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Abstract

Continuous time random walks (CTRWs) are used in physics to model anomalous diffusion, by incorporating a random

waiting time between particle jumps. In finance, the particle jumps are log-returns and the waiting times measure delay

between transactions. These two random variables (log-return and waiting time) are typically not independent. For these

coupled CTRW models, we can now compute the limiting stochastic process (just like Brownian motion is the limit of a

simple random walk), even in the case of heavy-tailed (power-law) price jumps and/or waiting times. The probability

density functions for this limit process solve fractional partial differential equations. In some cases, these equations can be

explicitly solved to yield descriptions of long-term price changes, based on a high-resolution model of individual trades that

includes the statistical dependence between waiting times and the subsequent log-returns. In the heavy-tailed case, this

involves operator stable space–time random vectors that generalize the familiar stable models. In this paper, we will review

the fundamental theory and present two applications with tick-by-tick stock and futures data.

r 2006 Elsevier B.V. All rights reserved.
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Continuous time random walk (CTRW) models impose a random waiting time between particle jumps.
They are used in statistical physics to model anomalous diffusion, where a cloud of particles spreads at a rate
different than the classical Brownian motion, and may exhibit skewness or heavy power-law tails. In the
coupled model, the waiting time and the subsequent jump are dependent random variables. See Metzler and
Klafter [1,2] for a recent survey. Continuous time random walks are closely connected with fractional calculus.
In the classical random walk models, the scaling limit is a Brownian motion, and the limiting particle densities
solve the diffusion equation. The connection between random walks, Brownian motion, and the diffusion
equation is due to Bachelier [3] and Einstein [4]. Sokolov and Klafter [5] discuss modern extensions to include
heavy-tailed jumps, random waiting times, and fractional diffusion equations.

In Econophysics, the CTRW model has been used to describe the movement of log-prices [6–10]. An
empirical study of tick-by-tick trading data for General Electric stock during October 1999 (Fig. 1, left) in
e front matter r 2006 Elsevier B.V. All rights reserved.
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Fig. 1. Waiting times in seconds and log-returns for General Electric stock (left) and LIFFE bond futures (right) show significant

statistical dependence.

M.M. Meerschaert, E. Scalas / Physica A 370 (2006) 114–118 115
Raberto et al. [8] uses a Chi-square test to show that the waiting times and the subsequent log-returns are not
independent. These data show that long waiting times are followed by small (in absolute value) returns, while
large returns follow very short waiting times. This dependence seems intuitive for stock prices, since trading
accelerates during a time of high volatility [11]. LIFFE bond futures from September 1997 (Fig. 1, right) show
a different behavior, where long waiting times go with large returns. See [8] for a detailed description of the
data. In both cases, it seems clear that the two variables are dependent. In the remainder of this paper, we will
describe how coupled continuous time random walks can be used to create a high-resolution model of stock
prices in the presence of such dependence between waiting times and log-returns. We will also show how this
fine scale model transitions to an anomalous diffusion limit at long time scales, and we will describe fractional
governing equations that can be solved to obtain the probability densities of the limiting process, useful to
characterize the natural variability in price in the long term.

Let PðtÞ be the price of a financial issue at time t. Let J1; J2; J3; . . . denote the waiting times between trades,
assumed to be non-negative, IID random variables. Also let Y 1;Y 2;Y 3; . . . denote the log-returns, assumed to
be IID. We specifically allow that Ji and Y i are coupled, i.e., dependent random variables for each n. Now the
sum Tn ¼ J1 þ � � � þ Jn represents the time of the nth trade. The log-returns are related to the price by
Y n ¼ log½PðTnÞ=PðTn�1Þ� and the log-price after n trades is Sn ¼ log½PðTnÞ� ¼ Y 1 þ � � � þ Y n. The number of
trades by time t40 is Nt ¼ maxfn : Tnptg, and the log-price at time t is logPðtÞ ¼ SNt

¼ Y 1 þ � � � þ Y Nt
.

The asymptotic theory of CTRW models describes the behavior of the long-time limit. For more details see
[12–14]. The log-price logPðtÞ ¼ SNt

is mathematically a random walk subordinated to a renewal process. If
the log-returns Y i have finite variance then the random walk Sn is asymptotically normal. In particular, as the
time scale c!1 we have the stochastic process convergence c�1=2S½ct� ) AðtÞ, a Brownian motion whose
densities pðx; tÞ solve the diffusion equation qp=qt ¼ Dq2p=qx2 for some constant D40 called the diffusivity. If
the waiting times Ji between trades have a finite mean l�1 then the renewal theorem [15] implies that Nt�lt as
t!1, so that SNt

� Slt, and hence the CTRW scaling limit is still a Brownian motion whose densities solve
the diffusion equation, with a diffusivity proportional to the trading rate l. If the symmetric mean zero log-
returns have power-law probability tails PðjY ij4rÞ � r�a for some 0oao2 then the random walk Sn is
asymptotically a-stable, and c�1=aS½ct� ) AðtÞ where the long-time limit process AðtÞ is an a-stable Lévy motion
whose densities pðx; tÞ solve a (Riesz–Feller) fractional diffusion equation qp=qt ¼ Dqap=qjxja. If the waiting
times have power-law probability tails PðJi4tÞ � t�b for some 0obo1 then the random walk of trading times
Tn is also asymptotically stable, with c�1=bT ½ct� ) DðtÞ a b-stable Lévy motion. Since the number of trades Nt

