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[1] In various geophysical applications, power-law
interarrival times are observed between extreme events.
Classical extreme value theory is based on exponentially
distributed interarrivals and can not be applied to these
processes. We solve for the density of the maxima of a
sequence of random extreme events with any distribution of
random interarrivals by applying a continuous time random
max model, similar to a random walk model. The equation
is exact when the distributions of the exceedances and the
interarrivals are known. If only the tail properties of the
exceedances and interarrivals can be estimated, then limiting
extreme value distributions governing the maximum
observation or exceedance are used. The general extreme
value densities are obtained by transforming the classical
extreme value distributions via subordination. This new class
of extreme value densities can be used to obtain recurrence
intervals for extreme events with power-law interarrivals.
Citation: Benson, D. A., R. Schumer, and M. M. Meerschaert

(2007), Recurrence of extreme events with power-law interarrival

times, Geophys. Res. Lett., 34, L16404, doi:10.1029/

2007GL030767.

1. Introduction

[2] Extreme value (EV) theory has been used to predict
the recurrence of extreme geologic processes since the
1940s [Gumbel, 1941; Nordquist, 1945]. Today, quantifica-
tion of the stochastic behavior of the largest floods, earth-
quakes, storms, volcanic eruptions, air pollution levels, and
wave heights is a key factor in risk assessment and
mitigation.
[3] Stochastic representation of both annual and partial

duration (peak-over-threshold) series is typically based on
the Poisson process. Maxima, minima, and threshold
exceedances are represented by a best-fit probability distri-
bution but are assumed to be separated by fixed or expo-
nentially distributed interarrival times. These models are
robust because exceedances in a stochastic process without
long memory will take on a Poisson character as the number
of observations becomes large [Leadbetter et al., 1983].
Limiting distributions governing the maximum (or mini-
mum) value for a properly normalized set of independent
and identically distributed (iid) random variables are the
max-stable extreme value distributions. The appropriate
type of EV distribution can be distinguished by the tail

characteristics of the observations. Generalizations of this
theory focus on violations of independence or stationarity
criteria [Galambos, 1978; Leadbetter et al., 1983].
[4] While techniques for treating dependence and non-

stationarity have been developed and successfully applied in
geologic applications [Enzel et al., 2002; Jain and Lall,
2001; McCuen and Beighley, 2003; Singh et al., 2005],
the Poisson assumption is almost always maintained and
existing EV models cannot be used to determine recurrence
intervals for processes with heavy-tailed, infinite-mean
interarrivals. This property has been observed in storm
origins [Salim and Pawitan, 2003], raindrop release and
arrival on the ground [Lavergnat and Gole, 1998, 2006],
alluvial events [Mazzarella and Diodato, 2002] and earth-
quakes [Musson et al., 2002]. These studies justify
the application of a renewal process model for calculating
EV statistics, as suggested by Smith and Karr [1983].
However, there is little theory on extremal processes in
the context of heavy-tailed random waiting times between
events. This extension is critical, because the application of
a Poisson model for a geologic process that has heavy-tailed
interarrivals will result in a significant misrepresentation of
the risk.
[5] To demonstrate the effect of heavy-tailed waiting

times on recurrence intervals, we simulated one process
with independent and identically distributed (iid) exponen-
tial observations (with mean = 75) and iid exponential
interarrival times (with mean = 0.95 years), and a second
point process with the same distribution for the observa-
tions, but with iid Pareto (power law) interarrivals with tail
parameter a = 0.9, and scale chosen to ensure that the first
three quartiles of both waiting time distributions are similar.
For each model, the simulation identified the maximum
observation every year. The heavy-tailed interarrivals lead
to smaller probabilities for a given event size. Hence, the
maximum event size expected for a given recurrence
interval of a heavy-tailed interarrival process will be signif-
icantly smaller than that of the corresponding compound
Poisson process (Figure 1).

2. Master Equation for Continuous Time
Random Max Model

[6] The continuous time random walk (CTRW), or
renewal-reward process, is a useful and flexible model that
has become popular in geophysics, especially for modeling
processes with heavy tails and/or irregular (possibly heavy-
tailed) waiting times. The CTRW is often used to model
diffusion or dispersion, in which particles perform a random
walk with random waiting times between particle jumps.
Here, we develop the continuous time random max model
by considering the magnitude of exceedances (events)
rather than particle jump lengths and record the maximum
of n events rather than the sum. Suppose that we are
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observing exceedances over a given threshold for a
detrended and declustered dataset. Define the random
variables:

Yn = iid exceedance event magnitudes with cumulative
distribution function F(x),

Jn = iid duration of interarrivals (time between excee-
dance events) with density y(t),

Tn = J1 + J2 + � � � + Jn = time of the nth event,
Nt = max{n:Tn � t} = number of events by time t,
Mn = max(Y1, Y2, � � �, Yn) = maximum of the first n

observed events, and
Mt = MNt

= max(Y1, Y2, � � �, YNt) = maximum observed
event by time t.

