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Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as
mathematical operators defined by natural phenomena. This follows the view that the diffusion equation
is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional
derivatives come from the governing equations of stable Lévy motion, and that fractional integration is
the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived
in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these
general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differ-
ential equations, and Eulerian methods for stochastic integrals. These numerical approximations illumi-
nate the essential nature of the fractional calculus.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The term ‘‘fractional calculus’’ refers to the generalization of
integer-order derivatives and integrals to rational order. This topic
was first broached by L’Hopital and Leibniz after the latter’s co-
invention of calculus in the 1700s (see the excellent history by Old-
ham and Spanier [1]). In fact, the operators can be extended to
complex as well as real order, so the ‘‘fractional’’ label is a minor
historical misnomer.

Fractional calculus was primarily a mathematical curiosity for
centuries (see examples in [1,2]). For example, when Heaviside
would take the ‘‘square root’’ of both sides of a diffusion equation,
he was generating a 1/2-order time derivative. Some of the first
physical applications were by geophysicists describing material
somewhere between elastic (Hooke’s linear relationship between
stress and strain) and viscous (described by Newton’s stress pro-
portional to strain rate). In his work on this area starting in the
1960s, geophysicist Michele Caputo derived the fractional deriva-
tive that carries his name. Benoit Mandelbrot’s work on fractional
Brownian motion and geophysical time series starting in the 1960s
implicitly used fractional-order integration.

In the 1990s, a resurgence of interest surrounded the applica-
tion of fractional derivatives in the model equations of anomalous
diffusion (see [3] for an extensive review). At the same time, an
understanding of the importance of general non-locality in
upscaled transport in heterogeneous aquifer material emerged
[4,5]. The non-locality is defined by operators that account for
ll rights reserved.
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(integrate) the concentrations at previous times and/or large re-
gions of space. These studies were based on the simple idea that
the concentration change at some collection point (a plane or well)
depended on contributions from potentially large distances up-
stream and/or the concentration loading history for some time in
the past. Formally, the non-locality arises when the underlying
velocity field is uncertain and correlation scales are significantly
large compared to the scale of observation [6]. Upscaled descrip-
tions of transport lose detailed velocity information that is trans-
ferred to the non-local operators.

One attempt to incorporate spatial non-locality in a tractable
form assumed a set of weights that decayed as a power-law
[7–9], which forms the definition of a fractional-order dispersion
term. This formulation assumed that the concentration change at
some point depended on upstream concentrations, and the depen-
dence decayed like a power law of the distance. Temporal non-
locality, in which concentration change at a point depends on the
prior concentration ‘‘loading’’ is the basis for hydrologic applica-
tions of continuous time random walks (CTRW). The CTRW were
shown to define temporal fractional derivatives when the weight-
ing of prior concentration decayed like a power-law (see the exten-
sive review by Metzler and Klafter [3]). A few years later, the
formal link between two-state (mobile/immobile) multi-rate mass
transfer equations [10,11] and temporally fractional-order models
was made [12,13]. This accounts for solute loading into relatively
impermeable material that slowly releases the solute after the bulk
of a plume has passed.

Forays into fractional calculus in multiple dimensions showed
that the fractional derivatives could be extended in ways
significantly different than classical cases. The derivative operators
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were defined by the underlying diffusion process of Lévy motion,
which could have different scaling rates and skewness in different
directions. The derivative operators inherit the different orders and
descriptions of skewness in all directions. Because of the link be-
tween derivatives and integrals, these extensions can be trans-
ferred to any system that uses fractional integrals. The most
common hydrologic application of fractional integration is the gen-
eration of fractional Brownian motion as a representation of aqui-
fer material with long-range correlation structure. Using the
inverses of the newly defined fractional derivatives gave new tools
to extend the classical fractional Brownian motion to more closely
represent anisotropic aquifer structure [14].

Because the fractional derivative and integrals are defined as
convolution operators, they are easy to implement using standard
numerical techniques. In addition, because the fractional diffusion
equations that generate the derivative operators are based on the
motion of a single particle, the classical random walk particle
tracking (RWPT) techniques are well-suited to solve the fractional
advection–dispersion transport equations. We exploit the numeri-
cal implementations as a vehicle to define and solve to fractional-
order differential and integral equations.

The paper is organized in three main sections dealing with frac-
tional space derivatives (Section 2), fractional time derivatives
(Section 3), and fractional integrals (Section 5). Within the two
derivative sections, we outline how the diffusion equation, and
its fractional-order counterparts, are defined by the stochastic pro-
cesses that they describe. We show how the equations naturally in-
duce both their Eulerian (Section 2.5) and Lagrangian (Section 2.6)
numerical approximations. In Section 4 we briefly summarize how
the fractional transport equations have been applied to contami-
nant transport problems in surface and subsurface hydrology. We
then show in Section 5 how the inverse of the fractional derivative
operators define the fractional integrals in multiple dimensions,
and how these integrals can be used to generate conditioned, mul-
ti-scaling, random aquifer facsimiles. We close with conclusions
and recommendations for future work in Section 6.

2. Markovian diffusions and fractional space derivatives

There are several forms of fractional derivatives that are distin-
guished by the domain over which they operate. Because they are
non-local operators, they ‘‘look’’ for values from a certain distance
ahead or behind for information. For spatial processes it may be
correct to look ahead and/or behind (or at any angle) over all space.
Temporal information is only used after some starting time, so the
domain of interest is positive time only. We use these distinctions
to explain the association of the different operators to different
behaviors in diffusions based on random walks.

The starting point for all of the generalizations is classical
Brownian motion. It is well known that Brownian motion B(t) is
the limit Markov (memoryless) process of finite-variance random
walks with short-range correlation [15,16]. This makes Brownian
motion an attractive model for transport of passive tracers in sur-
face and ground water: the exact nature of the individual motions
is not particularly important in the long-term. The central limit
theorem dictates that all finite-variance motions converge toward
the Gaussian limit distribution. It is precisely this property that has
made Brownian motion an attractive and useful model of macrodi-
spersion in aquifers. Even with non-Gaussian particle motions, the
long term transport tends toward the Gaussian limit distribution
(for perhaps the earliest experimental example see Taylor [17]).

If B(t) denotes the location of a particle in one-dimensional
space x at time t then the density of the location p(x, t) is given by

pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p exp

�x2

4Dt

� �
; ð1Þ
where D is half the variance of each motion size divided by the
mean motion time. Throughout this paper, we will use Fourier
f ðkÞ �

R
e�ikxf ðxÞdx and Laplace f ðsÞ �

R
e�stf ðtÞ transforms, where

it is understood for notational simplicity that f(x),f(k) and f(t),f(s)
are transform pairs, not the same functions.

To connect the diffusion equation with Brownian motion, note
that the Fourier transform (FT) of (1) is p(k, t) = exp (tD(ik)2), with
time derivative

dpðk; tÞ
dt

¼ DðikÞ2 expðtDðikÞ2Þ ¼ DðikÞ2pðk; tÞ: ð2Þ

A property of Fourier transforms of integer-order derivatives is that
(ik)nf(k),dnf(x)/dxn, so that the inverse transform of the previous
equation becomes

@pðx; tÞ
@t

¼ D
@2

@x2 pðk; tÞ: ð3Þ

In a more general way that will be useful shortly, we can write the
FT of the Brownian motion density as p(k, t) = exp (tA(k)), where the
function of the wavenumber A(k) = D(ik)2, then following the same
procedure the ‘‘inverse FT’’ of A(k) defines the linear space operator
in the Cauchy equations

dpðk; tÞ
dt

¼ AðkÞpðk; tÞ ð4Þ

with inverse FT

dpðx; tÞ
dt

¼
Z

AðxÞpðx� n; tÞdn � Axpðx; tÞ; ð5Þ

where the Ax() denotes the linear space operator defined by convo-
lution with A(x), the inverse FT of A(k). Here we use the fact that the
product of two functions A(k)p(k, t) in Fourier space is a convolution
in real space. This convolution, in turn, specifies an operation on the
function p(x, t) in real space. For example (ik)2 ,d2/dx2 represent
the pair A(k),Ax for Brownian motion. This convolution machinery
can be used to explain the diffusion equation for Brownian motion,
because the function (ik)2 is the (distributional) FT of the second
derivative of the Dirac delta function. The Dirac delta function
d(x � a) for some constant shift a is a ‘‘generalized function’’ (also
called a distribution) defined byZ

dðx� aÞf ðxÞdx ¼ f ðaÞ: ð6Þ

Its derivatives are defined via integration by parts:Z
dðnÞðnÞf ðx� nÞdn ¼

Z
dðnÞf ðnÞðx� nÞdn: ð7Þ

Because the values of f(x) for x – a do not affect the integral (6), we
might say that

dðx� aÞ ¼
1 if x ¼ a;

0 otherwise;

�
ð8Þ

where
R

dðxÞdx ¼ 1, so that the infinity at x = a is tamed by integra-
tion. Another intuitive definition of the Dirac function is that it is
the limit of a Gaussian density function with mean a as the variance
tends toward zero, i.e., the Dirac delta is like the probability density
‘‘function’’ of the constant number a.

