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Abstract: The continuous time random walk is a model from statistical physics
that elucidates the physical interpretation of the space-time fractional diffusion
equation. In this model, each step in the random walk is separated by a random
waiting time. The long-time limit of thismodel is governedbya fractional diffusion
equation. If the step lengthof the randomwalk followsapower law,weget a space-
fractional diffusion equation. If the waiting times also follow a power law, we get
a space-time fractional diffusion equation. The index of the power law equals the
order of the fractional derivative. If the waiting times and jumps are dependent
random variables, the governing equation involves coupled space-time fractional
derivatives.
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1 Introduction
The continuous time random walk (CTRW) is a model from statistical physics,
introduced by Montroll and Weiss [35] and developed further by Scher and Lax
[39], Klafter and Silbey [14], and Hilfer and Anton [12]. Start with a random walk
S(n) = Y1 + ⋅ ⋅ ⋅ + Yn where the independent and identically distributed (iid) ran-
dom variables {Yn} represents the particle jumps. Now assume a sequence of iid
positive random variables {Jn}, and suppose that the waiting time Jn separates the
n − 1st and the nth jumps. Then T(n) = J1 + ⋅ ⋅ ⋅ + Jn is the time of the nth jump.
The number of jumps by time t ≥ 0 is N(t) = max{n ≥ 0 : T(n) ≤ t}, and the CTRW
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X(t) = S(N(t)) gives the particle location at time t ≥ 0. If the waiting times Jn and
the jumps Yn are independent, this is called an uncoupled CTRW.

Metzler and Klafter [32, 33] survey awide variety of CTRW applications in biol-
ogy, geophysics, geomorphology, finance, material science, particle physics, and
turbulence. Berkowitz et al. [6] review CTRW models in hydrology. Scalas [37] re-
views applications of the CTRWmodel in finance. Sokolov [46] reviews the physi-
cal assumptionsbehindapplicationsof theCTRW. Zaburdaev,Denisov andKlafter
[50] review the “Lévywalk”model, a strongly coupledCTRWwhere the step length
is proportional to the waiting time. Metzler et al. [34] review applications of the
CTRWmodel to single particle tracking. Scher and Montroll [40] apply the CTRW
model to transient photocurrent in amorphous materials. Uchaikin and Sibatov
[48] develop CTRW theory for fractional kinetics in solids. A CTRWmodel for the
migration of cancer cells was presented in Fedotov and Iomin [9]. Schumer and
Jerolmack [41] develop an interesting CTRWmodel for sediment deposition in the
geological record. Ganti et al. [10] propose a CTRWmodel for gravel bed load trans-
port in rivers. Benson andMeerschaert [4] outline a CTRWmodel for contaminant
transport that segregates themobile and immobile phases. Schulz et al. [42] apply
the CTRWmodel to cellmovements. Meerschaert et al. [29] propose a CTRWmodel
for sound transmission in complex media.

2 Uncoupled CTRW
Now suppose that the iid jumps have a probability density function (pdf) f(x), and
the waiting times have a pdf ψ(t). Montroll and Weiss [35] compute the exact pdf
of the uncoupled CTRW using transforms. Using the Fourier transform (FT)

̂f (k) = 𝔼[eikYn] =
∞

∫
−∞

eikxf(x) dx (1)

and the Laplace transform (LT)

ψ̃(s) = 𝔼[e−sJn] =
∞

∫
0

e−stψ(t) dt, (2)

we apply a simple conditioning argument. First note that

p(x, t) = ℙ[S(N(t)) = x] = ∞∑
n=0

ℙ[S(N(t)) = x|N(t) = n]ℙ[N(t) = n]. (3)

If N(t) = n, then S(N(t)) = S(n) is the sum of n iid random variables, so its FT is

𝔼[eik(Y1+⋅⋅⋅+Yn)] = 𝔼[eikY1] ⋅ ⋅ ⋅ 𝔼[eikYn] = ̂f (k)n .
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Clearly

q(0, t) = ℙ[N(t) = 0] = ℙ[J1 > t] = 1 − ℙ[J1 ≤ t] = 1 −
t

∫
0

ψ(u) du,

and hence q̃(0, s) = s−1(1−ψ̃(s)), using the fact that s−1 g̃(s) is the LT of∫t0 g(u) du.
More generally, for N(t) = n > 0 we require that T(n) = u ≤ t and Jn+1 > t − u, and
hence

q(n, t) = ℙ[N(t) = n] =
t

∫
0

ψn∗(u)Ψ(t − u) du,
where ψn∗ is the n-fold convolution, and Ψ(t) = ℙ[Jn+1 > t]. Taking LT we see
that q̃(n, s) = ψ̃(s)ns−1(1 − ψ̃(s)) for all n ≥ 0. Taking FT and LT in (3) leads to the
Montroll-Weiss formula

p̄(k, s) =
∞

∫
−∞

eikx
∞

∫
0

e−stp(x, t) dt dx

= ∞∑
n=0

̂f (k)nψ̃(s)n s−1(1 − ψ̃(s)) = 1
s

1 − ψ̃(s)
1 − ̂f (k)ψ̃(s) (4)

that gives the exact Fourier-Laplace transform (FLT) for the pdf of the uncoupled
CTRW.

