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a b s t r a c t

We introduce a bivariate distribution supported on the first quadrant with exponential,
and heavy tailed Mittag–Leffer, marginal distributions. Although this distribution belongs
to the class of geometric operator stable laws, it is a rather special case that does not follow
their general theory. Our results include the joint density and distribution function, Laplace
transform, conditional distributions, joint moments, and tail behavior. We also establish
infinite divisibility and stability properties of this model, and clarify its connections with
operator stable and geometric operator stable laws.
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1. Introduction

Suppose that X1 is a stable subordinator with scale parameter σ > 0 and Laplace transform (LT)

Ee−tX1 = e−σ
α tα , t ∈ R+, (1.1)

and let E be a standard exponential random variable, independent of X1. In this paper we consider a bivariate distribution
defined through the stochastic representation

Y = (Y1, Y2)
d
= (E1/αX1, ηE), η > 0. (1.2)

Clearly, the marginal distribution of Y2 is exponential with mean η and the probability density function (PDF)

f (x) =
1
η
e−x/η, x > 0. (1.3)

On the other hand, Y1 has theMittag–Leffler distribution (see, e.g., Pillai, 1990) with the LT

Ee−tY1 =
1

1+ σ αtα
, t ∈ R+, (1.4)

and the PDF

f1(y) =
sinπα
σπ

∫
∞

0

uαe−xu/σdu
1+ u2α + 2uα cosπα

=
1
σ

∫
∞

0
z−1/αsα

( y
σ z1/α

)
e−zdz, (1.5)
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where sα is the density of the standard stable subordinator (σ = 1 in (1.1)). We shall refer to the above distribution as BEML
distribution (bivariate with exponential andMittag-Leffler marginals), denoting it byBEMLα(σ , η).
The exponential distribution is one of themost importantmodels of applied probability,withmany applications in almost

any area of applied research. Its generalization and younger sibling – the Mittag–Leffler distribution, also known as positive
Linnik law (see, e.g., Christoph and Schreiber, 2000; Huillet, 2000; Lin, 2001) – has gained popularity in recent years due
to its connections with the stochastic solution of the Cauchy problem for PDEs with fractional derivatives (see, e.g, Fulger
et al., 2008, and the references therein) and relaxation theory in complex, disordered systems (see, e.g., Kotulski, 1995;
Weron and Kotulski, 1996). This model was studied in the context of random stability (see, e.g., Bunge, 1996; Jayakumar and
Suresh, 2003; Klebanov et al., 2006; Kozubowski, 1994) as a special case of geometric stable laws (see, e.g., Klebanov et al.,
2006, and the references therein) and extended to time series (see, e.g., Jayakumar, 2003; Jayakumar and Pillai, 1993a), and
its theoretical properties and applications has attracted the attention of numerous researchers (see, e..g, Jayakumar, 2003;
Jayakumar and Pillai, 1993b, 1996; Jayakumar and Suresh, 2003; Kozubowski, 2001; Lin, 1998; Pillai, 1990). The bivariate
model that links the two distributions should also be valuable for modeling data with both power and exponential tail
behavior of one dimensional components. In particular, as we shall see below, this bivariate distribution provides a useful
approximation of the magnitude X and duration N connected with hydro-climatic episodes (see, e.g., Biondi et al., 2005),
where

(X,N) d=

(
Np∑
i=1

u(i),Np

)
=

Np∑
i=1

(u(i), 1) (1.6)

and the parameter p ∈ (0, 1) is close to zero. Here, the {u(i)} are independent and identically distributed (IID) positive
quantities with infinite mean (representing a climatic variable such as precipitation) while the Np is independent of the {u(i)}
geometric random variables with distribution

P(Np = n) = p(1− p)n−1, n ∈ N, (1.7)
representing the number of climatic events (such as rainfall events) in a given time interval. This provides a heavy-tail
generalization of the case where the {u(i)} are light tailed (e.g., exponential), where the BEG model of Kozubowski and
Panorska (2005) and its generalizations (see Kozubowski et al., 2008) are useful in approximating the distribution (1.6).
This newmodel should also play an important role in other areas where events of randommagnitudes occur independently
in time, and the joint distribution of their number and the total magnitude is of concern. Examples include insurance claims
in actuarial science, or magnitudes of earthquakes in geophysics.
In Section 2we present basic properties of the BEMLmodel, including the joint density and distribution function, Laplace

transform, conditional distributions, joint moments, and tail behavior, as well as its divisibility and stability properties. In
Section 3 we clarify its connections with operator stable and geometric operator stable laws, and briefly mention possible
applications.

