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Abstract

Fractional order diffusion equations are generalizations of classical diffusion equations, treating super-diffusive flow
processes. In this paper, we examine a practical numerical method which is second-order accurate in time and in space
to solve a class of initial-boundary value fractional diffusive equations with variable coefficients on a finite domain. An
approach based on the classical Crank–Nicholson method combined with spatial extrapolation is used to obtain tem-
porally and spatially second-order accurate numerical estimates. Stability, consistency, and (therefore) convergence of
the method are examined. It is shown that the fractional Crank–Nicholson method based on the shifted Grünwald
formula is unconditionally stable. A numerical example is presented and compared with the exact analytical solution
for its order of convergence.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a one-dimensional fractional diffusion equation
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on a finite domain xL < x < xR with 1 < a 6 2. We assume that the diffusion coefficient (or diffusivity)
d(x) > 0. We also assume an initial condition u(x,t = 0) = s(x) for xL < x < xR and Dirichlet boundary con-
ditions of the form u(xL,t) = 0 and u(xR,t) = bR(t). The fractional derivative in Eq. 1 is a (left-sided) Rie-
mann fractional derivative over the x domain. For a function f(x) over the interval L < x < R, the Riemann
fractional derivative of order a, is defined by
daf ðxÞ
dxa

¼ 1

Cðn� aÞ
dn

dxn

Z x

L

f ðnÞ
ðx� nÞaþ1�n dn; ð2Þ
where n is an integer such that n � 1 < a 6 n. See [12,13] for details. We assume that L 6 xL and xR 6 R,
and since u(xL,t) = 0, we can zero-extend the solution to x < xL so that the actual value of L is unimportant.

In the analysis of the numerical method that follows, we will assume that (1) has a unique and sufficiently
smooth solution. Note that a = 2 is the classical diffusion equation. The case of 1 < a < 2 models a super-
diffusive flow in which a cloud of diffusing particles spreads at a faster rate than the classical diffusion model
predicts [8,11], and a = 1 corresponds to the classical advective flow. Other one-dimensional fractional
diffusion equations exist that contain a right-sided or symmetric fractional derivative term, and the methods
in this paper may also be useful in that context, see Remark 4.1 for a discussion.

Several different first-order accurate numerical methods to solve fractional diffusion equations have been
presented before [3,4,6,7,9,10]. Many finite difference approximations for the fractional difference equations
are based on some form of the Grünwald estimates, and these estimates are only first-order accurate. We
are not aware of any published finite-difference methods for these differential equations which offer better
than first-order accuracy. A hybrid second-order (in time and space) numerical method, which combines a
fractional Crank–Nicholson method with the extrapolation of the Crank–Nicholson solution, is presented
here. This method is also proven to be consistent and unconditionally stable.
2. The Crank–Nicholson method for the fractional diffusion equation

We discretize the spatial a-order fractional derivative using the Grünwald finite difference formula [12].
The standard Grünwald estimates generally yield unstable finite difference equations regardless of whether
the resulting finite difference method is an explicit or an implicit system, see [9] for related discussion. There-
fore, we use a right-shifted Grünwald formula to estimate the spatial a-order fractional derivative
o
auðx; tÞ
oxa

¼ 1

Cð�aÞ lim
N!1

1

ha
XN
k¼0

Cðk � aÞ
Cðk þ 1Þ u x� ðk � 1Þh; tð Þ; ð3Þ
where N is a positive integer, h = (x � xL)/N and C(Æ) is the gamma function.
For the Crank–Nicholson numerical approximation scheme, define tn = nDt to be the integration time

0 6 tn 6 T, and Dx = h > 0 to be the grid size in x-direction, Dx = (xR � xL)/Nx, with xi = xL + iDx for
i = 0, . . . ,Nx. Define uni ¼ uðxi; tnÞ, di = d(xi), and qnþ1=2

i ¼ qðxi; tnþ1=2Þ.
Let Un

i denote the numerical approximation to the exact solution uni .
We also define the �normalized� Grünwald weights by
ga;k ¼
Cðk � aÞ

Cð�aÞCðk þ 1Þ . ð4Þ
For example, the first four terms of this sequence are given by ga,0 = 1, ga,1 = �a, ga,2 = a(a � 1)/2!,
ga,3 = �a(a � 1)(a � 2)/3!

