of the deviations do not disappear in the limit, and the governing equation has an
additional time operator of order 1ogo2: If deviations in the waiting times have
finite mean and variance, this procedure leads to an additional second-order time
derivative. The resulting model gives a sharper description of space-time diffusive
processes.
Appendix A. Proof of Lemma 1

First we show uniqueness. Let 0oaop=g;

G� ¼
sinðyÞ

a sinðgyÞ

� �1=ðg�1Þ
e�iy : 0pypa

( )

and

Gr ¼
sinðaÞ

a sinðgaÞ

� �1=ðg�1Þ
eiy : �apypa

( )
:

Then qOðaÞ ¼ G:¼G� þ Gr � Gþ is clearly a simply closed path around OðaÞ (see for
example Ref. [24, Theorem 10.40]). Let

pðzÞ ¼ azg � z :
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Then

p
sinðyÞ

a sinðgyÞ

� �1=ðg�1Þ
e�iy

 !
¼ a

sinðyÞ
a sinðgyÞ

� �g=ðg�1Þ

e�igy �
sinðyÞ

a sinðgyÞ

� �1=ðg�1Þ
e�iy

¼ a
sinðyÞ

a sinðgyÞ

� �g=ðg�1Þ

cosðgyÞ �
sinðyÞ

a sinðgyÞ

� �1=ðg�1Þ
cosðyÞ

� i a
sinðyÞ

a sinðgyÞ

� �g=ðg�1Þ

sinðgyÞ �
sinðyÞ

a sinðgyÞ

� �1=ðg�1Þ
sinðyÞ

 !

¼
sinðyÞ

a sinðgyÞ

� �1=ðg�1Þ
sinðyÞ
sinðgyÞ

cosðgyÞ � cosðyÞ
� �

¼ �
sinðyÞ

a sinðgyÞ

� �1=ðg�1Þ
sinððg� 1ÞyÞ
sinðgyÞ

:

A quick calculation shows that for 0oyop=g; y 7! sinðyÞ= sinðgyÞ is an increasing
function which implies that y 7!ðsinðyÞ=a sinðgyÞÞ1=ðg�1Þ sinððg� 1ÞyÞ= sinð½g=ðg�
1Þ�ðg� 1ÞyÞ is also increasing. Since

lim
y!0

sinðyÞ
a sinðgyÞ

� �1=ðg�1Þ
sinððg� 1ÞyÞ
sinðgyÞ

¼ aðg� 1ÞðagÞg=ð1�gÞ

we have that the image of G� under p is a path on the negative real axis,

pðG�Þ ¼ �
sinðaÞ

a sinðgaÞ

� �1=ðg�1Þ
sinððg� 1ÞaÞ
sinðgaÞ

;�aðg� 1ÞðagÞg=ð1�gÞ

" #
:

Investigating pðGrÞ we see that for z 2 Gr;

pðzÞ ¼ a
sinðaÞ

a sinðgaÞ

� �g=ðg�1Þ

eigy �
sinðaÞ

a sinðgaÞ

� �1=ðg�1Þ
eiy

¼
sinðaÞ

a sinðgaÞ

� �1=ðg�1Þ
sinðaÞ
sinðgaÞ

ðcosðgyÞ þ i sinðgyÞÞ � cosðyÞ � i sinðyÞ
� �

¼
sinðaÞ

a sinðgaÞ

� �1=ðg�1Þ
sinðaÞ cosðgyÞ
sinðgaÞ

� cosðyÞ þ i
sinðaÞ sinðgyÞ
sinðgaÞ

� sinðyÞ
� �� �

:

Using again that y 7! sinðyÞ= sinðgyÞ is increasing for y40; the imaginary part is
positive iff y is positive. Furthermore,

jpðzÞjX
sinðaÞ

a sinðgaÞ

� �1=ðg�1Þ
sinðaÞ
sinðgaÞ

� 1

� �

for all z 2 Gr; and this lower bound tends to infinity as a ! p=g:Hence we obtain for
a large enough that pðGrÞ is a closed contour going once counterclockwise around the
origin, which implies that pðGÞ is a closed contour going once counterclockwise
around the origin.
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Fix w 2 Cnð�1;�aðg� 1ÞðagÞg=ð1�gÞ
�; and then choose aop=g (a depends on w)

such that pðGÞ goes around w. Using the counting formula for zeros and poles, we see
that there is exactly one z 2 OðaÞ (see for example Ref. [25, Theorem 13.2.2]) such
that pðzÞ ¼ w: Furthermore (see for example Ref. [26, p. 153]),

qðwÞ:¼p�1ðwÞ ¼
1

2pi

Z
G
z

p0ðzÞ
pðzÞ � w

dz

is a holomorphic function on Cnð�1;�aðg� 1ÞðagÞg=ð1�gÞ
�:

Next, we show that 1=q is the Laplace transform of an analytic function f on
ð0;1Þ with t1�1=ge�otf ðtÞ bounded for o4� aðg� 1ÞðagÞg=ð1�gÞ:
Since aqðzÞg � qðzÞ ¼ z we have that for jzj large enough, ða þ 1ÞjqðzÞjg4jaqðzÞg �

qðzÞj ¼ jzj: Furthermore, qðzÞ 2 Oðp=gÞ and thus qðzÞ is bounded away from zero.
Hence there exists M40 such that

MjqðzÞjgXjzj (A.1)

for all zeð�1;�aðg� 1ÞðagÞg=ð1�gÞ
�: Let

rðzÞ:¼
d

dz

1

qðzÞ
¼ �qðzÞ�2

1

agqðzÞg�1 � 1

using the fact that dq=dz ¼ 1=ðdp=dzÞ: The function z 7!1=agqðzÞg�1 � 1 has a single
pole at z ¼ �aðg� 1ÞðagÞg=ð1�gÞ and is bounded off a neighborhood of that pole.
Choose oo0 such that o4� aðg� 1ÞðagÞg=ð1�gÞ: Then for Sa:¼freid :
r40;�aodoag we have that

sup
z2oþSdþp=2

jðz � oÞrðzÞj ¼ sup
z2oþSdþp=2

z � o

qðzÞ2
1

agqðzÞg�1 � 1

����
����o1

for all 0odop=2: Let Cþ ¼ fz 2 C : RðzÞ40g: By the analytic representation
theorem for Laplace transforms [27, Theorem 2.6.1] there exists a holomorphic
function f : Cþ ! C such that supz2Cþ

je�ozf ðzÞjo1 and

rðzÞ ¼

Z 1

0

e�ztf ðtÞdt :

Furthermore,

sup
RðzÞ40

jzz1=grðzÞj ¼
z2=g

qðzÞ2
zðg�1Þ=g

agqðzÞg�1 � 1

����
����o1 :

Using the complex representation theorem ([27, Theorem 2.5.1] with b ¼ 1=g and
qðzÞ ¼ z1=grðzÞ) there exists g 2 C½0;1Þ with supt40 t�1=gjgðtÞjo1 such that

z1=grðzÞ ¼ z1=g
Z 1

0

e�ztgðtÞdt :

By the uniqueness of the Laplace transform f ¼ g and hence

sup
tX0

jt�1=ge�otf ðtÞjo1 :
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Clearly, F ðtÞ ¼ �f ðtÞ=t 2 L1ð0;1Þ and hence, using Fubini,Z 1

0

e�ztF ðtÞdt ¼ �

Z 1

z

Z 1

0

e�stf ðtÞdtds ¼ �

Z 1

z

rðsÞds ¼ 1=qðzÞ

for z40: Thus the Laplace transform of F ðtÞ is 1=q and the growth conditions follow
with z ¼ �o: &
Appendix B. Simplifying the Laplace–Laplace transform of the maximum process

Clearly, z40 implies qðzÞ40: Thus the second pole of the integrand of (1),

l
xðx� ilÞ

ixþ að�ixÞg

xðx � ðixþ að�ixÞgÞÞ
;

is at x ¼ iqðxÞ: For Gn ¼ fneiy : 0pyppg there exists M40 such that

lim
n!1

1

2p

Z
Gn

l
xðx� ilÞ

ixþ að�ixÞg

xðx � ðixþ að�ixÞgÞÞ

����
����dx

p lim
n!1

1

2p

Z
Gn

M

n2
dx ¼ lim

n!1
M=2n ¼ 0 :