Rewrite (4) in the form

p̄(k, s) = ̂f (k)ψ̃(s)p̄(k, s) + 1
s (1 − ψ̃(s)) ,

invert the FT, and then invert the LT to obtain the master equation from Klafter
and Silbey [14]:

p(x, t) =
t

∫
0

ψ(t − u)
∞

∫
−∞

f(x − y)p(y, u) dy du + δ(x)
∞

∫
t

ψ(u) du. (5)

Ifψ(t) = λe−λt for t > 0, then ψ̃(s) = λ/(λ+s), and theMontroll-Weiss equation
reduces to

p̄(k, s) = 1
s + λ(1 − ̂f (k)) .

Inverting the LT yields
p̂(k, t) = e−λt(1− ̂f(k)),

which is thewell-known formula for the compoundPoissonpdfwith jumppdf f(x)
(e.g., see [28, Example 3.3]). The compound Poisson is a special case of the CTRW
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with exponentialwaiting times. Because the exponential distributionhasnomem-
ory, this CTRW is a Markov process: Once the value X(t) = S(N(t)) is known, the
pdf of X(t + s) has no further dependence on the past history of X(u) for 0 ≤ u < t.
In fact, it is even a Lévy process: The pdf of X(s) is the same as that of X(t+s)−X(t)
(stationary increments), and the randomvariables X(t) and X(t+s)−X(t) are inde-
pendent (independent increments). However, a CTRW without exponential wait-
ing times is not a Lévy process, or even a Markov process. The influence of the
memory can be seen in the master equation (5).

Next we give a heuristic explanation of the connection between CTRW and
fractional calculus (e.g., see Scalas, Gorenflo and Mainardi [38]). Suppose that
ℙ[Xn > x] = Ax−α for some A > 0 and some 1 < α < 2. Then μ = 𝔼[Xn] exists,
and we can take Yn = Xn − μ. Suppose also that ℙ[Jn > t] = Bt−β for some B > 0
and some 0 < β < 1. A calculation [28, Proposition 1.7] shows that ̂f (k) = 1 +
D(−ik)α + O(k2) where D = AΓ(2 − α)/(α − 1). A similar calculation [28, Theorem
3.37] shows that ψ̃(s) = 1 − sβ + O(s) when B = 1/Γ(1 − β). Now in order to
obtain a limit pdf, replace Yn by c−1/αYn and Jn by c−1/βJn. Then the particle jumps
have FT ̂f (c−1/αk) = 1 + Dc−1(−ik)α + O(c−2/αk2) and the waiting times have LT
ψ̃(c−1/βs) = 1 − c−1sβ + O(c−1/β s). Plug into the Montroll-Weiss formula, multiply
by c on top and bottom, and let c → ∞ to get the CTRW scaling limit

p̄c(k, s) = 1
s

c−1sβ + O(c−1/βs)
c−1sβ − Dc−1(−ik)α + ⋅ ⋅ ⋅

→ sβ−1

sβ − D(−ik)α = p̄∞(k, s). (6)

Rewrite as sβ p̄∞(k, s) = D(−ik)α p̄∞(k, s) + sβ−1, and invert the FT and LT to get
the space-time fractional diffusion equation

∂βt p∞(x, t) = D∂αxp∞(x, t) + δ(x) t−β
Γ(1 − β) (7)

that governs the pdf of the long-time CTRW scaling limit in terms of Riemann-
Liouville fractional derivatives. Here we use the fact that ∂βt g(t) has LT sβ g̃(s),
∂αx f(x) has FT (−ik)α ̂f (k), and t−β/Γ(1 − β) has LT sβ−1 [28, Example 2.9]. This sta-
tistical physics argument illustrates how the fractional derivative in space codes
long particle jumps, and the fractional derivative in time represents long waiting
times. The argument is not completely rigorous because the LT inversion requires
more assumptions, e.g., see the proof of [26, Theorem 3.1].

Remark 2.1. Mainardi [18] computes a solution to the time fractional diffusion
equation (7) with α = 2 using Wright functions. Mainardi and Gorenflo [19] solve
time-fractional differential equations using the Mittag-Leffler function. Hilfer and
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Anton [12] and Mainardi, Luchko and Pagnini [20] use Mittag-Leffler functions to
solve the general equation (7). The Mittag-Leffler function also has a special role
in CTRWmodeling: Mainardi, Gorenflo and Scalas[21] note that for Mittag-Leffler
waiting times ℙ[Jn > t] = Eβ(−λtβ), the time process is already in its asymptotic
form, see also Meerschaert, Nane, and Vellaisamy [27].