If the shifted Grünwald estimates are substituted in the superdiffusion problem (1) to get the Crank–
Nicholson type numerical approximation, the resulting finite difference equations are



C. Tadjeran et al. / Journal of Computational Physics 213 (2006) 205–213 207
Unþ1
i � Un

i

Dt
¼ di

2
ðda;xUnþ1

i þ da;xUn
i Þ þ qnþ1=2

i ; ð5Þ
where the above fractional partial differentiation operator is defined as
da;xUn
i ¼

1

ðDxÞa
Xiþ1

k¼0

ga;kU
n
i�kþ1;
which is an O(Dx) approximation to the a-order fractional derivative (see Proposition 3.1 in this paper).
Eq. (5) may be re-arranged and written as the fractional Crank–Nicholson discretization in the form
1� diDt
2

da;x

� �
Unþ1

i ¼ 1þ diDt
2

da;x

� �
Un

i;j þ qnþ1=2
i Dt. ð6Þ
Note that for the classical diffusion equation, (a = 2), the weights g2,k vanish for k > 2 and the shifted
Grünwald estimate results in the classical Crank–Nicholson method for which
d2;xUn
i ¼

Un
iþ1 � 2Un

i þ Un
i�1

ðDxÞ2
becomes an O((Dx)2) approximation to the second spatial derivative. There is no analogous second-order
finite difference formula in the fractional case, so we will employ (see Section 4 in this paper) a Richardson
extrapolation scheme in the x-direction to obtain second-order accuracy in spatial direction.

The operator form (6) may be written in matrix form and solved to obtain the numerical solution at the
time step tn+1
ðI � AÞUnþ1 ¼ ðI þ AÞUn þ Qnþ1=2Dt; ð7Þ
where
Un ¼ ½Un
1; . . . ;U

n
Nx�1�

T
;

Qnþ1=2Dt ¼ ½qnþ1=2
1 Dt; qnþ1=2

2 Dt; . . . ; qnþ1=2
Nx�1 Dt þ gNx�1ðbnþ1

R þ bnRÞ�
T

and I is the (Nx � 1) · (Nx � 1) identity matrix. Note that the boundary conditions are absorbed in the def-
inition of the vector Q, with bnR ¼ bRðtnÞ at the right boundary.

Discretization at the interior x-gridpoints defines the matrix A entries, Ai,j for i = 1, . . . ,Nx � 1 and
j = 1,. . . ,Nx � 1 by
Ai;j ¼

giga;i�jþ1 for j 6 i� 1;

giga;1 for j ¼ i;

giga;0 for j ¼ iþ 1;

0 for j > iþ 1;

8>>><
>>>:
where
gi ¼
diDt

2ðDxÞa . ð8Þ
Note that this fractional Crank–Nicholson discretization approach will produce a method with a local trun-
cation error that is O((Dt)2) + O(Dx). For a proof of first-order truncation error for the spatial fractional
derivative term using the shifted Grünwald estimate, see Proposition 3.1 in this paper. In the classical case
of a = 2 the spatial truncation error contribution becomes O((Dx)2).
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Remark 2.1. The coefficient matrix (I � A) is a super-triangular matrix. That is, it is the sum of a super-
diagonal matrix and a lower triangular matrix. The computational work in solving this system of equations
is equivalent to solving two triangular systems at each time step, leading to an efficient solution algorithm
which requires no pivoting due to its strict diagonal dominance (see proof of Proposition 3.3 in this paper).
Note that if the fractional differential equation involves both the left-sided and the right-sided fractional
derivatives, the resulting coefficient matrix will be a full matrix and no longer super-triangular.
3. Consistency and stability analysis of the fractional CN

The following proposition, regarding the Taylor expansion for the error in the shifted Grünwald finite
difference formula, will be needed to establish the second-order convergence of the extrapolation method in
the following section. The result is only proven for the case L = �1 in (2), but this is sufficient for our
purposes. The zero Dirichlet boundary condition on the left, together with a zero-extension of the solution
for x < xL, implies that any value of L 6 xL gives the same solution to the fractional diffusion Eq. (1) in this
case.