2. Definition and basic properties

Suppose that X1 is a stable subordinator with the LT (1.1). Then the random vector X = (X1, X2), where X2 = η > 0
(constant with probability one), has the LT of the form

φ(t, s) = Ee−tX1−sX2 = e−σ
α tα−ηs, (t, s) ∈ R2

+
. (2.1)

This infinitely divisible distribution is operator stable (see, e.g., Jurek andMason, 1993; Meerschaert and Scheffler, 2001), in
the sense that

An
n∑
i=1

X (i) d= X, n ∈ N, (2.2)

where the {X (i)} are IID copies of X and

An =
[
n−1/α 0
0 n−1

]
:= diag(n−1/α, n−1). (2.3)

Note that we can also write An = n−B = exp(−B log n), where B = diag(1/α, 1) and exp(A) = I + A + A2/2! + · · · is the
usual matrix exponential. The matrix B is called an exponent of the operator stable random vector X , see Meerschaert and
Scheffler (2001). It follows that the random vector Y with the LT

ψ(t, s) =
1

1− logφ(t, s)
=

1
1+ σ αtα + ηs

, (t, s) ∈ R2
+
, (2.4)

is (strictly) operator geometric stable (cf. Kozubowski et al., 2005), that is

Ap
Np∑
i=1

Y (i) d= Y , p ∈ (0, 1). (2.5)
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Here, Y , Y (1), Y (2), . . . are IID random vectors with the LT (2.4), Np is a geometric variable (1.7), independent of the {Y (i)},

and Ap = pB. Moreover, we have Y
d
= EBX , that is we have the stochastic representation (1.2). The following definition

summarizes this discussion.

Definition 2.1. A randomvector Y = (Y1, Y2) given by the LT (2.4) or the stochastic representation (1.2), where E is standard
exponential and X1 is a stable subordinator with LT (1.1), independent of E, is said to have a BEML distribution with tail
parameter α ∈ (0, 1) and scale parameters σ , η > 0. This distribution is denoted byBEMLα(σ , η).

It is clear from the above representation, that the conditional distribution of Y1 given Y2 = y > 0 coincides with that of
σyW , whereW is a standard stable subordinator (with scale parameter equal to 1) and

σy =
σy1/α

η1/α
. (2.6)

Since the marginal density of Y2 is the exponential PDF (1.3), we immediately obtain the following result concerning the
PDF of a BEML random vector.

Theorem 2.2. The distribution function and density of Y = (Y1, Y2) ∼ BEMLα(σ , η) are, respectively,

F(y1, y2) =
∫ y2/η

0
Sα
( y1
σ z1/α

)
e−zdz, (y1, y2) ∈ R2

+
, (2.7)

and

f (y1, y2) =
η1/α−1e−y2/η

σy1/α2
sα

(
η1/αy1
σy1/α2

)
, (y1, y2) ∈ R2

+
, (2.8)

where Sα and sα are, respectively, the distribution function and the PDF of the standard stable subordinator.

Dividing the joint PDF (2.8) by the marginal PDF of Y1 given by (1.5) leads to the conditional PDF of Y2 given Y1 = y > 0,
described in our next result.

Theorem 2.3. Let Y = (Y1, Y2) ∼ BEMLα(σ , η).
(i) The conditional distribution of Y2|Y1 = y > 0 is weighted exponential with the PDF

fY2|Y1=y(y2) =
ω(y2)(1/η)e−y2/η∫
∞

0 ω(x)(1/η)e−x/ηdx
, y2 > 0. (2.9)

The weight function in (2.9) is

ω(x) = x−1/αsα

(
yη1/α

σ x1/α

)
, x > 0, (2.10)

where sα is the density of the standard stable subordinator.
(ii) The conditional distribution of Y1|Y2 = y > 0 is the same as that of σyW, where W is a standard stable subordinator and σy
is given by (2.6).

The following two results deal with tail behavior and joint moments of BEML variables. In the first result, which is
straightforward to prove by a Tauberian argument (compare with Samorodnitsky and Taqqu (1994, Property 1.2.15)), we
present the exact tail behavior of linear combinations of the components of an BEML random vector, showing that they are
heavy tailed with the same tail index α.

Theorem 2.4. Let Y = (Y1, Y2) ∼ BEMLα(σ , η) and let (a, b) ∈ R2
+
with a2 + b2 > 0. Then, as x→∞, we have

P(aY1 + bY2 > x) ∼


(aσ)α

Γ (1− α)
x−α for a 6= 0,

e−
x
bη for a = 0.

(2.11)

In the second result we give conditions for the existence of joint moments of BEML random vectors.