Thus, we can apply the residue theorem and obtain

1

2p

Z 1

�1

l
xðx� ilÞ

ixþ að�ixÞg

xðx � ðixþ að�ixÞgÞÞ
dx

¼ lim
n!1

1

2pi

Z
½�n;n�[Gn

l
ðx� ilÞ

�1þ að�ixÞg�1

xðx � ðixþ að�ixÞgÞÞ
dx

¼ l
�1þ alg�1

xðx � ð�lþ algÞÞ
þ

l
iqðxÞ � il

�1þ aðqðxÞÞg�1

xð�iþ igaqðxÞg�1Þ

¼
�lþ alg

xðx þ l� algÞ
þ

l
xðqðxÞ � lÞ

�1þ aðqðxÞÞg�1

ð1� gaqðxÞg�1Þ

� �
:

Since q is an inverse function we can compute its derivative

d

dx
qðxÞ ¼

1

agqðxÞg�1 � 1

as in the proof of Lemma 1. Thus for u4alg � l;Z 1

u

�lþ alg

xðx þ l� algÞ

� �
þ

l
xðqðxÞ � lÞ

�1þ aðqðxÞÞg�1

ð1� gaqðxÞg�1Þ
dx

¼ ½lnð1þ ðl� algÞ=xÞ�1u � l
Z 1

qðuÞ

�1þ axg�1

ðaxg � xÞðx � lÞ
dx
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¼ � lnð1þ ðl� algÞ=uÞ � ½lnð1� l=xÞ�1qðuÞ

¼ ln
1� l=qðuÞ

1þ ðl� algÞ=u

� �
¼ ln

u � ul=qðuÞ

u þ l� alg

� �
:

Using L’Hopital’s rule, we see that for alg � l40; limu!alg�l lnððu � ul=qðuÞÞ=ðu þ

l� algÞÞo1; since the expression inside the logarithm tends to a finite constant as
u ! alg � l: Then it is not hard to show that the above equality holds for all u40
(integrate from u to alg � l� e and alg � lþ e to infinity and then let e ! 0). Thus,
using (1),Z 1

0

Z 1

0

e�us�lT dT ðMðs;TÞÞds ¼
1� l=qðuÞ

u þ l� alg
:

Appendix C. Proof of Theorem 2

Clearly, the inverse in u of (2) is given by5

~Hðs; lÞ ¼ ð1� alg�1Þ
Z s

0

expð�rðl� algÞÞdr

þ

Z s

0

mðs � rÞ expð�rðl� algÞÞdr

¼
1� expð�sðl� algÞÞ

l
þ

Z s

0

mðs � rÞ expð�rðl� algÞÞdr :

Inverting with respect to l is a bit more delicate. Using the complex inversion
formula (see for example Ref. [28, Theorem 7.6]) we obtainZ t

0

Hðs; rÞdr ¼
1

2pi

Z
cþiR

elt

l
1� expð�sðl� algÞÞ

l

�

þ

Z s

0

mðs � rÞ expð�rðl� algÞÞdr

�
dl

¼
1

2pi

Z
cþiR

elt

l
1� expð�sðl� algÞÞ

l

� �
dl

þ

Z s

0

mðs � rÞ
1

2pi

Z
cþiR

elt

l
expð�rðl� algÞÞdldr

the second equality holding due to Fubini sinceZ s

0

jmðs � rÞj

Z
cþiR

jeltj

jlj
j expð�rðl� algÞÞjdldr
5As the Laplace transform in l has to stay bounded as l ! 1; we see that convolution with the
function m has to have the following effect for all s40:

m% expð�sðl� algÞÞ � expð�sðl� algÞÞ=l :
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¼ ect

Z s=2

0

jmðs � rÞj

Z
cþiR

j expð�rðl� algÞÞj
jlj

dldr

þ ect

Z s

s=2
jmðs � rÞj

Z
cþiR

j expð�rðl� algÞÞj
jlj

dldr

pect sup
s=2oros

jmðrÞj

Z
cþiR

Z s=2

0

j expð�rðl� algÞÞj
jlj

drdl

þ ectkmk1 sup
s=2oros

Z
cþiR

j expð�rðl� algÞÞj
jlj

dl

o1 :

Making a change of variables we see that on the right-hand side we have an
expression akin to the formula for the inversion of the Fourier transform.