Proposition 3.1. Let 1 < a < 2, f 2 Cnþ3ðRÞ such that all derivatives of f up to order n + 3 belong to L1ðRÞ.
For any integer p P 0 define the shifted Grünwald difference operator by
Da
h;pf ðxÞ ¼

X1
j¼0

ð�1Þj
a

j

� �
f ðx� ðj� pÞhÞ. ð9Þ
Then if L = �1 in (2), we have for some constants al independent of h, f, x that
h�aDa
h;pf ðxÞ ¼

da

dxa
f ðxÞ þ

Xn�1

l¼1

al
daþl

dxaþl
f ðxÞ

� �
hl þOðhnÞ ð10Þ
uniformly in x 2 R.

Proof. The proof closely follows the result in [17] for the un-shifted Grünwald difference equations. First
observe that by the Riemann–Lebesgue lemma, our assumptions on f imply that for some constant C1 > 0
we have
jf̂ ðkÞj 6 C1ð1þ jkjÞ�n�3 ð11Þ

for all k 2 R, where Fðf ÞðkÞ ¼ f̂ ðkÞ ¼

R
R
f ðxÞeikx dx denotes the Fourier-transform. Moreover, note that if

L = �1 in (2), then F da

dxa f ðxÞ
� �

ðkÞ ¼ ð�ikÞaf̂ ðkÞ generalizing the well-known formula for the Fourier-
transform of an integer-order derivative. Observe further that for any a 2 R we have F½f ðx� aÞ�
ðkÞ ¼ eiak f̂ ðkÞ and that
ð1þ zÞa ¼
X1
j¼0

a

j

� �
zj
converges absolutely for |z| 6 1. Hence Da
h;pf 2 L1ðRÞ and therefore
F h�aDa
h;pf

� �
ðkÞ ¼ h�ae�ikph

X1
j¼0

ð�1Þj
a

j

� �
eijkhf̂ ðkÞ ¼ h�ae�ikph 1� eikh

� �a
f̂ ðkÞ

¼ ð�ikÞa 1� eikh

�ikh

� �a

e�ikhpf̂ ðkÞ ¼ ð�ikÞaxa;pð�ikhÞf̂ ðkÞ; ð12Þ
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where xa;pðzÞ ¼ 1�e�z

z

� �a
epz. Since xa,p(z) is analytic in some neighborhood of the origin we have the power

series expansion xa;pðzÞ ¼
P1

l¼0alz
l, which converges absolutely for all |z| 6 R and some R > 0. Note that

a0 = 1 and that a1 = �a/2 + p. Next we show that there exists a constant C2 > 0 such that
xa;pð�ixÞ �
Xn�1

l¼0

alð�ixÞl
�����

����� 6 C2jxjn ð13Þ
uniformly in x 2 R: For |x| 6 R we have
xa;pð�ixÞ �
Xn�1

l¼0

alð�ixÞl
�����

����� ¼
X1
l¼n

alð�ixÞl
�����

����� 6 jxjn
X1
l¼n

jaljjxjl�n
6 C3jxjn;
where C3 ¼ R�nP1
l¼0jaljRl < 1, while for |x| > R we have
jxa;pð�ixÞj ¼ 1� eix

�ix

� �a

e�ipx

����
���� 6 2a

Ra 6 C4jxjn;
where C4 = 2a/Ra+ n < 1, and
Xn�1

l¼0

alð�ixÞl
�����

����� 6 jxjn
Xn�1

l¼0

jaljjxjl�n
6 C5jxjn;
where C5 ¼
Pn�1

l¼0 jaljRl�n < 1. Now if we set C2 = max{C3,C4 + C5} then it follows easily that (13) holds
for all x 2 R.

In view of (12) we can write
F h�aDa
h;pf

� �
ðkÞ ¼

Xn�1

l¼0

alð�ikÞaþlhlf̂ ðkÞ þ ûðk; hÞ;
where
ûðk; hÞ ¼ ð�ikÞa xa;pð�ikhÞ �
Xn�1

l¼0

alð�ikhÞl
 !