Another way to derive the CTRW scaling limit uses the extended central limit the-
orem. Since T(n) has LT

𝔼[e−sT(n)] = 𝔼[e−s(J1+⋅⋅⋅+Jn)] = 𝔼[e−sJ1] ⋅ ⋅ ⋅ 𝔼[e−sJn] = ψ̃(s)n (8)

the rescaled sum c−1/βT([ct]) has LT
𝔼[e−sc−1/βT([ct])] = ψ̃(sc−1/β)[ct]

= (1 − sβ
c + o(c−1))[ct] → e−tsβ (9)

as c → ∞, using the fact that (1+a/c+o(1/c))c → ea. The limit is the LT of a stable
Lévy process D(t)with index β, and the continuity theorem for the LT implies that
c−1/βT([ct]) ⇒ D(t) in distribution. A similar argument [28, Section 1.2] shows
that c−1/αS([ct]) ⇒ A(t), an α-stable Lévy process with𝔼[eikA(t)] = exp(Dt(−ik)α).

Since the renewal process N(t) is the inverse of the random walk T(n), it has
an inverse limit [24, Theorem 3.2]: Observe that {N(t) ≥ u} = {T(⌈u⌉) ≤ t}, where
⌈u⌉ is the smallest integer n ≥ u. Define the inverse time process E(t) = inf{u > 0 :
D(u) > t}, and note that {E(t) ≤ u} = {D(u) ≥ t}. Then

ℙ[c−βN(ct) ≤ u] = ℙ[N(ct) ≤ cβu]
= ℙ[T(⌈cβu⌉) ≥ ct]
= ℙ[c−1T(⌈cβu⌉) ≥ t]
= ℙ[(cβ)−1/βT(⌈cβu⌉) ≥ t] → ℙ[D(u) ≥ t] = ℙ[E(t) ≤ u]

so that c−βN(ct) ⇒ E(t). Then an argument [24, Theorem 4.2] using the continu-
ous mapping theorem (e.g., see Billingsley [8] or Whitt [49] shows that

c−β/αS(N(ct)) = (cβ)−1/αS(cβ c−βN(ct)) ≈ (cβ)−1/αS(cβ E(t)) ⇒ A(E(t)).
Remark 2.2. Technically, the continuous mapping argument in [24, Theorem 4.2]
requires process convergence: Not only does c−1/αS([ct]) ⇒ A(t) for a single t > 0,
but also

(c−1/αS([ct1]), . . . , c−1/αS([ctn])) ⇒ (A(t1), . . . , A(tn))
for any 0 ≤ t1 < ⋅ ⋅ ⋅ < tn as random vectors. This is called convergence of finite
dimensional distributions. To extend to all t ≥ 0, one considers {A(t) : t ≥ 0} as a
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randomelement of the space of right-continuous functions from [0,∞) to the real
line. Then [24, Theorem 4.1] establishes the convergence c−1/αS([ct]) ⇒ A(t) for
all t ≥ 0 in the Skorokhod J1 topology on that space of functions. In this setting,
[24, Theorem 4.2] establishes CTRW process convergence in the Skorokhod M1
topology. Straka andHenry [47, Theorem3.6] establishCTRWprocess convergence
in the stronger J1 topology. For more details, see [28, Chapter 4].

The pdf g(t, u) of t = D(u) has LT g̃(s, u) = e−usβ by (9), and it follows easily
that D(u) has the same pdf as u1/βD(1). Hence g(t, u) = u−1/βgβ(u−1/βt) where
gβ(t) = g(t, 1) is the density of D(1). Then

ℙ[E(t) ≤ u] = ℙ[D(u) ≥ t]
= ℙ[u1/βD(1) ≥ t] = ℙ[D(1) ≥ tu−1/β] = 1 −

tu−1/β

∫
0

gβ(u) du. (10)

Differentiate (10) to see that u = E(t) has density
h(u, t) = t

β u
−1−1/βgβ(tu−1/β). (11)

Next we compute the LT of this pdf. Since

ℙ[E(t) ≤ u] = ℙ[D(u) ≥ t] =
∞

∫
t

g(w, u) dw
the inner process E(t) has density

h(u, t) = d
duℙ[E(t) ≤ u] = d

du
[
[
1 −

t

∫
0

g(w, u) dw]
]

with LT

h̃(u, s) = − d
du [s−1 g̃(s, u)] = − d

du [s−1e−usβ] = sβ−1e−usβ

using the fact that integration corresponds to multiplication by s−1 in LT space.
Now a simple conditioning argument, similar to (3), shows that the CTRW

limit A(E(t)) has pdf
p∞(x, t) =

∞

∫
0

q(x, u)h(u, t) du ≈ ∑
u
ℙ(A(u) = x|E(t) = u)ℙ(E(t) = u),
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where q(x, u) is the pdf of x = A(u). Since q̂(k, u) = eDt(−ik)α, the CTRW limit
density has FLT

p̄∞(k, s) =
∞

∫
0

eDu(−ik)α sβ−1e−usβ du = sβ−1

sβ − D(−ik)α
which agrees with (6). Hence the CTRW limit pdf p∞(x, t) solves the space-time
fractional diffusion equation (7), see Becker-Kern et al. [3, Example 5.1] for more
details. This probabilistic argument provides a rigorous connection between the
CTRW and the space-time fractional diffusion equation, as well as a stochastic
model for the long-time CTRW limit. The method extends naturally to vector par-
ticle jumps, see [28, Chapter 6].