Theorem 2.5. Let Y = (Y1, Y2) ∼ BEMLα(σ , η) and let α1, α2 ≥ 0. Then the joint moment E|Y1|α1 |Y2|α2 exists if and only if
α1 < α, in which case we have

E|Y1|α1 |Y2|α2 =
σ α1ηα2Γ

(
α1
α
+ α2 + 1

)
Γ
(
1− α1

α

)
Γ (1− α1)

. (2.12)
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Proof. The result follows from (1.2) and well-known moment conditions and formulas for standard exponential and
standard α-stable subordinator variables E andW , respectively,

EEp = Γ (1+ p) for p > 0, EW p =
Γ (1− p/α)
Γ (1− p)

for 0 < p < α. �

Remark 2.6. Note that for α2 = 0 we obtain absolute moments of the Mittag–Leffler distribution (see, e.g., Kozubowski
and Panorska, 1996) while for α1 = 0 we get fractional moments of the exponential distribution with mean η. The above
formula may be useful in estimating the parameters of BEML laws.

2.1. Divisibility and stability properties

A random vector Y (and its probability distribution) is said to be geometric infinitely divisible (GID) if for all p ∈ (0, 1)we
have

Y d
=

Np∑
i=1

Y (pi), (2.13)

where Np is geometrically distributed random variable (1.7), the variables {Y (pi)} are IID for each p, and Np and {Y (pi)} are
independent (see, e.g., Klebanov et al., 1984). It is well known that both exponential and ML distributions are GID. Our next
result shows that the same property is shared by the BEML distributions.

Proposition 2.7. Let Y be BEMLα(σ , η) with LT (2.4). Then Y is GID and the relation (2.13) holds where the {Y (pi)} have the
BEMLα(p1/ασ , pη) distribution.

Proof. Let ψ and ψp be the LTs of Y and the {Y (pi)}, respectively. Then, the relation (2.13) takes the form

ψ(t, s) =
pψp(t, s)

1− (1− p)ψp(t, s)
,

which is easily shown to hold when ψ and ψp are the LTs corresponding to the BEMLα(σ , η) and BEMLα(p1/ασ , pη)
distributions, respectively. �

Remark 2.8. We note that the BEML distributions are infinitely divisible in the classical sense as well. Indeed, for each
integer n ≥ 1 their LT (2.4) can be expressed as the nth power of ψ1/n(t, s), where

ψu(t, s) =
(

1
1+ σ αtα + ηs

)u
, (t, s) ∈ R2

+
, u > 0, (2.14)

is the LT of a random vector given by (1.2) with X1 as before and E having a standard gamma distribution with shape
parameter u. In this context, the BEML distribution arises as the distribution of Y (1), where {Y (u), u > 0} is a bivariate
Lévy process with marginal distributions of Y (u) given by the LT (2.14).

We have already seen above that the BEML distributions have the stability proposition (2.5) with Ap = diag(p1/α, p). The
following result, which is an extension of corresponding stability properties of univariate Mittag–Leffler and exponential
distributions (see, e.g., Kotz et al., 2001) and parallels Theorem3.11 in Kozubowski et al. (2005), shows this property provides
a characterization of this class.

Theorem 2.9. Let Y , Y (1), Y (2), . . . be IID positive bivariate random vectors whose second components have finite mean, and let
Np be a geometrically distributed random variable independent of the sequence {Y (i)}. Then

Sp = Ap
Np∑
i=1

(Y (i) + bp)
d
= Y , p ∈ (0, 1), (2.15)

with some diagonal {Ap} and bp ∈ R2 if and only if Y has a BEML distribution given by the LT (2.4). Moreover, wemust necessarily
have bp = 0 and Ap = diag(p1/α, p) for each p, where 0 < α ≤ 1.

Proof. This follows from Theorem 3.9 in Kozubowski et al. (2005) and similar result for geometric stable distributions
(see Kozubowski, 1994, Theorem 3.2), where we take into account that the stability relation holds for each coordinate
of Y . �

3. Operator geometric stable laws and domains of attraction

Operator stable random vectors are the weak distributional limits of sums of independent and identically distributed
random vectors. Given U,U (1),U (2) . . . IID random vectors, we say that U belongs to the strict generalized domain of
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attraction (GDOA) of the random vector X if we have the weak convergence