[7] We derive the probability distribution of the maxi-
mum of a number of iid events separated by iid waiting
times following an analogous derivation by D. Benson et al.
(Review of continuous time random walks: Derivation,
approximation, limits, and limitations, submitted to Water
Resources Research, 2007) for the distribution of the sum of
events. The distribution of Mt = MNt

can be computed by
conditioning on Nt = 0, 1, 2,. . .. Write

P MNt
� xð Þ ¼

X1
n¼0

P MNt
� xjNt ¼ nð ÞP Nt ¼ nð Þ; ð1Þ

and note that

P MNt
� xjNt ¼ nð Þ ¼ F xð Þ½ 	n; ð2Þ

since Y1, Y2, Y3,. . . are iid. Because Tn and Nt are mutually
inverse processes, we have {Nt 
 n} = {Tn � t}, i.e., we
have at least n observations by time t > 0 if and only if the
nth observation occurs by time t (Figure 2). The time of the
nth event Tn = J1 + � � � + Jn has a density that is
the convolution of the individual inter-event periods, and
hence its probability density is the n-fold convolution y1(t) ?

y2(t) ? � � � ?yn(t). Denote this n-fold convolution P(Tn 2 (t,
t + dt)) = yn?(t)dt, and to obtain the probability P(Tn � t),
we integrate the density from zero to t:

P Nt 
 nð Þ ¼ P Tn � tð Þ ¼
Z t

0

yn? uð Þdu;

with Laplace transform

L P Nt 
 nð Þ½ 	 ¼
Z 1

0

e
stP Nt 
 nð Þdt ¼
~y sð Þ

� �n
s

;

where ~y(s) =
R1
0

e
st y(t)dt is the Laplace transform.
[8] Because we require the probability that the number of

events by time t is exactly n, we take the difference between
the probability of n + 1 and n events:

P Nt ¼ nð Þ ¼ P Nt 
 nð Þ 
 P Nt 
 nþ 1ð Þ;

with Laplace transform:

L P Nt ¼ nð Þ½ 	 ¼
~y sð Þ

� �n
s



~y sð Þ

� �nþ1

s
¼ 1
 ~y sð Þ

s
~y sð Þ

� �n
: ð3Þ

Replacing the terms on the right-hand side of (1) with (2)
and (3), we find the Laplace transform:

L P MNt
� xð Þ½ 	 ¼

Z 1

0

e
stP MNt
� xð Þdt

¼
X1
n¼0

1
 ~y sð Þ
s

~y sð Þ
� �n

F xð Þð Þn

¼ 1
 ~y sð Þ
s

X1
n¼0

~y sð Þ
� �n

F xð Þð Þn:

ð4Þ

Because the sum of a geometric series
P1

i¼0 r
i = 1/(1 
 r),

provided that jrj < 1, we have

L P MNt
� xð Þ½ 	 ¼

1
 ~y sð Þ
� �

s

1

1
 ~y sð ÞF xð Þ
: ð5Þ

[9] Equation (5) resembles the complete solution for
uncoupled CTRWs [Montroll and Weiss, 1965; Scher and
Lax, 1973] and is the corresponding master equation for
continuous time random max models. Identifying the dis-
tribution of the observations without regard to their timing,
and the distribution of the interarrival times, allows us to
calculate the distribution of the maximum observation in
any time period using (5). If the continuous time random
max is a Poisson process, then interarrival times are
exponentially distributed y(t) = le
lt with Laplace trans-
form ~y(s) = l/(l + s). Then relation (5) yields

Z 1

0

e
stP MNt
� xð Þdt ¼ 1
 l= lþ sð Þ

s

1

1
 F xð Þ l
sþ l

¼ 1

sþ l 1
 F xð Þð Þ : ð6Þ

Figure 1. Plot showing the empirical quantile functions
for maxima in a process with iid exponential observations
separated by a choice of exponential or Pareto inter-arrival
times.
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This is the Laplace transform (in t) of:

P MNt
� xð Þ ¼ e
lt 1
F xð Þð Þ; ð7Þ

which is known to be the distribution of the maximum for a
compound Poisson process [Reiss and Thomas, 2001;
Rosbjerg et al., 1992; Smith, 1987].
[10] If the interarrival distribution is chosen judiciously in

(5), the limiting governing distribution can be obtained in
closed form. In the classic case of exponentially distributed
exceedances F(x) = 1 
 e
lxx and exponentially distributed
interarrival times 8(t) = lte


ltt, we find P(MNt
� x) = exp

(
ltte

lxx). With the addition of generalized Pareto (with

three subtypes corresponding to the exponential, Pareto, and
beta distributions) event magnitudes F(x), the distribution of
the maximum in time (7) is GEV (with subtypes I, II, and III
corresponding to the Gumbel, Frechet, and Weibull distri-
butions [Reiss and Thomas, 2001]).
[11] The master equation is free of any distributional

assumptions and can accept any type of interarrival distri-
bution. The max-distribution can be obtained numerically
for datasets where interarrival distributions are neither
exponential nor power-law using methods described by
Abate and Whitt [1995].