1

2pi

Z
cþiR

elt

l
1� expð�sðl� algÞÞ

l

� �
dl

þ

Z s

0

mðs � rÞ
1

2pi

Z
cþiR

elt

l
expð�rðl� algÞÞdldr

¼
ect

2p

Z 1

�1

eiut 1� expð�sðiu þ c � aðiu þ cÞgÞÞ

ðiu þ cÞ2

� �
du

þ

Z s

0

mðs � rÞ
ect

2p

Z 1

�1

eiut expð�rðiu þ c � aðiu þ cÞgÞÞ

iu þ c
dudr : ðC:1Þ

Now the Fourier transform of a shifted g-stable distribution is

Z 1

�1

e�ikx 1

ðarÞ1=g
gg

x � r

ðarÞ1=g

 !
dx ¼ e�ikrþraðikÞg :

Since e�cxggðxÞ is bounded for all x 2 R for some cX0 (e.g., Ref. [29, Theorem 4.7.1])
we obtain that

Z 1

�1

e�iux e
�cx

ðarÞ1=g
gg

x � r

ðarÞ1=g

 !
dx ¼ e�rðiuþcþaðiuþcÞgÞ :

Hence, the expressions in (C.1) are indeed inverse Fourier transforms and

ect

2p

Z 1

�1

eiut 1� expð�sðiu þ c � aðiu þ cÞgÞÞ

ðiu þ cÞ2

� �
du

þ

Z s

0

mðs � rÞ
ect

2p

Z 1

�1

eiut expð�rðiu þ c � aðiu þ cÞgÞÞ

iu þ c
dudr

¼ t �

Z t

�1

Z w

�1

1

ðasÞ1=g
gg

x � s

ðasÞ1=g

 !
dxdw
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þ

Z s

0

mðs � rÞ

Z t

�1

1

ðarÞ1=g
gg

x � r

ðarÞ1=g

 !
dxdr :

Therefore,

Hðs; tÞ ¼ 1�

Z t

�1

1

ðasÞ1=g
gg

x � s

ðasÞ1=g

 !
dx þ

Z s

0

mðs � rÞ

ðarÞ1=g
gg

t � r

ðarÞ1=g

 !
dr

¼

Z 1

t

1

ðasÞ1=g
gg

x � s

ðasÞ1=g

 !
dx þ

Z s

0

mðs � rÞ

ðarÞ1=g
gg

t � r

ðarÞ1=g

 !
dr

¼

Z 1

ðt�sÞ=ðasÞ1=g
ggðuÞdu þ

Z s

0

mðs � uÞ

ðauÞ1=g
gg

t � u

ðauÞ1=g

 !
du : & ðC:2Þ

Appendix D. Proof of Theorem 4

Assume there exists a solution to (5). Using the Caputo derivative and the fact that
uð0; sÞ ¼ dðsÞ; the Laplace–Laplace transform of ðd=dtÞguðt; sÞ is lg ~~uðl; rÞ � lg�1: Then
it follows easily that

~~uðl; rÞ ¼
1� alg�1 þ ~f ðrÞ

r þ l� alg
:

Since s 7!uðt; sÞ is a probability density, j ~uðt; rÞjp1: Hence, the Laplace–Laplace
transform for each r is analytic in the right halfplane in l: Thus 1� alg�1 þ ~f ðrÞ ¼ 0
if r þ l� alg ¼ 0 or equivalently, l ¼ qðrÞ; q given by Lemma 1. Hence

~f ðrÞ ¼
�lþ alg

l
¼ r=qðrÞ :

Since the range of l 7!alg � l contains the right halfplane, ~f is uniquely determined,
and so is f.
The first passage time distribution has Laplace–Laplace transformZ 1

0

Z 1

0

e�rs�lT Hðs;TÞdsdT ¼
1� alg�1 þ r=qðrÞ

rðr þ l� algÞ

by (2). Since Hð0;TÞ ¼ 0 for all T40 we have thatZ 1

0

Z 1

0

e�rs�lT dsðHðs;TÞÞdT ¼
1� alg�1 þ r=qðrÞ

r þ l� alg
(D.1)

and hence the density of the first passage time distribution has the same
Laplace–Laplace transform as the solution to the differential equation and it is
therefore a mild solution. &
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Appendix E. Proof of Theorem 5

Taking the Fourier transform of (6) we obtain

�a
d

dt

� �g

Ĉðt; kÞ þ
d

dt
Ĉðt; kÞ ¼ L̂ðkÞĈðt; kÞ þ dðtÞĝðkÞ :

Taking the Laplace transform in t yields

�alg ~̂Cðl; kÞ þ alg�1 f̂ ðkÞ þ l ~̂Cðl; kÞ � f̂ ðkÞ ¼ L̂ðkÞ
~̂
Cðl; kÞ þ ĝðkÞ :