is inverse to the trading times (i.e., NtXn if and only if Tnpt), it follows that the renewal process is
asymptotically inverse stable c�bNct ) EðtÞ where EðtÞ is the first passage time when DðtÞ4t. Then the log-
price logPðtÞ ¼ SNt

has long-time asymptotics described by c�b=a logPðctÞ ) AðEtÞ, a subordinated process. If
the waiting times Ji and the log-returns Y i are uncoupled (independent) then the CTRW scaling limit process
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densities solve qbp=qtb ¼ Dqap=qjxja þ dðxÞt�b=Gð1� bÞ using the Riemann–Liouville fractional derivative in
time. This space–time fractional diffusion equation was first introduced by Zaslavsky [16,17] to model
Hamiltonian chaos. Explicit formulas for pðx; tÞ can be obtained via the inverse Lévy transform of Barkai
[13,18] or the formula in Ref. [19].

If the waiting times Ji and the log-returns Y i are coupled (dependent) then the same process convergence
holds, but now EðtÞ and AðtÞ are not independent. Dependent CTRW models were first studied by Shlesinger
et al. [20] in order to place a physically realistic upper bound on particle velocities Y i=Ji. They set Y i ¼ J

b=a
i Zi

where Zi is independent of Ji. In their example, they assume that Zi are independent, identically distributed
normal random variables, but the choice of Zi is essentially free [12]. Furthermore, any coupled model at all
for which ðc�1=aS½ct�; c�1=bT ½ct�Þ ) ðAðtÞ;DðtÞÞ will have one of two kinds of limits: either the dependence
disappears in the limit (because the waiting times Jn and the log-returns Y n are asymptotically independent),
or else the limit process is one of those obtainable from the Shlesinger model [12]. In the former case, the long-
time limit process densities are governed by the space–time fractional diffusion equation of Zaslavsky [21–23].
In the remaining case, the long-time limit process densities solve a coupled fractional diffusion equation
q=qt� qa=qjxja
� �b

pðx; tÞ ¼ dðxÞt�b=Gð1� bÞ with a ¼ 2 in the case where Zi is normal [14]. In that case, the
exact solution of this equation is

pðx; tÞ ¼

Z t

0

1ffiffiffiffiffiffiffiffi
4pu
p exp �

x2

4u

� �
ub�1

GðbÞ
ðt� uÞ�b

Gð1� bÞ
du (1)

which describes the probability distributions of log-price in the long-time limit. The resulting density plots are
similar to a normal but with additional peaking at the center, see Fig. 2 (right).

As noted above, even if the waiting times and log-returns are dependent, it is possible that the dependence
disappears in the long-time limit. The relevant asymptotics depend on the space–time random vectors ðTn;SnÞ,
which are asymptotically operator stable [24]. In fact we have the vector process convergence
ðc�1=bT ½ct�; c�1=aS½ct�Þ ) ðDðtÞ;AðtÞÞ and it is possible for the component processes AðtÞ and DðtÞ of this
operator stable Lévy motion to be independent. The asymptotics of heavy-tailed random vectors (or random
variables) depend on the largest observations [25] and hence the general situation can be read off Fig. 1. When
components are independent, the largest observations cluster on the coordinate axes. This is because the rare
events that cause large waiting times or large absolute log-returns are unlikely to occur simultaneously for
both, in the case where these two random variables are independent. Hence we expect a large value of one to
occur along with a moderate or small value of the other, which puts these data points far out on one or the
other coordinate axis. If the components are only asymptotically independent, the same behavior will be seen
on the scatterplot for the largest outlying values, even though the two coordinates are statistically dependent.
This is just what we see in Fig. 1 (left), and hence we conclude that for the GE stock, the coupled CTRW
model has exactly the same long-time behavior as the uncoupled model analyzed previously [6].
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Fig. 2. Coupled CTRW model for LIFFE futures using normal coupling variable (left) produces limit densities (right) from Eq. (1) for

t ¼ 0:5; 1:0; 3:0.
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The coupling Y i ¼ J
b=a
i Zi in the Shlesinger model implies that the longest waiting times are followed by

large log-returns. For the data set shown in Fig. 1 (right), it is at least plausible that the Shlesinger model
holds. To check this, we computed Zi ¼ J

�b=a
i Y i for the largest 1000 jumps, following the method of Ref. [26].

We estimated a ¼ 1:97 and b ¼ 0:95 using Hill’s estimator. The ‘‘size’’ of the random vector ðJi;Y iÞ is
computed in terms of the Jurek distance r defined by ðY i; JiÞ ¼ ðr

1=ay1; r1=by2Þ where y21 þ y22 ¼ 1 [25]. The
resulting data set Zi can be adequately fit by a normal distribution (see Fig. 2, left). Hence the Shlesinger
model provides a realistic representation for the coupled CTRW in this case. To address a slight lack of fit at
the extreme tails, we also experimented with a centered stable with index 1.8, skewness 0.2, and scale 0.08 (not
shown), where the parameters were found via the maximum likelihood procedure of Nolan [27]. For the stable
model, the long-time limit densities can be obtained by replacing the normal density in Eq. (1) with the
corresponding stable density.

In summary, we have shown that the coupled-CTRW theory can be applied to financial data. We have
presented two different data sets, GE Stocks traded at NYSE in 1999, and LIFFE bond futures from 1997. In
both cases there is statistical dependence between log-returns and waiting time, but the asymptotic behavior is
different leading to different theoretical descriptions.
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