Remark 2.3. Since the CTRW scaling limit X(t) = A(E(t)) is not a Markov process,
its transition density p(x, t) does not completely characterize the process. Meer-
schaert and Straka [30, 31] develop a method for computing the joint pdf of X(t)
at multiple times. This method is based on a semi-Markov representation of the
CTRW limit, where the memory is explicitly included, see also Germano et al.[11].
Krüsemann, Schwarz and Metzler [17] demonstrate how the non-Markovian na-
ture (ageing, or memory) can be observed in Scher-Montroll experiments on tran-
sient photocurrent in amorphousmaterials. Barkai andCheng [2] develop a theory
of ageing CTRW.

Remark 2.4. A closely related model called the continuous time random maxi-
mum (CTRM) describes the biggest jump, rather than the sum. Using the same
setup as before, letM(n) = max(Y1, . . . , Yn) and consider the CTRMM(N(t)) that
describes the biggest jump by time t ≥ 0. Letting F(x) = ∫x

−∞
f(y) dy denote the

cumulative distribution function (cdf) of the jumps, note that

ℙ[M(n) ≤ x] = ℙ[Y1 ≤ x, . . . , Yn ≤ x] = ℙ[Y1 ≤ x] ⋅ ⋅ ⋅ ℙ[Yn ≤ x] = F(x)n
and argue in exactly the same way as before that the CTRM has cdf

P(x, t) = ℙ[M(N(t)) ≤ x] = ∞∑
n=0

ℙ[M(N(t)) ≤ x|N(t) = n]ℙ[N(t) = n] (12)

with LT

P̃(x, s) = ∞∑
n=0

F(x)nψ̃(s)n s−1(1 − ψ̃(s)) = 1
s

1 − ψ̃(s)
1 − F(x)ψ̃(s) . (13)

If ℙ[Yn > x] = Dx−α for some α > 0, then c−1/αM([ct]) has cdf
F[ct](c1/αx) = (1 − Dx−α

c )[ct] → e−Dtx−α
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as c → ∞. It follows that c−1/αM([ct]) ⇒ Z(t), a max-stable process with cdf
G(x, t) = e−Dtx−α for all x > 0. Then c−β/αM(N(ct)) ⇒ Z(E(t)) as c → ∞. The
CTRM limit has cdf

P∞(x, t) =
∞

∫
0

G(x, u)h(u, t) du
with LT

P̃∞(x, s) =
∞

∫
0

e−Dux−α sβ−1e−usβ du = sβ−1

sβ + Dx−α

for all s > 0. Rewrite as sβ P̃∞(x, s) = −Dx−αP̃∞(x, s) + sβ−1 and invert the LT to
see that the cdf of the CTRW limit solves the time-fractional ordinary differential
equation

∂βt P∞(x, t) = −Dx−αP∞(x, t) + δ(x) t−β
Γ(1 − β) . (14)

See Benson et al. [5] for more details, and an application to rainfall data.

3 Coupled CTRW
In Section 2, we considered the uncoupled CTRW, where the waiting times are
independent of the particle jumps. Now we consider the more general coupled
CTRW,where the length of the particle jump can depend on thewaiting time. This
model extension is useful to bound particle velocity, the ratio of jump length over
waiting time. Let (Yi , Ji) be iidwith (Y, J) onℝ×ℝ+, where Yi models the i-th jump
of a walker and Ji is the waiting time before or after the i-th jump. Set

T(n) = J1 + ⋅ ⋅ ⋅ + Jn and S(n) = Y1 + ⋅ ⋅ ⋅ + Yn ,

so that (S(n), T(n)) is a space-time randomwalk onℝ × ℝ+. Let
N(t) = max{n ≥ 0 : T(n) ≤ t} (15)

denote the number of jumps by time t ≥ 0. For t ≥ 0 we define the continuous
time random walk (CTRW)

S(N(t)) = Y1 + ⋅ ⋅ ⋅ + YN(t) (16)

and the overshooting continuous time random walk (OCTRW)

S(N(t) + 1) = Y1 + ⋅ ⋅ ⋅ + YN(t) + YN(t)+1 (17)



Continuous time random walks | 9

which involves one additional jump. Observe that the CTRW corresponds to the
“first wait, then jump” scenario, whereas the OCTRW corresponds to the “first
jump, then wait” picture. That is, in the CTRWwe begin with a waiting time, then
jump, then repeat. In the OCTRW we begin with a jump, then wait, then repeat.
See Figures 1 and 2 for an illustration.

Since Yi and Ji can be dependent, S(n) and N(t) can be dependent, which
makes theanalysis of the long-time limitingbehavior of the coupledCTRWprocess
in (16) and the coupled OCTRW process in (17) more involved than the uncoupled
case. Hence the analysis of the limit process and the governing equation is more
delicate than the special case discussed in Section 2.