Thus

~̂
Cðl; kÞ ¼

f̂ ðkÞ � alg�1f̂ ðkÞ þ ĝðkÞ

�alg þ l� L̂ðkÞ
:

Since ~CðlÞ 2 L1ðRd Þ we know that its Fourier transform has to be bounded for all
RðlÞ40: This implies that the numerator of the above equation has to be zero
whenever the denominator is equal to zero, or whenever qð�L̂ðkÞÞ ¼ l: Hence

ĝðkÞ ¼ ð�1þ aqð�L̂ðkÞÞg�1Þf̂ ðkÞ ¼ �L̂ðkÞf̂ ðkÞ=qð�L̂ðkÞÞ

is uniquely determined. Thus,

~̂
Cðl; kÞ ¼

1� alg�1 � L̂ðkÞ=qð�L̂ðkÞÞ

�alg þ l� L̂ðkÞ
f̂ ðkÞ :

To see that CðtÞ ¼
R1
0 TðsÞf dsðHðt; sÞÞ has the same Fourier–Laplace transform,

take the Fourier transform and observe that

Ĉðt; kÞ ¼

Z 1

0

esL̂ðkÞ dsðHðt; sÞÞf̂ ðkÞ :

But this is the Laplace transform in s of the first passage time density evaluated at
�L̂ðkÞ times f̂ ðkÞ; i.e., taking the Laplace transform in t, using (D.1) we see that

~̂
Cðl; kÞ ¼

Z 1

0

Z 1

0

e�lt�sð�L̂ðkÞÞdsðHðt; sÞÞdt f̂ ðkÞ

¼
1� alg�1 � L̂ðkÞ=qð�L̂ðkÞÞ

�alg þ l� L̂ðkÞ
f̂ ðkÞ

and therefore Cðt;xÞ is indeed the mild solution of (6).
Finally we prove that g is a distribution. The proof depends on the fact that for

some positive real constant C we have

jL̂ðkÞjpCmaxfkkk; kkk2g for all k 2 Rd : (E.1)

To see this, use the Lévy Representation [7] to write

L̂ðkÞ ¼ ika �
1

2
kAk þ

Z
xa0

eikx � 1�
ikx

1þ kxk2

� �
fðdxÞ ;
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where a 2 Rd ; A is a nonnegative definite matrix, and f is a s-finite Borel measure on
Rdnf0g such thatZ

xa0
minf1; kxk2gfðdxÞo1 : (E.2)

The integral term I in the Lévy Representation satisfies jI jpjI1j þ jI2j with

I1 ¼

Z
0okxko1

eikx � 1�
ikx

1þ kxk2

� �
fðdxÞ

¼ I11 þ I12 ;

where

jI11j ¼

Z
0okxko1

ðeikx � 1� ikxÞfðdxÞ

����
����

p
Z
0okxko1

1

2
kkk2kxk2fðdxÞ

pC1kkk2

and

jI12j ¼ ik

Z
0okxko1

x �
x

1þ kxk2

� �
fðdxÞ

����
����

pkkk

Z
0okxko1

kxk3

1þ kxk2

� �
fðdxÞ

pC2kkk ;

while

jI2j ¼

Z
kxkX1

eikx � 1�
ikx

1þ kxk2

� �
fðdxÞ

pD þ D þ Dkkk ;

where D ¼ ffx : kxkX1go1 using the fact that jeikxj ¼ 1 and kxk=ð1þ kxk2Þp1
for kxkX1: Then (E.1) holds.
Since ĝðkÞ ¼ �L̂ðkÞf̂ ðkÞ=qð�L̂ðkÞÞ and jqðzÞjXM0jzj

1=g for almost all z 2 Rd by
(A.1) we have

�L̂ðkÞ

qð�L̂ðkÞÞ

�����
�����p 1

M0
jL̂ðkÞj1�1=g

and note that 1� 1=g40: Using (E.1) we obtain

jĝðkÞjpM1jf̂ ðkÞjmaxfkkk1�1=g; kkk2�2=gg
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and then it follows easily that for some D40 we haveZ
ð1þ kkk2Þ�DĝðkÞdko1 :

Now Example 7.12 (b) on p. 191 of Ref. [30] shows that g is a tempered
distribution. &
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