3. Limit Processes

[12] Extreme value theory provides a framework for
extrapolating a finite event history to a long time scale.
The standard EV models are based on asymptotic arguments
that allow us to approximate the behavior of the maximum
event by letting the number of events go to infinity and
using limit theorems to obtain the extreme value models that
can be calibrated using observations data. Some well-
known results for the maximum limit process preface the
discussion of the interarrival/counting time process for
context.

3.1. Maximum Limit Process

[13] As the number of events n becomes large, the
distribution of the maximum [F(x)]n tends toward a ‘‘fixed

point,’’ if a proper rescaling (renormalization) is performed.
In terms of random variables, after a proper rescaling
by coefficients that depend on sample size, the maximum
Mn converges to a ‘‘max-stable’’ random variable: an (Mn 

bn) ) A, where ) denotes convergence in distribution. The
random variable A is max-stable with CDF P(A � x) = G(x).
In the distributional sense, the CDF of the individual events
moves to the fixed point [F(an


1x + bn)]
n ! G(x). The two

max-stable distributions listed below are especially useful
for large samples sizes (i.e., large times) of events with no
fixed upper bound, because they depend only on the
behavior of the upper tail of F(x), which can be estimated
without regard for the entire distribution. Gnedenko [1943]
was the first to show that the tail of the parent distribution
determines which type of extreme value distribution will
occur in the limit. Restricting our attention to the maxima of
events with no upper bound, the scaling coefficients and the
corresponding max-stable distributions are of form:
[14] Type I. All moments of F(x) are finite, then G1(x) =

exp(
e
x), and the coefficients an and bn depend on the
distribution of individual events F(x) [Leadbetter et al.,
1983]. For example, it can be shown that exponential events
with F(x) = 1 
 e
lx have an = l, bn = (ln n)/l.
[15] Type II. The tail for large values follows F(x) � 1 


Cx
a and somemoments diverge, then an� (Cn)
1/a, bn� 0,
and G2(x) = exp(
x
a) for x 
 0.
[16] We can define the process A(t), which is the max-

stable corresponding to t events. In this context, A = A(1).
The distribution of tmax-stable events follows A(t)�[G(x)]t.
In the case that the events are max-stable, it is simple to
find the scaling coefficients. For example, the Type II max-
stable follows [G2(x)]

t = exp(
tx
a) = G2(t

1/a(x 
 0)) =

G2(at (x 
 bt)). AType I max-stable has at = 1 and bt = ln(t),
so that [G1(x)]

t = exp(
te
x) = G1(x 
 ln(t)) = G1(at(x 
 bt)).

3.2. Interarrival/Counting Time Processes

[17] Exceedances in a stochastic process without long
memory will take on a Poisson character as the number of
observations becomes large [Leadbetter et al., 1983]. We
are concerned with the more general limiting process that
can accommodate infinite mean (power-law, with exponent
g < 1) interarrival distributions. The special case where the
interarrivals have finite mean, but infinite variance, will be
treated elsewhere.
[18] In the case of heavy tailed interarrival times, the

events are separated by a wide distribution of times, and the
number of events by time t, Nt, can also grow more slowly
than linear with time. To calculate the rescaling of Nt, we
use known limiting properties of Tn and the inverse rela-
tionship between Nt and Tn. As with the event maxima, we
rescale the time between events with power law tails and
infinite mean: P(J > t) � C

Gð1
gÞ t

g for large interarrival

times t, where C is an arbitrary constant and g < 1. Taking
the scaling limit is equivalent to shrinking the time axis
and the counting axis of Figure 2 at the correct rates so that
the graph remains invariant. A functional central limit
theorem shows that the rescaled sum of interarrival periods
converges to a Lévy process: c
1/gT[cu] = c
1/g (J1 + . . . +
J[cu]) ) W(u) [Meerschaert and Scheffler, 2004].
[19] The random variable W(u) corresponds to the ran-

dom interarrival time associated with the rescaled number of
extreme events u.W(u) is called the stable subordinator; it is

Figure 2. Definition of interarrival times Jn, time of the
nth observation Tn, and number of observations by time t.
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strictly positive, has a stable limit distribution, and sub-
ordinates the time variable [Feller, 1971]. The Laplace
transform of the density (t ! s) is given by E[e
sW(u)] =
e
Cusg, with inverse (Cu)
1/ggg(t(Cu)