Taking f(x) = e�ikx in Eq. (6) shows that the FT of d(x � 0) equals 1.
Then the FT of d00(x) is (ik)2 � 1, so that multiplying the FT by (ik)2 is
equivalent to convolution with d00(x). Therefore, Brownian motion,
by virtue of the FT of its density function, defines the diffusion equa-
tion. This is the sole connection between the diffusion equation and
Brownian motion. The notion that a concentration gradient ‘‘drives’’
a diffusion by physical means was dispelled by Einstein [18] and
Crank [19] in their seminal work. The extension of the probability
distribution for a single particle, p(x, t) to concentration for a large
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number of particles, requires independence of their motion and
eliminates particles of one species acting upon each other as a driv-
ing force. This is also called the infinitely dilute approximation. The
concept that the random motion of a single particle defines the dif-
fusion equation, in which the flux happens to be proportional to
concentration gradient, rather than the picture that a molecule
moves in response to that gradient, is central to our further develop-
ment, and is eloquently described by Crank [19]:

If it were possible to watch individual molecules of iodine, and
this can be done effectively by replacing them by particles small
enough to share the molecular motions but just large enough to
be visible under that microscope, it would be found that the
motion of each molecule is a random one. In a dilute solution
each molecule of iodine behaves independently of the others,
which it seldom meets, and each is constantly undergoing col-
lision with solvent molecules, as a result of which collisions it
moves sometimes toward a region of higher, sometimes of
lower, concentration, having no preferred motion towards one
or the other. The motion of a single molecule can be described
in terms of the familiar ‘random walk’ picture, and whilst it is
possible to calculate the mean-square distance travelled in a
given interval of time it is not possible to say in what direction
a given molecule will move in that time.
This picture of random molecular motions, in which no mole-
cule has a preferred direction of motion, has to be reconciled
with the fact that a transfer of iodine molecules from the region
of higher to that of lower concentration is nevertheless
observed. Consider a horizontal section in the solution and
two thin, equal elements of volume one just below and one just
above the section. Though it is not possible to say which way
any particular iodine molecule will move in a given interval of
time, it can be said that on the average a definite fraction of
molecules in the lower element of volume will cross the section
from below, and the same fraction of molecules in the upper
element will cross the section from above, in a given time. Thus,
simply because there are more iodine molecules in the lower
element than in the upper one, there is a net transfer from
the lower to the upper side of the section as a result of random
molecular motions.

In the 1920s, Paul Lévy discovered the class of processes that
correspond to the limits of all random walks (in 1-d) by easing
the requirement of finite variance in the classical central limit the-
orem. When the probability of the individual motions have power-
law tails P(jWj > x) � Cx�a for some constant C and 0 < a < 2, the re-
scaled sum of these walks converges to a Lévy motion with FT

pðk; tÞ ¼ exp½�tDðaðikÞa þ ð1� aÞð�ikÞaÞ� ð9Þ

so that (9) admits the same form as (4) but with A(k) = Da(ik)a

+ D(1 � a)(�ik)a. The (distributional) inverse transform of (ik)a is
the power law x�1�a/C(�a) for x > 0, and the inverse transform of
(�ik)a is (�x)�1�a/C(�a) for x < 0. The skewness parameter has a
range 0 6 a 6 1. The probability increase/decrease rate equation

dpðk; tÞ
dt

¼ pðk; tÞ½�tDðaðikÞa þ ð1� aÞð�ikÞaÞ�

implies that particles may jump long distances. This can be seen in a
long form of the real-space equation

dpðx; tÞ
dt

¼ Da
Cð�aÞ

Z x

�1
ðx� nÞ�1�apðn; tÞdn

þ Dð1� aÞ
Cð�aÞ

Z 1

x
ð�xþ nÞ�1�apðn; tÞdn: ð10Þ

Strictly speaking, these are convolutions of generalized functions
like the Dirac delta function, because the power law x�1�a is not
integrable at x = 0. Assuming a well-behaved function p that goes
to zero at ±1, the intergrals can be regularized (tamed) into con-
vergent forms using the integration by parts formula n times, where
n � 1 < a < n, to obtain converging convolution integrals involving
x�1�a+n.

These convolutions with forward and backward power laws de-
fine two specific types of fractional-order derivatives, denoted in
the diffusion equation

@pðx; tÞ
@t

¼ Da
@apðx; tÞ
@xa þ Dð1� aÞ @

apðx; tÞ
@ð�xÞa

: ð11Þ

The forward direction fractional derivative (as well as a fractional
time derivative defined later) is ‘‘causal’’ in that the derivative at
some point depends on values to the left on the real line. The back-
ward fractional derivative generally only pertains to space func-
tions, because it is not causal; it depends on values to the right.
While this sounds counterintuitive, the backward derivative models
backward jumps; therefore, the probability change at some point
depends on probability that a particle starts a jump from a forward
location.

The transition from integer to fractional derivatives is most eas-
ily understood in terms of Fourier transforms: Recall the FT pair
dnf(x)/dxn,(ik)nf(k), and substitute a real-valued a for n. Some vari-
ations on this definition (described later) recognize the fact that for
time derivatives, t = 0 defines a boundary that has some influence
on the convolution, and must be treated properly. The main point
we wish to emphasize here is that the same Fourier symbol A(k) =
Da(ik)a + D(1 � a)(�ik)a determines both the fractional derivative,
and the corresponding stable Lévy motion.
2.1. 1-D fractional derivative: numerics

Before venturing into the territory of multiple dimensions, it is
instructive at this point to examine the convolution operator (4) in
relation to the classical integer derivatives and their numerical
approximations. The convolution specifies that the change in prob-
ability (and concentration) is due to the sum of concentrations
everywhere weighted by the function in the convolution. The Dirac
delta d(x) and its derivatives are zero everywhere except where x
= 0. This property defines a ‘‘local’’ operator. In a numerical imple-
mentation of convolution, one takes a finite domain X and discret-
izes it into N partitions of size D x. Convolution with a delta
function d(x) is represented by a weighted sum with zero weights
everywhere, except for a value of 1 at x = 0. Call the weights wi,
then w0 = 1, wi–0 = 0. The derivative of d(x) is represented by the
numerical ‘‘slope’’ on either side of the impulse: the immediate rise
1/Dx and fall � 1/Dx. A second derivative is the slope of that func-
tion: 1/Dx2, �2/Dx2, and 1/Dx2. The second derivative at some grid
location is a convolution of these weights with some function f(x)
discretized at the same points:

d2f ðxÞ
dx2 �

X1
l¼0

wlf ðx� lDxÞ ¼ f ðxÞ � 2f ðx� DxÞ þ f ðx� 2DxÞ
Dx2 : ð12Þ

Any integer derivative can be represented by a discrete convolution,
using weights from the binomial coefficients:

dnf ðxÞ
dxn ¼ ðDxÞ�n

XN

l¼0

ð�1Þl
n

l

� �
f ðx� lDxÞ: ð13Þ

The nth derivative has n + 1 terms, and for stability, the weights are
typically shifted to the right by the greatest integer less than n/2,
denoted [n/2], so that the formula for all integer-order derivatives
becomes
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dnf ðxÞ
dxn ¼ ðDxÞ�n

XN

l¼0

ð�1Þl
n

l

� �
f ðx� ðl� ½n=2�ÞDxÞ: ð14Þ

Grünwald recognized in the 1800s that the formula for integer finite
differences was easily extended to the fractional-order case. The
binomial coefficients of any order a can be defined using the
formula

a
l

� �
¼ Cðaþ 1Þ

Cða� lþ 1Þl! ; ð15Þ

so the finite difference approximation formula for a fractional deriv-
ative of a function at point x (or approximate fractional integral for
a < 0) can be written

M
a
þf ðxÞ ¼ Dx�a

XN

l¼0

ð�1Þl
a
l

� �
f ðx� lDxÞ ¼ Dx�a

XN

l¼0

wlf ðx� lDxÞ;

ð16Þ

where the Grünwald weights

wl ¼ ð�1Þl
a
l

� �
¼ ð�1ÞlCðaþ 1Þ

Cða� lþ 1Þl!
ð17Þ

are illustrated in Fig. 1. Only a few orders are shown, but the weight
functions smoothly interpolate between all orders, including when
the derivative order is negative (indicating fractional integration).
Note that for direct comparison, the derivative weights for positive
a are not shifted to the left in Fig. 1. While at their core, the frac-
tional derivatives are defined by convolution with a power law,
the discrete weights are not monotonic because the derivatives
have a rise at the origin and subsequent fall. The same non-mono-
tonic behavior is seen in the discrete version of any integer-order
derivative as well.

Eq. (16) corresponds to the positive fractional derivative, so the
weights apply to points to the left of x. The negative fractional
derivative defined by the FT multiplier (�ik)a has a Grünwald
approximation

M
a
�f ðxÞ ¼ Dx�a

XN

l¼0

ð�1Þl
a
l

� �
f ðxþ lDxÞ ð18Þ

which depends on points to the right of x. It is called the negative, or
backward, fractional derivative because it corresponds to particle
jumps in the negative direction. Similar to the integer order case,
for stability the weights shift by one position to the right for the po-
sitive direction derivative for 1 < a < 2, and shift one to the left for
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Fig. 1. Grunwald (convolution) weights for finite differences of orders 2 through
�1.5 in 0.5 intervals. Connecting lines are used to guide the eye. Dx is set to 1.
the negative direction derivative [20,21]. It can be shown [22, Prop-
osition 2.1] that these discrete Grünwald approximations converge
to the integral convolutions in (10) as Dx ? 0 just as in the integer-
order case.