In order to prove limit theorems for these processes, we need to make an as-
sumption on the joint distribution of Y and J, i.e., the distribution of the random
vector (Y, J). In order to make this exposition as simple as possible, we assume
that for some 0 < α < 2 and 0 < β < 1 we have

(n−1/αS(n), n−1/βT(n)) ⇒ (A, D) (18)

as n → ∞, where A and D are nondegenerate. It follows from (18) by projecting on
either coordinate that A has a strictly α-stable distribution and D has a β-stable
distribution. It follows [3, Eq. (2.18)] that for any t > 0 we have

(c−1/αS(ct), c−1/βT(ct)) ⇒ (A(t), D(t)) (19)

as c → ∞, where {(A(t), D(t))}t≥0 is a Lévy process on ℝ ×ℝ+ with (A(1), D(1)) =
(A, D). Observe again, that A(t) and D(t) can and in general will be dependent.

The characteristic function of (A(u), D(u)) for u > 0 is characterized by a vari-
ant of thewell knownLévy-Khinchine formula. Namely, in the present case, under
assumption (18), we have that [3, Lemma 2.1]

𝔼[e−sD(u)+ikA(u)] = exp(−uψ(k, s)), (20)

for all (k, s) ∈ ℝ × ℝ+, where the symbol is given by

ψ(k, s) = iak + ∫
ℝ×ℝ+\{(0,0)}

(1 − eikxe−st + ikx
1 + x2

)ϕ(dx, dt) (21)

for some a ∈ ℝ. The so-calledLévymeasureϕ(dx, dt) is finite outside every neigh-
borhood of the origin and satisfies

∫
0<x2+t≤1

(x2 + t)ϕ(dx, dt) < ∞.

Let ϕA(dx) = ϕ(dx,ℝ+) denote the Lévy measure of the Lévy process {A(u)}u≥0.
By setting s = 0 in (21) we have

𝔼[eikA(u)] = e−uψA(k)
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Fig. 1: The CTRWmodel (16). Each random waiting time Ji is followed by a random jump Yi. In
the coupled CTRW, the pdf of the particle jump Yi can depend on the previous waiting time Ji.
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Fig. 2: The OCTRWmodel (17). Each random waiting time Ji follows a random jump Yi . In the
coupled OCTRW, the pdf of the waiting time Ji can depend on the previous particle jump Yi .
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where
ψA(k) = iak + ∫

ℝ\{0}

(1 − e−ikx + ikx
1 + x2

)ϕA(dx) (22)

is the symbol of A = A(1).
Moreover, let ϕD(dt) = ϕ(ℝ, dt) denote the Lévy measure of the Lévy process
{D(u)}u≥0. If we let k = 0 in (21) we get

𝔼[e−sD(u)] = e−uψD(s)

where

ψD(s) =
∞

∫
0

(1 − e−sv)ϕD(dv) (23)

is the Laplace symbol of {D(u)}u≥0. SinceD is β-stable it iswell known thatψD(s) =
csβ for some constant c > 0. Furthermore, observe [3, Corollary 2.3] that A and D
and hence the Lévy processes {A(u)}u≥0 and {D(u)}u≥0 are independent, so that
the CTRW is uncoupled, if and only if

ϕ(dx, dt) = δ0(dx)ϕD(dt) + ϕA(dx)δ0(dt) (24)

where δ0 denotes the point mass at zero.
Note that {D(u)}u≥0 is a β-stable subordinator and hence the sample paths of

D(u) are cádlág, strictly increasing and D(u) → ∞ as u → ∞. Define the first
passage time process by

E(t) = inf{u ≥ 0 : D(u) > t} (25)

for t ≥ 0.
Finally observe that the symbol ψ(k, s) in (21) induces a pseudo-differential

operator ψ(i∂x , ∂t)which for suitable functions f : ℝ ×ℝ+ → ℝ has the represen-
tation

ψ(i∂x , ∂t)f(x, t) = −a∂xf(x, t)
− ∫
ℝ×ℝ+

(H(t − u)f(x − y, t − u) − f(x, t) + y∂xf(x, t)
1 + y2

)ϕ(dy, du) (26)

where H(t) = I(t ≥ 0) denotes the Heaviside step function. In fact, if we denote by
L1ω(ℝ × ℝ+) the Banach space of measurable functions for which the norm

‖f‖ω := ∫
ℝ×ℝ+

e−ωt|f(t, x)| dx dt
exists, then (26) is valid for all functions in L1ω(ℝ × ℝ+)whose weak first and sec-
ond order spatial derivatives as well as weak first order time derivatives belong to
L1ω(ℝ × ℝ+), see Baeumer et al. [1, Theorem 3.2].
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4 Limit theorems and governing equations
In this section we derive the long-time scaling limit of the coupled CTRW and
OCTRW processes. Moreover, the governing pseudo-differential equations for the
densities of the limit processes are obtained. Recall the definition of the first pas-
sage time from (25) above. The following result is from Jurlewicz et al. [13, Theorem
3.1].