f̂ ðkÞ.
Note that by (11) we have ð�ikÞaþlf̂ ðkÞ 2 L1ðRÞ for 0 6 l 6 n � 1. Moreover, in view of (11) and (13) we
know that ûðk; hÞ 2 L1ðRÞ with jûðk; hÞj 6 Chnð1þ jkjÞa�3 for k 2 R, with C = C1C2. By Fourier inversion
we therefore get
h�aDa
h;pf ðxÞ ¼

da

dxa
f ðxÞ þ

Xn�1

l¼1

al
daþl

dxaþl
f ðxÞhl þ uðx; hÞ;
where
juðx; hÞj ¼ C
Z
R

e�ikxûðk; hÞdk
����

���� 6 C
Z
R

jûðk; hÞjdk 6 Chn
uniformly in x 2 R. This concludes the proof. h

Remark 3.2. The integer parameter p is the number of gridpoints to the right of the point xi which are used
in computing the ath partial derivative at xi. Although the theorem is stated here for the general case with
any number of shifts, for the problem of interest here where 1 < a < 2, a value p = 1 is used. This finite dif-
ference formula generally gives the smallest local error, and it neither requires the solution values past the
right boundary nor the use of different estimators as the right boundary is approached. For p = 1 and
a = 2, the classical centered finite difference formula is obtained.
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Proposition 3.3. The fractional Crank–Nicholson discretization, using the shifted Grünwald estimates, applied

to the fractional diffusion Eq. (1) and defined by (7) is unconditionally stable for 1 < a < 2.

Proof. We will first show that the (complex-valued) eigenvalues of the matrix A have negative real parts.
Note that ga,1 = �a, and for 1 < a < 2 and i 6¼ 1 we have ga,i > 0. Additionally, �ga;1 ¼ a P

Pk¼N
k¼0;k 6¼1ga;i for

any N > 1. According to the Greschgorin theorem ([5] pp. 135–136), the eigenvalues of the matrix A are in
the disks centered at each diagonal entry Ai,i = gi ga,1 = �gia, with radius
ri ¼
XNx

j¼0;l 6¼i

jAi;jj ¼ gi
Xiþ1

j¼0;j6¼i

ga;i�jþ1 < gia.
These Greschgorin disks are within the left half of the complex plane. Therefore, the eigenvalues of the
matrix A have negative real-parts.

Next, k is an eigenvalue of matrix A if and only if (1 � k) is an eigenvalue of the matrix (I � A), if and
only if (1 + k)/(1 � k) is an eigenvalue of the matrix (I � A)�1(I + A). We observe that the first part of this
statement implies that all the eigenvalues of the matrix (I � A) have a magnitude larger than 1, and thus this
matrix is invertible. Furthermore, since the real part of k is negative, it is not hard to check that j 1þk

1�k j < 1.
Therefore, the spectral radius of the system matrix (I � A)�1(I + A) is less than one. Thus, the system of
finite difference Eq. (7) is unconditionally stable. h

Remark 3.4. The classical stability analysis of the Crank–Nicholson method for the diffusion equation
relies on an eigenfunction expansion of the second derivative operator [16]. It may also be possible to
develop a similar theory for the fractional diffusion equation using the fact that the Mittag–Leffler functions
are the eigenfunctions of the Caputo fractional derivative [1]. However, this requires reformulating the frac-
tional diffusion equation in terms of the Caputo derivative instead of the Riemann fractional derivative,
and we have not attempted this.
4. Improving the order of convergence of the fractional Crank–Nicholson method by extrapolation

The fractional Crank–Nicholson was shown to be stable above. This method is consistent with a local
truncation error which is O((Dt)2) + O(Dx). Therefore, according to Lax�s Equivalence Theorem [16], it
converges at this rate. If a = 2, then the standard spatially second-order accurate Crank–Nicholson method
is obtained. To improve the low order of spatial convergence for non-integer values of 1 < a < 2, we employ
an extrapolation method only at the timestep where the numerical solution is desired in the spatial direc-
tion. Proposition 3.1 shows that the error in the shifted Grünwald finite difference approximation is
C1Dx + C2(Dx)

2 + O(Dx)3 where the coefficients Ci do not depend on the grid size Dx. Hence, if the
Crank–Nicholson method is applied at a grid size h = Dx and again at a grid size h/2, the Richardson
extrapolation method (see, e.g. [5]) can be used to obtain a solution with local truncation error
O((Dt)2) + O((Dx)2) even in the fractional case. More specifically, we apply the Crank–Nicholson method
on a (coarse) grid of size Dx = h, and then on a finer grid of size h/2 with the same Dt. The extrapolated
solution is then computed from Ux = 2Ux,h/2 � Ux,h, where x is a grid point on the coarse mesh, and
Ux,h, Ux,h/2 denote the Crank–Nicholson solutions at the grid point x using the coarse grid (grid size h)
and the fine grid (grid size h/2), respectively. In other words, x = xi on the coarse grid, while x = x2i on
the fine grid, so that Ux;h ¼ Uxi ;h, and Ux;h=2 ¼ Ux2i ;h=2.