Questions are often asked about what the fractional derivatives
‘‘mean’’ in terms of continuous functions, and answers are hard to
deliver. But at this point it becomes apparent what the integer
and fractional derivatives ‘‘mean’’ when related back to the ran-
dom walks that generate the equations. The derivatives are
accounting for mass transfer due to moving particles. Brownian
motion is composed, by construction, of vanishingly small jumps,
so one must look immediately to the left and right to see which
particles might arrive at some point in a fixed time interval and
change the concentration. Looking farther than Dx, which goes
to zero, is pointless because those particles cannot make it to
the current location. The second derivative, a local operator, is
well-suited to describe this process. Heavy-tailed random walks
embody a significant probability that particles from some dis-
tance can, in the rescaled random walk, make it to the current
location, and the Grünwald weights account for mass accumula-
tion at any point due to distant random walkers. Which derivative
pertains, traditional or fractional, depends on the specifics of the
random walk.

Adding a constant-in-time drift to the random walk changes the
probability density of the random walker p(k, t) = exp(A(k)t) by
adding a term �v(ik) to A(k). Bearing in mind the FT relation
dnf(x)/dxn,(ik)nf(k) with n = 1, it is evident that this adds the
advection term �v@/@x to the space operator in the diffusion equa-
tion. Again we wish to emphasize that the same Fourier symbol
A(k) = �v(ik) + Da(ik)a + D(1 � a)(�ik)a determines both the frac-
tional advection/dispersion operator, and the corresponding Lévy
process, including the case when a = 2.

2.2. Lévy motion and fractional derivatives in several dimensions

The extension to multiple dimensions follows the same general
approach. The limits of Markovian random walks define the deriv-
ative operators in multiple dimensions [22,23]. There are several
scenarios. First, define the random walk jump magnitudes inde-
pendent of direction by P(R > r) � r�a, and the probability of mov-
ing in any direction in d-dimensions by the random direction
vector h with probability measure M(dh) on the unit sphere. If
the random direction has a probability density m(h), then the nota-
tion M(dh) = m(h)dh; otherwise, the discrete measure can be con-
structed by a sum of Dirac delta function terms (analogous to the
probability mass function of a discrete random variable). The direc-
tion measure M(dh) is often called the mixing measure. The ran-
dom walk with these jumps converges [22, Theorem 6.21] to a
Lévy motion with FT

pðk; tÞ ¼ exp �thik;vi þ Dt
Z
khk¼1
ðhik; hiÞaMðdhÞ

" #
; ð19Þ

where hx,yi denotes the inner product of vectors x and y. This model
recovers the one dimensional case because the unit vectors would
be h = ± 1, the mixing measure M(dh) = ad(h � 1)dh + (1 � a)d(h
+ 1)dh, the distribution of the forward and backward jumps is
M(+1) = a and M(�1) = 1 � a, and the integral reduces to two terms:
a(ik)a + (1 � a)(�ik)a. The measure M(dh) in multiple dimensions
can be made as simple as a few Dirac delta functions on the coordi-
nate axes or more elaborate to depict the superposition of flow
directions [24].

Take time derivatives and invert the FT to get

@

@t
pðx; tÞ ¼ �v � rpðx; tÞ þ Dra

Mpðx; tÞ: ð20Þ
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The rightmost operator is an extended form of Riesz’ original frac-
tional Laplacian (see Samko et al., [25]), because it is a completely
general mixture of fractional directional derivatives (explained in
detail below). The point source solution p(x, t) has Fourier transform
p(k, t) = exp (tA(k)), where

AðkÞ ¼ �v � ikþ D
Z
khk¼1
ðhik; hiÞaMðdhÞ:

Recall that the directional derivative is the inner product

hh;rf ðxÞi ¼
X

hj
@

@xj
f ðxÞ ¼ d

ds
gðsÞ

at s = 0 where g(s) = f(x + sh). Its FT is hik,hif(k). Using the definition of
a scalar positive fractional derivative (now in the radial coordinate r):

da

dra gðsÞ ¼ 1
Cð�aÞ

Z 1

0
r�1�agðs� rÞdr: ð21Þ

The fractional directional derivative is this derivative evaluated at
s = 0, and each directional derivative is weighted by its probability
in every direction to get

ra
Mf ðxÞ ¼ 1

Cð�aÞ

Z
khk¼1

Z 1

0
r�1�af ðx� rhÞdrMðdhÞ: ð22Þ

The inner integral has FT hik,hia. So the fractional Laplacian is a mix-
ture of directional fractional derivatives, i.e., a mixture of convolu-
tions with a power law, the mixture defined by a directional
probability measure (i.e., a density for continuous random vari-
ables). By virtue of (19), the fractional derivative once again is de-
fined by the underlying Markovian Lévy motion.

The Grünwald finite difference formula can be directly applied
to approximate certain cases of the mixing measure. For example,
if there is only weight along the coordinate axes, the shifted Grün-
wald weights (17) can be used directly. The outer integral of (22)
reduces to a sum along the components of x. For a numerical solu-
tion using this idea, see [26]. If there is weight in-between the axes,
the integer node locations no longer exist for all directions (i.e.,
nodes lying along the 45� direction are at a distance of

ffiffiffi
2
p

times
the number of nodes away from the origin), hence the Grünwald
weights have to be interpolated. For distances r larger than about
4 nodes in the range 1 < a < 2, the Grünwald weights closely follow
the power law r�1�a/C(�a) (Fig. 2). A mathematical procedure for
approximating the general fractional Laplacianra

Mf ðxÞwith weight
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Fig. 2. Log–log plot of Grünwald (convolution) weights at integer node distances
(symbols) and power law x�1�a/C(�a) interpolation (lines). a = 1.1 and 1.9 are
shown.
off the coordinate axes was detailed in [27], but numerical codes
have yet to be implemented.

2.3. Operator scaling and the anisotropic Laplacian

There is no reason to expect that the power law index dictating
the magnitude of large jumps must be the same in different direc-
tions. Using methods similar to the central limit theorem in multi-
ple dimensions shows that up to d different power laws can persist
in d-dimensions. One can construct a suitable random walk using
matrix powers. Suppose the random variable R is characterized
by P(R > r) � r�1. One could transform this into an isotropic hea-
vy-tailed random magnitude by taking its scalar power R1/a, which
has a tail that now decays with r�a, or one can generate a jump
with different tail parameters in different directions by taking
the matrix power RH, where H is a d � d matrix. Taking the power
of a martix (besides the obvious integer cases) is calculated analo-
gous to the scalar power formulas xp = eplogx for real powers of
positive real numbers. For matrix powers we have RH = exp (HlogR)
which expands using the matrix exponential exp (H) = I + H + H2/
2! + � � � where I is the identity matrix. For reference, we use the
symbol H because of the relationship to the classical Hurst coeffi-
cient (more on this in the next section). The matrix power creates
larger or smaller exponents for the jump magnitudes in the eigen-
vector directions of H. The direction of each jump is given once
again by a random unit vector with distribution M(dh). Adding
up these jumps and rescaling appropriately—analogous to taking
the scaling limit of a random walk to create Brownian motion—re-
sults in an operator Lévy motion [13,28,29]:

ZðtÞ ¼
X½t=dt�

i¼1

Xi ¼
X½t=dt�

i¼1

RH
i � hi; ð23Þ

where Ri and hi are independent.
As in the isotropic case (when H ¼ 1

a I
�
, the exponent of the ran-

dom walk jumps is directly related to the order of the fractional
derivatives that describe them. In the case of the matrix rescaled
jumps, the order of the derivatives can be considered matrix-order
as well. To illustrate the effect of the matrix scaling, consider a sim-
ple 2-d case where the two eigenvectors of H are orthogonal (or in
other words, the primary directions of growth are perpendicular).
Then the operator stable exponent dictates independent jumps:

RH ¼ RH1 0
0 RH2

" #
¼ R1=a1 0

0 R1=a2

" #
:

Because P(R > r) = r�1 for large values, the jump length probabilities
on the kth eigenvector of H fall off as PðR1=ak > rÞ ¼ r�ak . The jump
length probabilities for trajectories off the eigenvectors decay like
a mixture of power laws. For an example, if we also restrict motion
directions to the forward x- and y-directions, then the correspond-
ing fractional dispersion equation would take the form

@pðx; y; tÞ
@t

¼ D1
@a1 pðx; y; tÞ

@xa1
þ D2

@a2 pðx; y; tÞ
@ya2

ð24Þ

and the Fourier symbol of this process AðkÞ ¼ D1ðik1Þa1 þ D2ðik2Þa2

also uniquely determines the underlying Lévy process: p(k, t) = exp
(tA(k)).