Theorem 4.1. Suppose that (Yi , Ji) are iid random vectors onℝ×ℝ+ such that (18)
holds.
(a) For the CTRW in (16) we have for any t > 0 that

c−β/αS(N(ct)) ⇒ A(E(t)−) (27)

as c → ∞.
(b) For the OCTRW in (17) we have for any t > 0 that

c−β/αS(N(ct) + 1) ⇒ A(E(t)) (28)

as c → ∞.

Sketch of the proof. By projecting on the second coordinate in (19) we see that

c−1/βT(ct) ⇒ D(t) as c → ∞.

Using (15) and (25) this implies that

c−βN(ct) ⇒ E(t) as c → ∞.

In fact, we even get from (19) that

(c−β/αS(cβt), c−βN(ct)) ⇒ (A(t), E(t))
as c → ∞. Now write for the CTRW

c−β/αS(N(ct)) = c−β/αS(cβ c−βN(ct))
and use the continuity of the compositionmapping to see that (27) holds true. The
proof of (28) is similar, using a result from Silvestrov [44] on randomly stopped
processes.

Example 4.2. Figure 3 illustrates the difference between CTRW limit process
A(E(t)−) and the OCTRW limit process A(E(t)) in the special case where A(u) =
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D(E(t)-) 

D(E(t)) 

u 

D(u) 

t 

E(t) 

Fig. 3: Illustration of the difference between the CTRW limit process A(E(t)−) and the OCTRW
limit process A(E(t)) in the special case where A(u) = D(u).

D(u). This occurs when the jumps equal the waiting times, i.e., Yn = Jn for all
n, see Example 5.2 for more details. At u = E(t), since D(u−) < D(u) at a jump,
we also have D(E(t)−) < D(E(t)). In fact D(E(t)−) is the value of the subordinator
A = D just before the jump, and D(E(t)) is the value of the subordinator after the
jump. Since D(E(t)−) < t and D(E(t)) > t with probability one for any t > 0 (e.g.,
see Bertoin [7, III, Theorem 4]), the situation in Figure 3 is typical.

Recall that a stochastic process {X(t)}t≥0 is called self-similar with index H if for
any scale c > 0 we have X(ct) d= cHX(t) for all t ≥ 0, where d= denotes equality in
distribution.

Corollary 4.3. [13, Corollary 3.3] The limit processes A(E(t)−) and A(E(t)) in The-
orem 4.1 are both self-similar with index β/α.
Proof. This follows easily since the scaling factor in both (27) and (28) is c−β/α.

We now present the governing pseudo-differential equations of the CTRW limit
process A(E(t)−) and the OCTRW limit process A(E(t)) obtained in Theorem 4.1.
We show that the governing equations of the CTRWandOCTRWonly differ in their
initial/boundary conditions. While this may seem like a minor difference, the re-
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sult can be quite dramatic, as we shall see in the examples in Section 5. Recall
the representation of the pseudo-differential operator ψ(i∂x , ∂t) from (26). Also
observe that for t > 0 the set ℝ × (t,∞) is bounded away from (0, 0) and hence
ϕ(dx, (t,∞)) is a finite measure.

Theorem 4.4. [13, Theorem 4.1]
(a) The density c(x, t) of the CTRW limit A(E(t)−) is a solution to the governing

equation
ψ(i∂x , ∂t)c(x, t) = δ0(dx)ϕD(t,∞). (29)

(b) The density a(x, t) of the OCTRW limit A(E(t)) is a solution to the governing
equation

ψ(i∂x , ∂t)a(x, t) = ϕ(dx, (t,∞)). (30)

Remark 4.5. In the uncoupled case, where A and D are independent we get using
(24) that

ϕ(dx, (t,∞)) = δ0(dx)ϕD(t,∞)
so that in the uncoupled case the CTRW limit A(E(t)−) and the OCTRW limit
A(E(t)) are identical.
Remark 4.6. The densities in (29) and (30) are the point source solutions to those
equations, that is c(x, 0) = δ0(x) and a(x, 0) = δ(x). If one has a (smooth) initial
condition p(y) the CTRW and OCTRW governing equations read

ψ(i∂x , ∂t)c(x, t) = p(x)ϕD(t,∞)
and

ψ(i∂x , ∂t)a(x, t) =
∞

∫
−∞

p(x − y)ϕ(dy, (t,∞)),
respectively.

Solving the governing equations (29) and (30) for the CTRW and OCTRW limit pro-
cesses relies heavily on Fourier-Laplace transform (FLT) techniques. Let {X(t)}t≥0
be a stochastic process and let m(x, t) denote the density of X(t). Then the FLT of
m(x, t) is defined as

m̄(k, s) =
∞

∫
0

∫
ℝ

eikxe−stm(x, t) dx dt (31)

for k ∈ ℝ and s > 0. The following result gives the FLT of the densities of the
CTRWandOCTRW limit. Recall the definition of the symbols of the Lévy processes
{(A(t), D(t))}t≥0, {A(t)}t≥0 and {D(t)}t≥0 from (21), (22) and (23) above.