Remark 4.1. The fractional diffusionEq. (1) employs a left-sided fractional derivative.Other one-dimensional
fractional diffusion equations (see, e.g. Schumer et al. [15]) contain an additional diffusion term, which relies
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on the right-sided fractional derivative. See [13,14] for the definition of the right-sided fractional derivative.
An important special case of these two-sided fractional diffusion equations uses the symmetric fractional
derivative, which is just the sum of the left-hand and right-hand derivatives. See Chechkin et al. [2] for
a recent application. A first-order implicit Euler finite difference method for two-sided fractional
diffusion equations was developed in [10]. It should also be possible to apply the methods in this paper to
these equations, in order to achieve second-order convergence in space and time, but we have not attempted
this.
5. A Numerical Example

The following fractional (a = 1.8) differential equation was considered
ouðx; tÞ
ot

¼ dðxÞ o
1:8uðx; tÞ
ox1:8

þ qðx; tÞ
on a finite domain 0 < x < 1, with the diffusion coefficient
dðxÞ ¼ Cð2:2Þx2:8=6 ¼ 0:183634x2:8;
the source/sink function
qðx; tÞ ¼ �ð1þ xÞe�tx3;
the initial condition
uðx; 0Þ ¼ x3 for 0 < x < 1
and the boundary conditions
uð0; tÞ ¼ 0; uð1; tÞ ¼ e�t for t > 0.
Note that the exact solution to this problem is
uðx; tÞ ¼ e�tx3;
which can be verified by direct fractional differentiation of the given solution and substituting in the frac-
tional differential equation (the initial and the boundary conditions are clearly satisfied). This example
problem was solved to time t = 1.0.

Fig. 1 shows the (unextrapolated) numerical solution obtained by applying the fractional Crank–
Nicholson method (7) discussed above, with Dt = 1/10 and Dx = h = 1/10, at time t = 1.0. The numerical
solution compares well with the exact analytic solution to the fractional partial differential equation in this
test case.

To examine the rate of convergence for this method, we started with a Dt = 1/10 and Dx = h = 1/10. To
obtain the extrapolated CN solution on this grid size, the problem was numerically solved on a (coarse)
grid, and then on a finer grid size with the same Dt, while halving the Dx (that is, Dt = 1/10 and
Dx = h = 1/20 for the starting grid size). The extrapolated solution is then computed for the points on
the coarse grid from Uxi ¼ 2Ux2i ;h=2 � Uxi;h.

Table 1 shows the absolute error for the numerical solutions. The third column shows the absolute value
of the largest error in the numerical solution at time t = 1.0. The fourth column shows the ratio of the error
reduction as the grid is refined. Note that the behavior of this error is (almost) linear when the Crank–
Nicholson method is used and that the second-order convergence in time T is masked by the linear order
of convergence in x. Column five shows the largest absolute error when the Crank–Nicholson solution is
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Fig. 1. Comparison of exact solution to the unextrapolated Crank–Nicholson solution at time t = 1.0.

Table 1
Maximum error behavior for CN and extrapolated CN and the effect of the grid size reduction at time t = 1.0

Dt Dx Max Error-CN Error rate Max Error-ExtCN Error rate

1/10 1/10 1.82265 · 10�3 – 1.77324 · 10�4 –
1/15 1/15 1.16803 · 10�3 1.56 � 15/10 7.85366 · 10�5 2.25 = (15/10)2

1/20 1/20 8.64485 · 10�4 1.35 � 20/15 4.40627 · 10�5 1.78 = (20/15)2

1/25 1/25 6.84895 · 10�4 1.26 � 25/20 2.82750 · 10�5 1.56 = (25/20)2
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extrapolated. Column six shows the ratio of these extrapolated solution errors to examine the convergence,
and we note that the convergence is second order (Dt)2 + (Dx)2.

The algorithm was implemented using the Intel Fortran compiler on a Dell Pentium PC. All computa-
tions were performed in single precision.
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