1/g), where gg(t) is
the standard stable density. The density shows the proba-
bility of various time t required to accumulate a given
number (u) of events. The rescaling allows non-integer
values of u.
[20] For a given u, the time W(u) is random. We can also

fix a time, and the rescaled counting process keeps track of
the random number of events that have occurred. This
random process U(t) must be accounted for in a non-
Poisson process. The relation between the counting process
and the interarrival time process {Nt 
 n} = {Tn � t} leads
to the rescaled counting process c
gNct ) U(t) = inf{u:
W(u) > t}. The density of the counting process is related to
the waiting time density by h(ujt) = t

ug (Cu)

1/g gg(t(Cu)


1/g)
[Meerschaert and Scheffler, 2004].

3.3. Max-Renewal Process and Extreme Value
Distributions

[21] The limit extremal process A(t) can be used to
represent the maximum value of a set of observations or
exceedances. The limit distribution of MNt

is obtained by
simultaneously rescaling the max process and counting
process, since both are linked by the number of events:
c
g/aMNct

) M(t) as c ! 1 in the case of heavy tailed
observations (type II). M. Meerschaert and S. Stoev
(Extremal limit theorems for observations separated by
random waiting times, submitted to Stochastic Processes
and Their Applications, 2007) show that the limiting max
process has the convergence property M(t) = A(U(t)), which
shows the subordination of the Markov process A(t) by the

directing process U(t). Since the max process and time
process are independent, the density of M(t) is

P M tð Þ � xð Þ ¼
Z 1

0

P A sð Þ � xð Þh sjtð Þds

¼
Z 1

0

G xð Þsh sjtð Þds

¼ t

g

Z 1

0

G xð Þss
1 Csð Þ
1=g
gg t Csð Þ
1=g
� �

ds:

ð8Þ

where G(x) is one of the subtypes of classical extreme value
distributions. The continuous-time extreme value distribu-
tion (8) allows for both heavy-tailed exceedances and
heavy-tailed interarrivals.

3.4. Example

[22] Lavergnat and Gole [1998] present an extensive data
set of raindrop sizes and arrival times at a 250 � 40 mm
counter. For timescales greater than tens to hundreds of
seconds, they find a power-law interarrival distribution that
follows, asymptotically, P(J > t) � C

Gð1
gÞ t

g with C = 3.94

and g = 0.68. They also remark that their fitted mean
interarrival time is 1.78 s. If we were to assume a Poisson
process, then we might use a rate of lt = 1/1.78 = 0.562 s
1.
Their drop size histogram [Lavergnat and Gole, 1998,
Figure 2b] can be fit, for drops larger than roughly
0.1 mm, by an exponential density p(x) = lxe


lxx with
lx = 2.3. Ours is not a rigorous fitting for lack of the exact
sample size. The maximum drop from an iid series of n
drops converges by lxMn 
 ln(n)) A, where A has a type I
max-stable distribution G1(x) = e
e
x

. Assuming a large
enough number of events that the max-stable is a fair
representation of the properly scaled maximum, we have
P(Mn < x) � e
ne
lxx

. As shown by (7), a Poisson process
would then have n = tlt and P(Mn < x) � e
tlte
lxx. For the
actual heavy-tailed waiting times, we subordinate using (8).
The Poisson assumption overestimates the number of drops
that may occur (Figure 3), especially at large timescales, and
therefore overestimates the maximum drop size probability.
The heavy-tailed interarrivals, when properly accounted for,
also show a much larger probability of very small maximum
drop sizes, simply because of the higher likelihood of fewer
drops arriving. We note that Lavergnat and Gole [1998] use
their analysis to accurately predict cumulative rainfall. We
speculate that in a similar way, our method may be used to
predict the recurrence intervals of the greatest rainfall
intensities.

4. Conclusions

[23] When predicting the probability of extreme events
over certain time periods, one must account for 1) the
distribution of the events—without respect to interarrival
times—and 2) the time spacing between events. Using a
continuous time random max model, we find the exact
formula for the Laplace transform of the probability density
if both distributions are known. If only the tails of the
distributions can be estimated, we apply limit theory to find
the generalized extreme value distributions. In the case of
heavy-tailed interarrivals, the generalized EV is calculated
using a subordination integral. These limit distributions are
most useful for very long-term predictions.

Figure 3. Cumulative distributions of maximum drop size
at 10, 1,000, and 100,000 s. Dashed lines assume Poisson
arrival process, solid lines use the observed power-law
interarrivals. The Poisson process overestimates the maxima
due to an overestimate of the number of arrivals, especially
at late time.
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