In general, the random walk (23) converges to an operator-Lévy
motion with governing equation [22,29,30]

@

@t
pðx; tÞ ¼ �v � rpðx; tÞ þ r � DFrpðx; tÞ þ DrA

Mpðx; tÞ; ð25Þ

where A is the inverse of H. As opposed to (20), there can be a Fic-
kian dispersion term in this equation, with DF equal to 1/2 times the
covariance matrix of particle jumps per time. The multidimensional
isotropic Eq. (20) assumes that motions in all directions have the
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same tail parameter, so that infinite-variance jumps (with a < 2) oc-
cur in all directions. When jumps have different tail probabilities in
different directions, there is room for Brownian motion in one direc-
tion and Lévy motion in another, hence the additional term in the
anisotropic-order Eq. (25). In any given direction, either the Fickian
dispersion term, or the fractional dispersion term, is zero, because
only one of two possibilities (light-tailed or heavy-tailed random
walk jumps) can apply. If all eigenvalues of H are greater than 1/
2, then jumps in all directions are heavy tailed, DF = 0, and the Fic-
kian portion disappears. Physically, this means that heavy-tailed
jumps overwhelm thin-tailed ones. If all jumps in all directions
are thin tailed, then the fractional dispersion term disappears. As
mentioned previously, the matrix H is a scaling matrix that de-
scribes plume growth rates in all directions. In this way it is related
to the classical Hurst coefficient, because the point source (Green’s
function) solution to Eq. (25) with v = 0 is self-similar with a rescal-
ing of time and space according to

pðx; ctÞ ¼ kc�Hkpðc�Hx; tÞ; ð26Þ

where k�k is the matrix determinant. Note that this includes the Fic-
kian case where H is a scalar equal to 1/a = 1/2.

A very flexible Eulerian numerical solution to Eq. (25) could be
achieved, along the lines laid out in [27]. The operator rA

M is de-
fined by a convolution, see [30]. Then the finite-difference solution
is a series of convolutions, each representing a time step. A similar
methodology was used in [31] to create operator scaling conduc-
tivity fields. See SubSection 2.5 for additional discussion.

2.4. Divergence – integer and otherwise

Up to this point, we have assumed that the mean advective drift
velocity v and the strength of the dispersion D have been homoge-
neous in space. For the mean drift this means that the divergence
of the flux r�v p distributes like v�rp + pr�v. For divergence-free
(incompressible) flow or first-order stationary processes, the sec-
ond term is zero and there is no change to our previous develop-
ment. On the other hand, the traditional dispersion term in (25)
can be viewed as the divergence of the particle flux. How can we
view the fractional dispersion operator in (25) in terms of diver-
gence (conservation of mass) and particle flux? In other words,
what happens when the strength of dispersion varies in space? It
turns out [32,33] that the fractional dispersion may be derived in
several different ways. If one starts from the microscopic expres-
sion of particle motion (i.e., the Ito or Langevin equations), the frac-
tional Laplacian can be distributed in several ways.

To illustrate, in the case of scalar order a in multiple dimen-
sions, one may take a classical integer divergence of a fractional

dispersion r � Dra�1
M

� �
, or a fractional divergence of a classical

integer-order flux ra�1
M � Dr

� �
. Here we follow the typical abuse

of notation: the generalized fractional Laplacianra
M is a scalar-val-

ued operator that reduces to the Laplacian D =r2 =r�r when
a = 2 and M is uniform, while the generalized fractional gradient
ra�1

M is a vector-valued operator that reduces to the gradient r
when a = 2 and M is concentrated on the positive coordinate axes.
If the local dispersion coefficient is a constant, these are equivalent.
The differences in the case of space-variable dispersivity D = D(x)
are subtle and small in many cases, but when the dispersion coef-
ficient D has strong fluctuations, the difference can be significant.
For illustration of the numerical methods in Section 2.6, we will
concentrate here on the equation

@

@t
pðx;tÞ¼�v �rpðx;tÞþr�DFrpðx;tÞþrA�I

M DðxÞrpðx;tÞ; ð27Þ

including the simpler forms when A � I is the scalar a � 1 in one or
more dimensions. This formulation uses a fractional version of the
conservation of mass equation: it implies that the change in proba-
bility, and by analogy concentration, is due to upstream differences
in local advective flux. The magnitude of the local fractional disper-
sion coefficient D(x), a scalar, is a measure of the difference between
local mean velocity and the fluctuations of velocity [32,33].

2.5. Simulating spatial fractional derivatives: Eulerian methods

As mentioned above, traditional finite difference methods can
be thought of as discrete convolution formulas that lead to matrix
equations [34,35]. The local operators lead to sparse and banded
matrix equations. Fractional-order equations are conceptually sim-
ilar, except that the matrix of weights on other nodes is fuller, up to
100% full when the measure M(dh) is non-zero everywhere. Be-
cause fuller matrices are typically solved iteratively, the fuller
matrices should not pose tremendous numerical challenges. Many
researchers are concentrating on efficient simulation of the frac-
tional derivative operators (e.g., [36,37] and references therein).
To date, however, finite difference solutions for multi-dimensional
fractional derivatives have been concentrated on the coordinate
axes [35].

Fractional derivatives are linear operators; therefore, classical
methods using finite elements can be adapted to solve fractional
partial differential equations [38,39]. The finite element method
hinges on the action of the linear operator on the chosen basis
functions. That is why Dirac delta functions are commonly chosen
as bases for the traditional integer order equations [40]. Roop’s
method uses polynomials for the bases, which, when properly cho-
sen, simplify the calculation and implementation of the fractional
derivative on the basis polynomials. This general procedure can
be accelerated substantially, to the point where the fractional
methods are not much more time-consuming to solve than the
integer cases [37,41]. To date, we are unaware of this method being
applied to hydrological problems.

Eulerian approximations for fractional advection dispersion
equations have been proven stable (when properly implemented)
with a truncation error of order (Dx)2, so they are nearly as robust
as proven methods for classical diffusion. These methods may also
suffer less from the truncation error associated with the advection
term. The well-known phenomenon of numerical dispersion arises
from simulation of the hyperbolic portion of the advection–disper-
sion operator, because the first truncated term is of the form
Dxvd2/dx2. Therefore, traditional finite difference methods must
keep the grid Peclet number Dxv/D reasonably small. The frac-
tional dispersion has heavier tails and greater spreading rates than
the pseudo-Fickian numerical dispersion, so the constraints on the
grid spacing may be reduced, although this has not, to our knowl-
edge, been explored in detail.

2.6. Lagrangian (particle) methods

Particle-tracking methods became popular as a way to elimi-
nate numerical dispersion, because each particle follows a charac-
teristic curve (i.e., is an exact solution of the hyperbolic advection
term [42]). Important research followed [43–45] concerning the
solution of the expanded dispersion termr�(Dr) = (r�D)�r + Dr2,
primarily because geologic material may have very large, or even
infinite gradients in the dispersion coefficient at sharp interfaces.
These works highlighted the process involved in establishing the
link between a (nonlinear) Langevin equation of instantaneous mo-
tion, the governing equation of that motion, and the link to the
advection–dispersion equation that was the pre-supposed goal of
the simulation.

In a series of papers [46,33,47], Zhang and coworkers defined
the Langevin equations for motions that correspond to the multi-
dimensional fractional ADEs. In particular, they showed the subtle
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differences in the random walks that correspond to the operators
DrA

M;rDrA�I
M , and rA�I

M Dr, including the cases when A reduces
to a scalar a and also in 1-d. The solutions are derived using the
finding that rDrA�I

M , and �rA�I
M Dr are adjoint operators for

MðdhÞ ¼ Mðdð�hÞÞ. For practical purposes, when variations of D
are small, the differences in the solutions between these formulas
are reasonably small. The recognition and addition of the heavy-
tailed dispersion in any case is the first-order effect.

To simulate the multi-scaling jumps, one distributes the initial
condition, and subsequent sources of mass, into N particles, each
of which follow a random walk approximation of (23) with finite
time step Dt. A mass-weighted histogram of particle positions
gives the concentration. An Euler approximation of local advection
X(t + Dt) = X(t) + vDt or exact analytic methods [48] are used for
the deterministic drift. For simplicity, we illustrate the case where
the mixing measure M(dh) is concentrated on the eigenvalue coor-
dinates of the scaling matrix H. For the random dispersion, as well
as the effect of heterogeneous strength D(x), one simply generates
independent jumps in each eigenvector direction. This is conceptu-
ally similar to generating independent standard Gaussian longitu-
dinal and transverse jumps to simulate classical dispersion. In the
heavy-tailed case, the jump length of the particle along the eigen-
vector belonging to the kth eigenvalue 1/ak of H can be calculated
by generating the following random number [46,47]

R1=ak ¼ DðxÞ
1
ak dLak

ðtÞ þH
@D
@xk

				 				 1
ak�1

dLak�1ðtÞ; ð28Þ

where k represents the direction of the kth eigenvector of H,
H = sign (@D/@xk), and dLa(t) and dLa�1(t) denote independent ran-
dom noises underlying a-order and (a � 1)-order Lévy motions,
respectively. These are generated by taking dt1/a times a standard,
maximally-skewed ak-stable random variables with distribution
Sak
ðr ¼ 1; b ¼ þ1; l ¼ 0Þ. The stable random variables can be gen-

erated exactly using the modified Chambers–Mallows–Stuck (CMS)
method (for details, see the Appendix). The fractional dispersivity
D(x) must be first-order differentiable, so sharp interfaces are ruled
out.