An
n∑
i=1

U (i) ⇒ X, (3.1)

in which case we also say that X is strictly operator stable (OS). If we assume that the limit X is full (i.e., not supported on
any lower dimensional affine subspace) then the convergence (3.1) has a number of consequences. The same limit can be
obtained for a sequence of norming operators that is regularly varying, in the sense that A[λn]A−1n → λ−B in the operator
norm for everyλ > 0. Here B is an exponent of X , so that if X (i) are IID copies of X , the randomvectors nBX and X (1)+· · ·+X (n)
are identically distributed. The exponent also codes the tail behavior of U , see Meerschaert and Scheffler (2001) for details.
It is customary to assume that X is full to ensure that the limit in (3.1) can serve as a useful approximation of the normalized
sum (i.e.,

∑n
n=1 U

(i)
≈ A−1n X). For example, it ensures that An is invertible. However, the fullness assumption is not strictly

necessary to develop a useful theory of GDOA for OS laws.
Suppose that u(i) are IID random variables in the strict domain of normal attraction of the stable subordinator X1, so that

n−1/α
n∑
i=1

u(i) ⇒ X1

as n → ∞. (Note: The term ‘‘normal’’ here refers to the norming constants, not the limit.) Define random vectors
U (i) = (u(i), 1)where the second coordinate is non-random. Now it is easy to see that

n−B
n∑
i=1

U (i) ⇒ X = (X1, 1), (3.2)

where B = diag(1/α, 1). Hence X is operator stable, but not full. We can also see that nBX ≈
∑n
i=1 U

(i) is a useful
approximation, since this is equivalent to

∑n
i=1 u

(i)
≈ n1/αX1.

Operator geometric stable random vectors are the weak distributional limits of random sums of IID random vectors,
with a geometrically distributed number of summands (see Kozubowski et al., 2005). Suppose that Np has a geometric
distribution (1.7). Given U,U (1),U (2) . . . IID random vectors, we say that U belongs to the strict generalized geometric
domain of attraction (GGDOA) of the random vector Y if

Ap
Np∑
i=1

U (i) ⇒ Y , (3.3)

in which case we also say that Y is strictly operator geometric stable (OGS). It follows that, if Y (i) are IID copies of Y , then
pBY and Y (1) + · · · + Y (Np) are identically distributed for any p > 0, where again Np is geometric and independent of
Y , Y (1), Y (2), . . . and B is some linear operator called an exponent of Y .
The basic theory of OGS laws and GGDOA is laid out in Kozubowski et al. (2005). If X is OS with exponent B, and E

is standard exponential, independent of X , then Y = EBX is OGS with the same exponent. Conversely, if Y is OGS with
exponent B, then it can always be written in the form Y = EBX where X is OS with the same exponent. A companion paper
(see Kozubowski et al., 2003) relates GDOA and GGDOA. Theorem 3.3 in that paper implies that, if U belongs to the GDOA of
X , then it also belongs to the GGDOA of Y , and vice versa. Hence the GDOA of X and the GGDOA of Y = EBX are equal. Both
papers (Kozubowski et al., 2003, 2005) assume that X and Y are full. It is not hard to see that X full implies that Y = EBX
is full. However, the converse is not true, as we shall soon illustrate. Hence it is useful to note that, even without assuming
X full, the same arguments from Kozubowski et al. (2003, 2005) allow us to conclude that Y OGS with exponent B implies
Y = EBX for some (not necessarily full) OS random vector X , and that any U in the GGDOA of Y also belongs to the GDOA
of X . In fact, the argument extends immediately, since the fundamental results of Rosiński (1976) used in Kozubowski et al.
(2003) do not require fullness.
If (3.2) holds for IID random vectors U (i) = (u(i), 1), where the u(i) belong to the strict domain of normal attraction of

X1, then Theorem 1 in Rosiński (1976) yields that (3.3) also holds, where Y = EBX and B = diag(1/α, 1). It follows that
the BEML random vector Y is OGS with exponent B, and the bivariate distribution of (X,N) in (1.6) can be approximated by
A−1p Y . Note that, although Y is full, the OS random vector X is not full.
OGS laws are a special case of ν-operator stable laws (see Kozubowski et al., 2003). If (3.2) holds for IID random vectors

U (i) = (u(i), 1), where the u(i) belong to the strict domain of normal attraction of X1, and if Nn are integer valued random
variables independent of U (i) such that Nn/n⇒ E > 0 then Theorem 1 in Rosiński (1976) shows that (3.3) still holds with
Y = EBX . Even in the case where Nn are U (i) are dependent, the same holds under the stronger assumption that Nn/n→ E
in probability. This follows from Theorem 2.4 of Becker-Kern (2002). Finally, we note that if X(t) is an operator stable Lévy
process such that X(1) is infinitely divisible (ID) with X , then Y is ID with X(E), since X(t) is operator self-similar with
exponent B: the finite dimensional distributions of the stochastic processes X(ct) and cBX(t) are equal.
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