Continuous time random walks | 15

Theorem 4.7. [13, Proposition 4.2]
(a) The density c(x, t) of the CTRW limit A(E(t)−) has FLT

c̄(k, s) = 1
s
ψD(s)
ψ(k, s) (32)

for k ∈ ℝ, s > 0.
(b) The density a(x, t) of the OCTRW limit A(E(t)) has FLT

ā(k, s) = 1
s
ψ(k, s) − ψA(k)

ψ(k, s) (33)

for k ∈ ℝ, s > 0.

5 Examples
In this section we will present several concrete examples of coupled CTRW and
OCTRW limits, and solve the corresponding governing equations. In the coupled
case, these equations involve coupled space-time fractional derivative operators.

Example 5.1. (uncoupled case)
Here we revisit the uncoupled case from Section 2, to show how the same results
follow from the more general coupled CTRW limit theory. If Yn and Jn are inde-
pendent, then so are A(t) and D(t). Then the FL-symbol is ψ(k, s) = ψA(k)+ψD(s)
and in view of Remark 4.5 we have ϕ(dx, (t,∞)) = δ0(dx)ϕD(t,∞). Suppose that
the stable Lévy motion {A(t)}t≥0 is totally positively skewed with Fourier-symbol
ψA(k) = −b(−ik)α for some 0 < α ≤ 2, α ̸= 0. Suppose further the {D(t)}t≥0 is a
standard β-stable subordinator with Laplace-symbol

ψD(s) = sβ =
∞

∫
0

(1 − e−su)ϕD(du). (34)

Then in view of [23, Theorem 7.3.7] we have

ϕD(t,∞) = t−β
Γ(1 − β) . (35)

Since in the uncoupled case the CTRW limit A(E(t)−) and the OCTRW limit A(E(t))
are identical, the governing equations (29) and (30) read

∂βt c1(x, t) = b∂αxc1(x, t) + δ0(x) t−β
Γ(1 − β) (36)
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where b < 0 if 0 < α < 1 and b > 0 for 1 < α ≤ 2. The β-stable random variable D
has a smooth density gβ(u) supported on u > 0 and the stable Lévy-motion A(t)
has a smooth density p(x, t). It follows from a simple conditioning argument, as
in Section 2, that A(E(t)) = A(E(t)−) has the density

c1(x, t) =
∞

∫
0

p(x, (t/s)β )gβ(s) ds = t
β

∞

∫
0

p(x, u)gβ(tu−1/β)u−1/β−1 dx, (37)

that solves the governing equation (36). See [22, 24] for details. Equation (36) is
called space-time fractional diffusion equation. Figure 4 plots the solution for
α = 2, so that A(t) is a traditional Brownian motion, and (36) reduces to the time-
fractional diffusion equation. The plot compares the case of heavy tailed waiting
times β = 0.6 with the case of light tailed waiting times β = 1. In the light tailed
case, (36) reduces to the traditional diffusion equation. The introduction of a time-
fractional derivative produces a sharper peak at the origin, and heavier tails. Both
are the consequence of long waiting times between jumps. The plot was drawn
in the open source programming language R [36] using the stabledist package.
Codes for all the figures in this paper are available from the authors upon request.

The remaining examples are coupled. Suppose that Jn are iid with D, a standard
β-stable random variable with Laplace symbol (34) and Lévy measure (35). For
any probability measure ω on ℝ and any p > β/2, suppose that the conditional
distribution of Yn given Jn = t is ω(t−pdx). Then [3, Theorem 2.2] shows that (18)
holds, and that the Lévy measure of (A, D) is given by

ϕ(dx, dt) = (tpω)(dy)ϕD(dt). (38)

In this case, A is stable with index α = β/p.
Example 5.2. (Lévy walk)
Suppose that Yn = Jn as in Kotulski [16]. Take Jn iid with D, a standard β-stable
random variable. From (38) with p = 1 and ω = ε1 (the point mass in one) we see
that the Lévy measure of (A, D) is given by

ϕ(dy, dt) = εt(dy)ϕD(dt) (39)

which is concentrated on the line y = t. It follows that ψA(k) = ψD(−ik) and
ψ(k, s) = (s − ik)β. Since A = D, the joint distribution of (A(s), D(s)) is given by

P(A(s),D(s))(dx, dt) = εt(dx)PD(s)(dt).
Theorem 4.7 shows that the CTRW limit A(E(t)−) = D(E(t)−) in (27) has FLT

c̄2(k, s) = 1
s
ψD(s)
ψ(k, s) = sβ−1

(s − ik)β . (40)
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Fig. 4: Solution c1(x, t) to the uncoupled OCTRW limit equation (37) with t = 1.0, α = 2, and
b = 1 in the case β = 0.6 (solid line), compared with the solution to (37) with t = 1.0, α = 2,
and b = 1 in the traditional diffusion case β = 1 (dashed line). In the uncoupled case, the CTRW
and OCTRW are governed by the same equation.