Generating Lévy-stable random variables is somewhat compu-
tationally expensive, so one can generate random vectors RH � h in
the domain of attraction of the stables. This concept is similar in
principle to classical random walk codes that use a Uniform
½�

ffiffiffi
3
p

;
ffiffiffi
3
p
� random variable as a substitute for a standard Gaussian:

After as few as ten motions, the random walks with these jumps
are indistinguishable from Brownian motion. The Langevin equa-
tion can be approximated using more easily-generated zero-mean
random variables n with power law tails (Appendix). Once the hea-
vy-tailed random variables n are generated and scaled as substi-
tutes for the stable dL in (28), the jump contribution R1=ak in each
eigenvector is specified. As for direction, if the mixing measure
has a known or assumed distribution function F(z) = P(h 6 z) on
the unit circle, then the typical method using the inverse function
on a Uniform [0,1] variable is used (as did [49]). Generate U, a Uni-
form [0,1] variable, and the direction vector h = F�1(U). Otherwise,
the measure M(dh) is discretized in m classes and summed to make
the cumulative measure M(h) via Pm ¼

Pm
l¼1MðdhlÞ. Then the ran-

dom direction vector in each case is h = hm if Pm�1 < U 6 PM.
Now represent the vector h in terms of the unit eigenvectors (ek)

of H: h = k1e1 + k2e2 + � � �, and the final particle motion RHh is given
by the vector

P
kkR1=ak . Several applications to field data are shown

in Section 4.
3. Fractional time derivatives

Fractional time derivatives are formulated to respect causality,
i.e., so that future events cannot affect the past. Therefore, the
fractional time derivatives are convolutions with a power law that
is directional in time. The influence of events t units in the past
decays with a power law. The fractional time derivatives take
two different forms, based on the treatment of the initial condition.
For clarity, we review both forms briefly here. A straightforward
extension of the forward direction space derivative assumes that
the function vanishes on t < 0:

dcf ðtÞ
dtc

¼ dn

dtn
dc�nf ðtÞ

dtc�n ¼ dn

dtn
d�ðn�cÞf ðtÞ

dt�ðn�cÞ

¼ dn

dtn

Z t

0

ðt � yÞn�c�1

Cðn� cÞ f ðyÞdy ð29Þ

This is called the Riemann–Liouville fractional derivative. Using the
R � L subscript for this formula and taking Laplace transforms, one
finds

L daf ðtÞ
dta


 �
R�L
¼ sc~f ðsÞ þ

Xn�1

k¼0

sk dc�1�k

dtc�1�k
f ðtÞ

					
t¼0

: ð30Þ

For many applications, 0 < c < 1, so n = 1, the summation disappears
and the cth derivative represents multiplication in Laplace space by
the quantity sc, where s is the Laplace parameter. In other cases, the
terms in the sum will disappear for most well-behaved functions
because the fractional derivatives involve an integral from 0 to t
evaluated at t = 0. Recall that the traditional derivative of integer or-
der has a Laplace transform that involves values of the function and
its lower order derivatives at time t = 0. Generalizing on this for-
mula, Caputo [50] defined a new kind of fractional time derivative
such that:

L dcf ðtÞ
dtc


 �
C

¼ sc~f ðsÞ þ
Xn�1

k¼0

sc�1�k dk

dtk
f ðtÞ

					
t¼0

; ð31Þ

where n � 1 < c < n. Factor out the term sc�n and we see that the
Caputo derivative (labelled with a subscript ‘‘C’’) is a convolution
of a power law with the nth integer derivative of a function:

L dcf ðtÞ
dtc


 �
C
¼ sc�n sn~f ðsÞ þ

Xn�1

k¼0

sn�1�k dk

dtk
f ðt ¼ 0Þ

 !

¼ sc�nL dnf ðtÞ
dtn


 �
: ð32Þ

An inverse Laplace transform reveals the Caputo derivative in real
space:

daf ðtÞ
dta


 �
C

¼ tn�a�1

Cðn� aÞH
dnf ðyÞ

dyn ¼
Z t

0

ðt � yÞn�a�1

Cðn� aÞ
dnf ðyÞ

dyn dy: ð33Þ

In the usual case, where the terms under the sum in (30) vanish, the
two types of derivatives are related by:

dcf ðtÞ
dtc


 �
R�L

¼ dcf ðtÞ
dtc


 �
C

þ
Xn�1

k¼0

tk�c

Cðkþ 1� cÞ
dk

dtk
f ðt ¼ 0Þ: ð34Þ

If 0 < a < 1, then n = 1, and

daf ðtÞ
dta


 �
R�L
¼ daf ðtÞ

dta


 �
C
þ t�af ð0Þ

Cð1� aÞ : ð35Þ
3.1. Fractional time derivatives and random walks

The classical random walk is typically defined by motions that
are divided by equal duration ‘‘waits,’’ and the passage to a contin-
uous (Markov) motion process requires a subdivision of the
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motions into smaller and smaller independent jumps. Montroll and
Weiss [51] defined a process, called a continuous time random
walk (CTRW), in which the waiting times between particle jumps
could have any distribution. A closely related topic called ‘‘subordi-
nation’’ was previously explored for continuous time Markov pro-
cesses by Bochner [52] and Feller [53]. Because the original motion
processes we are interested in are Markovian diffusions, we follow
their development. The Markov particle motion process, whether
Brownian motion or the many Lévy motion extensions in the pre-
vious sections, denoted X(t), has density p(x, t) governed by the
Cauchy equation:

@

@t
pðx; tÞ ¼ Axpðx; tÞ: ð36Þ

The point source solution of Eq. (36) has FT p(k, t) = etA(k). If the time
a particle spends in motion during the epoch [0, t] is a random var-
iable U(t), the resulting random particle location becomes X(U(t)).
We will assume for simplicity that the amount of time actually
spent in motion at any time is a continuous random variable with
probability density h(u, t). The density that now describes a parti-
cle’s whereabouts, which we denote q(x, t), is given by conditioning
over all possible probabilities of the operational time u for the clock
time t:

qðx; tÞ ¼
Z 1

0
pðx;uÞhðu; tÞdu: ð37Þ

An explicit solution may be computed from the integral (37) if the
density h(u,t) of the operational time U(t) at any clock time t can be
found. We take two tacks: one that gives the governing equation of
the limits of traditional CTRW, and another that gives the solution
for a two-phase system in which the particles transfer between mo-
bile and immobile phases.

3.1.1. Uncoupled CTRW
A CTRW is built on the model of each motion being separated by

a single random waiting time W. If the waiting time and the subse-
quent motion are independent, the CTRW is called uncoupled. The
jump sizes are often taken to be the limit of a large number of
jumps (e.g., Gaussian as reflected in a second-order space deriva-
tive), so that the same large number of waiting times can be as-
sumed to pass to their limit as well. It is straightforward to sum
the waiting times, but more difficult to figure the inverse, which
is the time spent in motion. The sum of the waiting times
TðnÞ ¼

Pn
i¼1Wi gives the time of the nth jump, while the opera-

tional time U(t) relates to the number of jumps N(t) that have oc-
curred by time t. These random variables are inverses related by
{N(t) P n} = {T(n) 6 t}. In the limit, the sum of random waiting
times T(n) converges to another Markov process G(t), and this in-
verse relation becomes P(U(t) P u) = P(G(u) 6 t). The density func-
tions for U(t) and G(u), denoted h(u, t) and l(t,u) are then related by
[54]:

hðu; tÞ ¼ d
du

1�
Z t

0
lðs;uÞds

� �
: ð38Þ

If the individual waiting times W have a heavy tail, so
P(W > t) � Ct�c for some constant C, then similar to the limit of
random walks in space, the density of the Lévy process G(t) has La-
place transform L½lðt;uÞ� ¼ lðs;uÞ ¼ e�ubsc , where b is a scale param-
eter depending only on c and C (Appendix). Taking Laplace
transforms t ´ s in (38) leads to

hðu; sÞ ¼ d
du
ð�lðs;uÞ=sÞ ¼ bsc�1e�ubsc : ð39Þ

Take Laplace t ´ s and Fourier x ´ k transforms in (37) and use Eq.
(39) along with p(k,u) = euA(k) to get:
qðk; sÞ ¼
Z 1

0
pðk;uÞhðu; sÞdu ¼

Z 1

0
euAðkÞbsc�1e�ubsc du: ð40Þ

Using 1=b ¼
R

e�budu, we have

qðk; sÞ ¼ bsc�1

bsc � AðkÞ ¼
sc�1

sc � AðkÞ=b : ð41Þ

Now invert the FT and LT (one at a time) to get the fractional-order
limit equation for CTRW:

dc

dtc
qðx; tÞ ¼ 1

b
Axqðx; tÞ; qðx; t ¼ 0Þ ¼ dðxÞ; ð42Þ

where we have used the Caputo fractional derivative (33). Note that
the parameters in the space operator Ax (velocity and dispersion)
are reduced by the factor b.

We are not aware of a similar development, using subordina-
tion, for coupled CTRW, i.e., the case where the size of particle
jumps depends on the size of the preceding waiting time. This pos-
sibility was developed for CTRW by Scher and Lax [55]. The cou-
pled CTRW have different rates of growth of moments of the
Green function relative to the uncoupled CTRW [55–57]. Regarding
the relationship of fractional calculus to coupled CTRW, certain
functional forms of coupling can lead to more exotic governing
equations with coupled space–time fractional derivatives, like (d/
dt + vd/dx)a, see [20].

3.1.2. Mobile/immobile particles
Suppose that, between each waiting time in an immobile phase,

the particle participates in the motion process for exponential ran-
dom times [54]. The rescaled limit of the waiting times follows the
same procedure as the classical CTRW above, but while the particle
is in the mobile phase, the clock time and the operational time are
ticking away at the same rate [54]. This shifts the limit of the wait-
ing time density by adding u = t, which multiplies the Laplace
transform by eus : L½lðt;uÞ� ¼ lðu; sÞ ¼ e�use�ubsc . Now the opera-
tional time density is calculated as

hðu; sÞ ¼ d
du
ð�lðu; sÞ=sÞ ¼ ð1þ bsc�1Þe�uðsþbscÞ: ð43Þ

The governing equation is calculated as before, by taking the FLT of
(37) and substituting densities of p(k,u) and h(u,s):

qðk; sÞ ¼ 1þ bsc�1

sþ bsc � AðkÞ : ð44Þ

Now invert the FLT for the real space governing equation of the lim-
it of 2-state Mobile/Immobile processes:

d
dt

qðx; tÞ þ b
dcf ðtÞ

dtc
qðx; tÞ ¼ Axqðx; tÞ; qðx; t ¼ 0Þ ¼ dðxÞ; ð45Þ

where once again we have used the Caputo fractional derivative.
It is not quite as simple to equate probability to concentration

in this case. The single particle exists alternately, in two different
states: mobile, while it actively participates in the motion process,
and immobile between mobile epochs. The total probability of par-
ticle whereabouts is the sum of the mobile and immobile location
probabilities. The FLT (44) has two terms in the numerator. These
correspond, in a continuum sense, to the portion of the particles
in the mobile and immobile phases, respectively. By combining
these, Eqs. (44) and (45) represent total resident concentration.
This can be shown by considering the continuum multirate mass
transfer with infinite mean, power-law random waiting times,
which have the following three equations for concentration in 1)
the ‘‘total’’ phase CT, 2) the mobile phase CM, and 3) the immobile
phase CI [13,54]:
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@CT

@t
þ b

@cCT

@tc ¼ AxCT

@CM

@t
þ b

@cCM

@tc
¼ AxCM �

CMðx; t ¼ 0Þbt�c

Cð1� cÞ
@CI

@t
þ b

@cCI

@tc
¼ AxCI þ

CMðx; t ¼ 0Þt�c

Cð1� cÞ :

ð46Þ

The total concentration CT = hMCM + hICI where hM and hI are mobile
and immobile porosities and b[Tc�1] is defined here as capacity
coefficient (see [11] for a translation of the many forms of mobile
and immobile porosity and sorption). Eq. (46) assume that all solute
begins in the mobile phase: CI(x,0) = 0. Taking the FLT of these equa-
tions and comparing to (44), it is convenient to define the two com-
ponents of q(k, t) by

qMðk; sÞ ¼
1

sþ bsc � AðkÞ

qIðk; sÞ ¼
bsc�1

sþ bsc � AðkÞ

ð47Þ

which partitions the particle density location function into mobile
and immobile contributions because qM + qI = q. As a result, hM

CM(x, t) = qM(x, t) is the mobile concentration, and hI CI(x, t) = qI(x, t)
is the immobile concentration. The functions qM and qI are the por-
tions of the total probabilities for a particle to occur at some point,
hence these are related to the concentration in total (solid and li-
quid) aquifer material and must be adjusted by mobile and immo-
bile porosities.

This gives a simple method to simulate the fractal multi-rate
mass transfer process in a particle tracking routine [54,58]: The
mobile times are exponential with mean 1/(bk), where in this case
k is a tuning parameter to ensure enough transitions between mo-
bile and immobile by the time of interest. If the particles’ locations
are desired at some time t, choose k so that the mean mobile step is
approximately one tenth of this: k > 10/(tb). For waiting times, use
either the chopped (Appendix) or shifted Pareto following
P(W > t) = Sc(t + S)�c, generated by W = SU�1/c � S, where S is the
shift (which controls the scale of the waits) and U is a Uniform
[0,1] random variable. To derive the proper shift S, start by setting
k = 1, then by the Appendix in [54], we need W to be in the domain
of attraction of a standard [59] stable law. By [22, Theorem 3.37,
Proposition 5.8], S = (C(1 � c) cos (pc/2))�1/c. Changing the value
of k does not change the overall solution but makes each mobile
sojourn shorter, hence places more alternating mobile/immobile
phase changes in any given time step. There are k times as many
mobile and immobile episodes compared to k = 1, so to get the
same overall process, each W is multiplied by k�1/c because for
stable random variables k�1=cP½kn�

i¼1Wi has the same distribution
as
Pn

i¼1Wi. Therefore for any k, the shift S = (kC(1 � c) cos (pc/
2))�1/c.

4. Fractional ADEs and field-scale tracer test data

The first field application of the spatial fractional equation to
tracer test data was the Cape Cod bromide plume, motivated by
the apparent power-law growth of the plume’s dispersivity. This
model successfully replaced the time-variable dispersivity in the
traditional ADE by a constant parameter in the fractional ADE
[7]. That model used a symmetric mix of forward and backward
spatial fractional derivatives (a = 0.5 in (11)). The use of a symmet-
ric fractional ADE was criticized by Zhang et al. [60]. They maintain
that a more proper way to account for solute spreading behind the
mean is by trapping in low permeability zones, rather than long
journeys upstream. Zhang et al. [60] modeled the Cape Cod data
with a forward space and time fractional ADE. The forward space
derivative term models the leading plume edge, and the fractional
time derivative term models the trailing edge. That method yielded
improved fits, although the relative homogeneity in the hydraulic
conductivity (VAR (ln[K]) = 0.26) at Cape Cod makes heavy tailed
particle jumps less important. This is reflected in the fitted value
a = 1.6 in that model: Because the space fractional ADE reduces
to the traditional ADE at a = 2, the effect of setting a = 1.6 is a small
increase, relative to other sites, in the heavy leading plume edge.

Benson et al. [8] then examined the bromide and tritium
plumes at the MADE site. Their analysis was done in 1-d using
the maximum concentrations along the ‘‘core’’ of the plume. The
higher ln (K) variance, recently measured to be on the order of se-
ven [61], made the one-sided space-fractional ADE an attractive
model, and some simple analyses of the K statistics allowed an a
priori estimate of all equation parameters. The fitted value of
a = 1.1 indicates a heavy leading plume edge, reflecting a highly
heterogeneous K field. The space-fractional ADE produced a good
fit to normalized concentration snapshots (Fig. 3). Schumer et al.
[13] applied an MRMT equation with c = 0.33 and b = 0.08d�0.67

to explain the bromide plume zeroth spatial moment (total mobile
mass) decline. The fit of the zeroth moment was improved over
single-rate methods [62]. Zhang et al. [60] used this estimate to
fit the MADE plumes in 1-d, using (11) in (45), and found that both
spatial and temporal non-locality were important. A further analy-
sis of the centered second moment of the MADE plume showed dif-
ferent growth rates in the longitudinal versus transverse directions
[29], indicating the need for a multiscaling fractional dispersion
term. Zhang et al. [24] used a 3-zone model with longitudinal
derivative of order a = 1.1 and transverse of order a = 1.5 and in-
cluded the fractal mobile/immobile parameters previously re-
ported [13]. For the mixing measure, they assumed a braided
stream network and derived the proportion of overlapping sinuous
channels that point in any direction [24]. Their particle-tracking
simulation (Fig. 4) is a reasonably faithful representation of the
plume with comparatively few parameters—especially, a constant
mean velocity v. In particular, the spatial discretization (of, say,
K) is vastly reduced. The non-local fractional derivatives are de-
signed to replace finer-scaled velocity information and allow much
coarser discretization. This concept has been demonstrated on an
intensively studied 30.5 � 30.5 cm sandstone slab, where an ana-
lytic solution of a fractional PDE captures the important features
of a plume that over 8,000 measured K values fail to reproduce
when used in the classical ADE [58].

In related research, Harman et al. [63] examined water trans-
port through hillslopes by assuming that, unabated, a parcel of
water flows according to piston (wave equation) flow. But the par-
cels of water may be trapped in the heterogeneous K field for ran-
dom, heavy-tailed amounts of time, giving a fractional-in-time
wave-type equation. The solutions of the equation match numeri-
cal solutions of water flow through mildly to strongly heteroge-
neous hillslope material.

Bradley et al. [64] and Ganti et al. [65,66] looked at experimen-
tal and theoretical evidence for heavy-tailed transport and frac-
tional ADEs for sand and gravel bedload transport in rivers.
Foufoula-Giorgiou et al. [67] extended this concept to overland
sediment transport and the evolution of landscapes. The transport
equations take the exact forms presented herein. These processes
are reviewed by Schumer et al. [68].
5. Fractional integration: fBm random fields and extensions

An integral is also called an antiderivative, with good reason. It
is designed to be the inverse operator of a derivative. This is simply
illustrated by the Fourier transform relation

R
f 0ðxÞdx¼f ðxÞ()

ðikÞ�1ðikÞf ðkÞ ¼ f ðkÞ. As we showed in previous sections, fractional
derivatives in several dimensions can apply a different order of
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fractional differentiation in each coordinate, using the Fourier sym-
bols of different Lévy motions. We have called this Fourier picture
A(k), and we have observed that multiplication by A(k) in Fourier
space defines the multidimensional fractional derivative. It follows
that the fractional antiderivative corresponds to division in Fourier
space by A(k), in all of its forms presented above.