As in [3, Example 5.4] one can invert the FLT in (40) to get

c2(x, t) = xβ−1(t − x)−β
Γ(β)Γ(1 − β) 0 < x < t. (41)

It solves the coupled governing equation (29) which can be written as

(∂t + ∂x)βc2(x, t) = δ0(x) t−β
Γ(1 − β) . (42)

It follows from (33) that the OCTRW limit A(E(t)) = D(E(t)) in (28) has FLT
ā2(k, s) = 1

s
ψ(k, s) − ψA(k)

ψ(k, s) = 1
s
(s − ik)β − (−ik)β

(s − ik)β . (43)
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Inverting the FLT as in [3, Example 5.4] yields that

a2(x, t) = x−1
Γ(β)Γ(1 − β)(

t
x − t )

β
x > t (44)

is the density of the OCTRW limit D(E(t)). It solves the governing equation
(∂t + ∂x)βa2(x, t) = 1

Γ(1 − β)
∞

∫
t

δ0(x − u)βu−β−1 du (45)

Both governing equations (42) and (45) involve the fractional material derivative
(∂t + ∂x)β considered by Sokolov and Metzler [45].
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Fig. 5: Solution a2(x, t) to the coupled OCTRW limit equation (45) at t = 1.0 in the case β = 0.45
(solid line), compared with the solution c2(x, t) to the coupled CTRW limit equation (42) with
t = 1.0 and β = 0.45 (dashed line).

Figure 5 compares the CTRW and OCTRW limit pdf in the case where both the
waiting times and the jumps are heavy tailed with β = 0.45. Note the striking dif-
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ference between the CTRW and OCTRW limit pdf. The CTRW limit density c2(x, t)
in (41) is supported on 0 < x < t and has moments of all orders. The OCTRW limit
a2(x, t) in (44) falls of like x−1−β as x → ∞ and hence its moments of order > β di-
verge. Recall that in this model both the jumps and the waiting times are positive
random variables.

The coupled CTRW S(N(t)) lies between 0 and t because the jumps and the
waiting times are equal, but at any time t > 0 that is not a jump time T(n), the
particle has experienced a portion of the waiting time Jn+1, but not the jump Yn+1.
The coupledOCTRW S(N(t)+1) lies between t and∞becauseat any time t > 0 that
is not a jump time T(n), the particle has already experienced the jump Yn+1, but
only a portion of the waiting time Jn+1. Hence the limit CTRW pdf is concentrated
on 0 < x < t, and the limit OCTRW pdf is supported on x > t.

It may seem strange that the difference of a single jump can have such a pro-
found effect on the limit pdf. However, in the case of heavy tails, we explained in
Example 2.4 that c−1/αM([ct]) ⇒ Z(t), where M(n) = max(Y1, . . . , Yn). Since we
also have c−1/αS([ct]) ⇒ A(t), the largest jump is the same order of magnitude
as the entire sum. Hence a single jump Yi can be comparable to the entire sum of
jumps S(n), and likewise for the waiting times.

Example 5.3. (Gaussian mixture)
Suppose that D is a β-stable random variable with 𝔼(e−sD) = e−sβ and the con-
ditional distribution of Y given D = t is normal with mean zero and variance 2t,
as in Shlesinger, Klafter, and Wong [43]. Then Y is symmetric stable with index
α = 2β, since

𝔼[eikY] = 𝔼[e−Dk2 ] = e−|k|2β ,

using the fact that a normal with mean zero and variance 2t has FT e−tk2. If we
take (Yn , Jn) iid with (Y, J) then (18) holds and it follows from (38) that the Lévy
measure of (A, D) is given by

ϕ(dx, dt) = N0,2t(dx)ϕD(dt)
where N0,2t is a normal distribution with mean zero and variance 2t. Then the
Lévy symbol of (A, D) equals

ψ(k, s) = (s + k2)β . (46)

By (32) the CTRW limit A(E(t)−) has FLT
c̄3(k, s) = sβ−1

(s + k2)β . (47)
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Inverting the FLT [3, Example 5.2] shows that the CTRW limit has the density

c3(x, t) =
t

∫
0

1
√4πu exp(− x2

4u )c2(u, t) du (48)

with c2(u, t) as in (41). This density solves the governing equation
(∂t − ∂2x)βc3(x, t) = δ0(x) t−β

Γ(1 − β) . (49)

By (33) the OCTRW limit A(E(t)) has FLT
ā3(k, s) = (s + k2)β − |k|2β

(s + k2)β (50)

and has the density [13, Example 5.3]

a3(x, t) =
∞

∫
t

1
√4πu exp(− x2

4u )a2(u, t) du (51)

with a2(u, t) as in (44). In view of (30) it solves the governing equation

(∂t − ∂2x)βa3(x, t) = 1
Γ(1 − β)

∞

∫
t

1
√4πu exp(− x2

4u )βu−β−1 du (52)

Figure 6 plots the pdf of the OCTRW limit and the CTRW limit in the case β =
0.8 at time t = 1. The difference is striking. The CTRW limit pdf has a sharp peak,
and amuch lighter tail than the OCTRW limit pdf. SeeMeerschaert and Scalas [25]
for an application to finance.
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