Fractional Brownian motion (fBm) in 1-D was originally defined
as a weighted sum of prior values of white noise, where the
weights fall off like a power law. Although the forward-direction
fractional integral of white noise B(t) diverges:

eBHðxÞ ¼
1

CðH þ 1=2Þ

Z x

�1
ðx� yÞH�1=2BðdyÞ; ð48Þ

the difference of two fractional integrals BHðtÞ ¼ eBHðtÞ � eBHð0Þ is a
legitimate stochastic integral that converges [69]. Define for com-
pact notation E = H + 1/2 where the Hurst scaling index 0 < H < 1,
and Eq. (48) has the form of a fractional integral of order 1/
2 < E < 3/2. If the random measure B(dy) were replaced by f(y)dy
for a suitable non-random function, then the fractional integral
(48) would be the inverse FT of (ik)�Ef(k). The same kind of finite
sum approximation that is used to approximate the fractional
derivatives is also possible with the stochastic integral (48), and this
idea can be used to efficiently simulate an unconditioned fractional
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Fig. 3. Two spatial snapshots of the MADE tritium plume ‘‘core.’’ Concentrations
Brownian motion, as outlined in [70,14]. Briefly, the stochastic inte-
gral (48) becomes a discrete convolution of a sequence of iid normal
random variables B(Dy) with the Grünwald weights corresponding
to fractional integration (Fig. 1), evaluated by taking the FT of both,
multiplying, and inverting. This uses the fact that the FT of a convo-
lution is a product.

For space-functions, the (causal) positive fractional integral can
be sensibly extended to a symmetrically weighted sum of positive
and negative fractional integrals. The first multi-dimensional frac-
tional Brownian motions were constructed by taking a power of
the wave vector defined by a Fourier multiplier jkj�E where
E = H + d/2. A form of anisotropy can be implemeted by specifying
a simple stretching in orthogonal directions by using fractional
integration with Fourier symbol jk�kj�E where the vector k controls
the correlation length of the increments [71–73,70]. Similarly, one
could define a fixed distance and measure the value of the correla-
tion. This corresponds to a radial mixing measure as defined above
for the fractional derivatives. The stretching by vector k just
described represents an elliptical set of weights in the mixing
measure [14]. Once again the mixing measure is a completely
user-defined probability distribution on the unit sphere, so that
correlation of the increments can be restricted to any set number
of directions (Fig. 5). All of the fields constructed in this manner
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have the same Hurst index in every coordinate, but a different cor-
relation length (or strength). A log–log plot of the correlation of
increments in any direction would have the same power law slope,
but different magnitudes.

However, many naturally occurring fields (e.g., K fields in allu-
vial aquifers) exhibit a different form of anisotropy, in which the
Hurst index is different in each coordinate [14,70,74–79]. These
fields can be described using a multi-scaling fractional derivative,
whose Fourier symbol A(k) can be explicitly computed from the
Lévy representation of the corresponding operator stable Lévy
process [80,30]. This Fourier symbol is characterized by its ma-
trix–scaling property cEA(k) = A(cQk). In other words, the function
is scale invariant only when stretched different amounts in differ-
ent directions. The corresponding multi-scaling fractional integra-
tion has Fourier multiplier w(k) = A(k)�1, so that w(cQk) = c�Ew(k).
To make the parametrization unique, we require trace (Q) = d, the
number of dimensions. Then the matrix Q codes deviations from
the overall order of fractional integration, and isotropic scaling
has Q = I. The multi-scaling random field Bw(x) constructed using
this filter can be simulated in exactly the same way as a fractional



Fig. 6. Operator-scaling fBm fields generated with identical input noise B(x) using the same H in the horizontal direction and different H in the vertical: (a) H vertical = 0.4 and
(b) H vertical = 0.8. After [14].
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Brownian motion, using the discrete Fourier transform in d
dimensions. In the isotropic case with E = H + d/2, this random field
scales according to Bw(cx) = cHBw(x) [14,31,81], consistent with iso-
tropic fBm. Including the possibility of anisotropic scaling by giving
Q different eigenvalues, we have the general scaling relationship:

BwðcQ xÞ ¼ cHBwðxÞ ð49Þ

If Qkj = qjkj, then the coordinate process Bw(xj) is an fBm with Hurst
index H/qj. Larger variations in the eigenvalues of the matrix Q de-
scribe more strongly anisotropic fields, with a different Hurst index
in each coordinate.

5.1. Conditioned random fields: numerics

Creating an unconditioned operator-scaling Gaussian random
fields Bw(x) is a simple matter, once the user has defined the mix-
ing measure M(dh) on the unit sphere (e.g. Fig. 5), and the possibly
unique Hurst index H in each coordinate (Fig. 6). These uncondi-
tioned fields may be constructed several ways, each using the fact
that a convolution is taking place. One may either construct the
function w(x) and take its fast Fourier transform (FFT) or directly
construct w(k). Similarly, one may either construct a same-sized
white noise field of uncorrelated Gaussian random variables and
take the FFT, or construct the FT of white noise directly using the
spectral representation of an uncorrelated Gaussian field [82,59].
The product of w(k) and B(k) is taken and inverse transformed.
Only a portion of the field is retained due to periodicity of the
FFT routine.

In real-world applications, the hydraulic conductivity (K) field is
the most important control on the motion of conservative solutes.
Furthermore, it is very common that some K data is collected, and
any interpolation based on random field generation should honor
these measurements. Creating a conditional field is more compli-
cated (and significantly more time consuming) because the convo-
lution algorithm changes any points specified before the
convolution. Based on the research of Revielle [83], we recommend
two useful conditioning methods: The first, based on the discus-
sion in Feller [53], is called orthographic projection; the second,
an adaptation of a method proposed by Journel and Huijbregts
[84], is called random bridging.

5.1.1. Conditioning by orthographic projection
The orthographic projection method relies on the conditional

probability distribution of any unknown point, based on a set of
known points. Similar to existing sequential simulation methods
[85,86], initially the conditioning points comprise the known list,
and the points to be simulated comprise the unknown list. The
known list is used to sequentially create conditional probability
distributions for each point within the unknown list. Once an un-
known point has been simulated, it is added to the known list,
and can be used to simulate subsequent unknown points. This pro-
cess of simulating unknown points, and placing them on the
known list, is continued until each point has been estimated and
placed into the known list.

Without loss of generality we will consider the creation of a
zero-mean random field. Make a discrete approximation
Xi ¼

P
jwðjÞBði� jÞ � BwðxiÞ of the stochastic integral that defines

the random field, where the filter w(j) comes from inverting the
Fourier symbol w(k), and B(i) is an uncorrelated Gaussian sequence
with mean 0 and variance r2

B. Then the covariance is

E½XjXi� ¼ E
X

k

wðkÞBðj� kÞ
X

l

wðlÞBði� lÞ
" #

; ð50Þ

where E[�] is the expectation. Because E[B(i)B(j)] = 0 for i – j, the
only nonzero terms in the sum occur when j � k = i � l, i.e., when
l = i � j + k. Then the covariance reduces to:

E½XjXi� ¼ E
X

k

wðkÞBðj� kÞwði� jþ kÞBðj� kÞ
" #

¼ r2
B

X
k

wðkÞwði� jþ kÞ: ð51Þ

This expression, a discrete convolution, is used to determine the
covariance of two points. For larger fields, the covariance can be cal-
culated efficiently using a discrete FFT to evaluate the convolution.
Since the field has stationary increments, on a regular grid, the com-
putation need be performed only once. These covariance values can
then be used to simulate unknown points in the orthographic pro-
jection. Given known points X1,X2, . . .,Xn�1, to simulate an unknown
point xn, compute the covariance matrix

Mn ¼

E½X1X1� . . . E½X1Xn�
..
. ..

.

E½XnX1� . . . E½XnXn�

2664
3775 ð52Þ

and the inverse covariance matrix Q ¼ ½qij� ¼ M�1
n . Then simulate

the unknown point by drawing a random Gaussian variate with
mean and variance
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ln ¼ a1X1 þ . . .þ an�1Xn�1; ð53Þ
r2

n ¼ 1=qnn; ð54Þ
where ai = � qin/qnn and qij is the i,j entry of the inverse covariance
matrix Q (see Feller [III.6] [53]). Once this unknown point is simu-
lated, it is added to the known list, and can be used to simulate
the remaining unknown points. As the list of known points grows,
a subset of points must be selected from the known list, otherwise
inverting the Mn matrix becomes inefficient. As a result, the known
points included within each Mn must be carefully selected, in order
to capture all important correlations present, yet remain efficient.
Note also that this algorithm is very closely related to simple kri-
ging: the mean value at a point is similar to a kriged surface, except
that the ‘‘known’’ point list can (and almost certainly will) contain
points that were not measured but were previously simulated.

There are several issues concerning this algorithm that influ-
ence the speed of calculation and characteristics of the output field.
The first is choosing the order of points to be created. Painter [86]
suggests moving sequentially through the field. [83] found that
combining the nearest neighbor search and a random spiral search
for more distant points was efficient and accurate. Painter [87] dis-
cusses the potential drawbacks of the various methods, and we
find that the appearence of these field is very sensitive to the de-
tails of the order of simulation.

The procedure used to determine which known points are used
to create each unknown point is also extremely important to the
accuracy and efficiency of the output field. First, the number of
points used to simulate each unknown point must be determined.
Due to the computational inefficiency of using the entire known
list to condition each unknown point, a selected portion of the
known points is required. Known points must be selected which
capture the correlations present at all scales, but also keep the size
of the covariance matrix Mn manageable. A range of n from 20 to 50
was found to produce both accurate and efficient realizations and
is consistent with previous work [86–88]. To select a representa-
tive set of X1,X2, . . . ,Xn�1 in 1-d, the only decision variable is the
lag distance from the point of interest Xn. Therefore, to capture
the correlations present at all scales in 1-d, the distance from each
known point to Xn is calculated. When an isotropic kernel is used,
only the absolute distance is required. When the kernel is aniso-
tropic in multiple-dimensions, it is important to select points not
only based on distance but also on orientation to the point of
interest.
5.1.2. Conditioning by random bridging
The method of random bridging is similar to the conditional

simulation method of Journel and Huijbregts [84]. On the surface
it is more computationally demanding than orthographic projec-
tion because it requires kriging two mean surfaces — a procedure
‘‘built in’’ to the orthographic projection method. However, when
creating multiple realizations, the relative workload decreases for
the random bridging method. For this reason, we typically prefer
this method. We also find that it is insensitive to various numerical
details such as the selection of conditioning points. MATLAB imple-
mentations of both methods in 3-d are available from the author.

Initially, the method begins with a set of conditioning values Zi

at locations Xi, and an unconditional realization, Bw(x). The uncon-
ditional realization is then conditioned by ‘‘molding’’ the noise
from the unconditional surface to a ‘‘mean’’ surface interpolated
through the conditioning points. This method requires finding an
apparent mean or trend surface between conditioning points, and
a similar trend surface within the unconditioned realization.

Determining the deviation from a trend surface in the uncondi-
tional realization can be implemented by first interpolating the
trend between the points Bw(Xi) of the unconditional realization.
This interpolated surface is called b(x), and is best created using
an unbiased process similar to kriging [84]. In our case, the covari-
ance matrix is a convolution of the function w(j) with itself. Using
the same interpolation routine, the interpolated surface (call it
z(x)) between the conditioning points Zi is created. Finally, the con-
ditioned field is created by taking the difference between the
unconditioned field and its trend surface, and adding this to the
trend surface from the measured points:

BwðxÞ0 ¼ zðxÞ þ ½BwðxÞ � bðxÞ� ð55Þ
5.2. Conditional osfBm

The orthographic projection and random bridging algorithms
remain the same in multiple dimensions, as far as using an in-
verted covariance matrix to estimate ln and r2

n at each unknown
point. The only change occurs in how points are selected to con-
struct Mn in each algorithm. The method of searching through a
field and selecting the best points to create each Mn has significant
consequence on the efficiency of creating conditional fields in both
algorithms. Due to the slow power-law covariance decay, every
point within the field has an effect on every other. Ideally, every
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previously simulated point would be used to simulate the next in
order to account for the infinite correlation length. However, as
the field size grows, a computational ceiling is quickly reached.
Therefore, a subset of known points must be chosen to create each
Mn. We have implemented a search based on sorting points based
on their value of covariance with the point being simulated (or kri-
ged). Examples of 2-d fields conditioned using the two algorithms
are shown in Fig. 7. It is clear that, with a knowledge of the corre-
lation structure, defined by the filter w(j), and a small number of
conditioning points, faithful conditioned fields can be created that
maintain the fractal structure at all scales.
5.3. Fractional differencing of fBm to determine H

One of the handy features of the Grünwald weights is that it is
very easy to perform fractional differences as well as fractional
sums. Because fBm is a fractional integral of uncorrelated Gaussian
noise, performing the ‘‘correct’’ order fractional derivative on fBm
will give back an uncorrelated signal. This can aid in estimating
the Hurst coefficient. In the discrete data case, following [89,90],
use (16) and (17) on a spatial series of hydraulic conductivity Kn.
We took the 93 � 93K values measured on a slab of Massillon
sandstone (see also [91,92,58] and analyzed each of the 93 col-
umns of data and separately the 93 rows of data, using a differenc-
ing distance of N = 10. Prior to differencing, the data in both
columns and rows is highly correlated (Fig. 8, top plot). Here we
show only the column data. Applying progressively higher-order
fractional differences reduces correlation, until too high an order
d induces statistically significant anticorrelation at lag one (Fig. 8,
bottom plot). The differenced data also show more Normality
(Fig. 9), although some heavier-tailed K data still exists at all levels
of differencing.
6. Conclusions and recommendations

This paper represents a survey of fractional calculus methods in
hydrology with a few twists. First, we use the limit Markovian dif-
fusions to define the full suite of fractional differential operators.
This follows the logic that Brownian motion is an extremely useful
model of diffusion and dispersion, in part because it represents a
limit distribution, but also because it generates a solvable govern-
ing equation. When the basic tenets of Brownian motion are vio-
lated, some extended models are often similarly useful. When
individual random motions follow a distribution with a power
law tail, the motions converge to Lévy motion, which generates a
diffusion equation with fractional space derivatives. In d-dimen-
sions, up to d unique fractional derivative orders (including the
classical second) may coexist. These orders dictate the rate of
plume growth. If solute migrates into relatively immobile phase
(s) and is released at a power law rate, then the diffusion equa-
tion’s first derivative is either replaced, or joined, by a time-frac-
tional derivative. This modifies the plume growth rate and
simulates the power-law decay often seen in breakthrough curves
of conservative tracers.

The fractional derivative operators are linear and admit Eulerian
approximations similar to classical finite differences, but with
fuller matrices. Lagrangian techniques may also be used in the
same vein as classical random walk particle tracking codes are
used to simulate classical diffusion. In all cases the simulations
are more taxing, but the non-local fractional derivatives are de-
signed to replace finer-scaled velocity information (e.g. [58]) and
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should require much coarser discretization—in some cases analytic
solutions capture the important features of real solute plumes in
aquifers.

Another approach to simulating transport in heterogeneous
media is built on the creation of aquifer facsimilies. An attractive
model is based on fractional Brownian motion because of the het-
erogeneity present at all scales and long-range correlation. Because
fractional Brownian motion is built using fractional integrals of
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Fig. A.10. (a,b,c) Histograms (symbols) versus standard, maximally-skewed a-stable de
modified CMS method [94] and rescaled sums of 10 jumps generated by the chopped Pa
Pareto density functions for index a = 1.7. (e) Plot of the empirical constant (symbols) ad
function.
Gaussian noise, we are able to extend the classical isotropic fBm
to have different Hurst coefficients in different directions. The
fields are created by using the inverse operation specified by the
multi-dimensional fractional derivative operators that we de-
scribed previously. These fields can be conditioned by measured
data to create faithful representations of aquifer material—if it
has the long-range dependence inherent in fBm—with the added
flexibility of variable Hurst coefficients and user-defined weights
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nsity functions (curves). The histograms are for 20,000 variables generated by the
reto method. (d) Plots of the standard, maximally-skewed a-stable and the chopped
ded to chopped Pareto random variables for a < 1 to speed convergence and a fitted
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in all directions. An open question is whether a link exists between
these fractal K fields and the possible fractional PDE that describes
the transport of a passive scalar within.
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Appendix A. Generating heavy–tailed random variables

There are several methods to generate approximately stable
random walk variables n, for example the shifted Pareto
P(n > r) = sa(r + s)�a. However, the density is too peaked at the ori-
gin and convergence is slow [93]. One can choose the modified
Chambers–Mallows–Stuck (CMS) method to generate exactly the
stable random variables [94], but calculations are slowed by
numerous sine and cosine calls. Instead we recommend jumps R
from a ‘‘chopped’’ Pareto distribution (e.g. Fig. A.10d).

Here we review the CMS method for max-skewed stable vari-
ables. Following [94], for a – 1, generate V distributed uniformly
on (�p/2,p/2) and an independent exponential random variable
W with mean 1. Then n is standard max skewed a-stable generated
by:

n¼ cos
pa
2

� �� ��1=ð2aÞ
� sin½aðV þp=2Þ�
½cosðVÞ�1=a

� cos½V �aðV þp=2Þ�
W


 �ð1�aÞ=a

:

ðA:1Þ

A more computationally efficient approximation can be had. Fol-
lowing [47] use the distribution

Pðn < rÞ ¼
mðr � pÞ if p < r < /

1� cr�a r > /;

�
ðA:2Þ

and take c = 1/(C(1 � a) cos (pa/2)) to approximate standard
stable jumps (with scale 1, center 0, skewness 1 in the parametriza-
tion of Samorodnitsky and Taqqu [59]) when 0 < a < 2,a – 1, see
(7.19)–(7.21) in [80]. To ensure the same slope at the cutoff r = /,
set m = ac/�1�a. To ensure continuity at the cutoff r = /, equate

1� c/�a ¼ ac/ð�1�aÞð/� pÞ: ðA:3Þ

For 1 < a < 2, Zhang et al. [47] recommend setting p = �2.5, so the
cutoff / is solved by finding the root of the last equation. The
chopped Pareto random variable n can be generated by picking a
Uniform [0,1] random variable U, and setting:

n ¼
U=mþ p if U < 1� c/�a

ðc=ð1� UÞÞ1=a otherwise:

(
: ðA:4Þ

For a > 1, this random variable has mean

l ¼ ac/�1�a

2
ð/2 � p2Þ � ac

1� a
/1�a

so that n � l gives a zero-mean random walk jump.
We find that this method is approximately two to three times

faster than the modified CMS method. When the random walk
simulations break a particle’s motion into at least ten jumps, then
the sum of jumps converge nicely to the exact generation method
given by the modified CMS method (Fig. A.10 a,b,c). In the infinite
mean case a < 1, we find that setting p = 0 and adding an empirical
constant (�0.3(1 � a)�1.2) speeds convergence considerably
(Fig. A.10 d).
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