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Asymptotic results for Fourier-PARMA time
series

Yonas Gebeyehu Tesfaye®, Paul L. Anderson® and Mark M. Meerschaert

Periodically stationary times series are useful to model physical systems whose mean behavior and covariance
structure varies with the season. The Periodic Auto-Regressive Moving Average (PARMA) process provides a
powerful tool for modelling periodically stationary series. Since the process is non-stationary, the innovations
algorithm is useful to obtain parameter estimates. Fitting a PARMA model to high-resolution data, such as weekly
or daily time series, is problematic because of the large number of parameters. To obtain a more parsimonious
model, the discrete Fourier transform (DFT) can be used to represent the model parameters. This article proves
asymptotic results for the DFT coefficients, which allow identification of the statistically significant frequencies to
be included in the PARMA model.
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1. INTRODUCTION

A stochastic process X; is called periodically stationary (in the wide sense) if i, = EX; and y,(h) = Cov(X, Xi1n) for h = 0, £1, £2,... are
all periodic functions of time t with the same period v > 1. If v = 1, then the process is stationary. Periodically stationary processes
manifest themselves in such fields as economics, hydrology and geophysics, where the observed time series are characterized by
seasonal variations in both the mean and covariance structure. An important class of stochastic models for describing such time
series are the periodic Auto-Regressive Moving Average (ARMA) models, which allows the model parameters in the classical ARMA
model to vary with the season. A periodic ARMA process {X;} with period v [denoted by PARMA (p,q)] has representation

~—

p q
Xe= Y beliXej = e =D 0clj)ecy, (1
= =

where X, = X, — 1, and {&;} is a sequence of random variables with mean zero and scale o, such that {5, = o, '} is ii.d. The
notation in eqn (1) is consistent with that of Box and Jenkins (1976). The autoregressive parameters ¢.(j), the moving average
parameters 0.(j) and the residual standard deviations g, are all periodic functions of t with the same period v > 1. Periodic time series
models and their practical applications are discussed in Adams and Goodwin (1995), Anderson and Vecchia (1993), Anderson and
Meerschaert (1997, 1998), Anderson et al. (1999), Basawa et al. (2004), Boshnakov (1996), Gautier (2006), Jones and Brelsford (1967),
Lund and Basawa (1999, 2000), Lund (2006), Nowicka-Zagrajek and Wylomanska (2006), Pagano (1978), Roy and Saidi (2008), Salas
et al. (1982, 1985), Shao and Lund (2004), Tesfaye et al. (2005), Tjgstheim and Paulsen (1982), Troutman (1979), Vecchia (1985a,
1985b), Vecchia and Ballerini (1991), Ula (1990, 1993), Ula and Smadi (1997, 2003) and Wylomarska (2008). See also the recent book
of Franses and Paap (2004) as well as Hipel and McLeod (1994).
In this article, we will assume:

(i) Finite variance: Eg? < oo.

(i) Either Egj‘ < oo (Finite Fourth Moment Case); or the ii.d. sequence o; = a;ﬂet is RV(x) for some 2 < a < 4 (Infinite Fourth
Moment Case), meaning that P[|o,] > x] varies regularly with index —« and P[o; > x]/P[|o{ > x] — p for some p € [0,1].

(iii) The model admits a causal representation

~—

%= il 2
j=0

where (0) = 1 and 3% [(j)| < oc for all t. Note that y(j) = Yr.i() for all j.
(iv) The model also satisfies an invertibility condition
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where 7,(0) = 1 and 3% |m(j)| < oo for all t. Again, m(j) = 7esk () for all j.

In the infinite fourth moment case, the RV(x) assumption implies that E|d° < oo if 0 < p < &, and in particular, the variance of &,
exists, while E|6/° = oo for p > o, so that E¢f = co. Anderson and Meerschaert (1997) show that, in this case, the sample
autocovariance is a consistent estimator of the autocovariance, and asymptotically stable with tail index «/2. Stable laws and
processes, and the theory of regular variation, are comprehensively treated in Feller (1971) and Meerschaert and Scheffler (2001), see
also Samorodnitsky and Taqqu (1994). Time series with infinite fourth moments are often seen in natural river flows, see, for example,
Anderson and Meerschaert (1998).

The main results of this article, and their relation to previous published results, are as follows. The innovations algorithm can be
used to estimate parameters of a non-stationary time series model, based on the infinite order moving average representation (2).
Anderson et al. (1999) proved consistency of the innovations algorithm estimates for the infinite order moving average parameters
V(). In the finite fourth moment case, Anderson and Meerschaert (2005) developed the asymptotics necessary to determine which of
these parameter estimates are statistically different from zero. Anderson et al. (2008) extended those results to the infinite fourth
moment case. Theorem 1 in this article reformulates those results in a manner suitable for the application to discrete fourier
transform (DFT) asymptotics. To obtain estimates of the auto-regressive parameters ¢.(j) and moving average parameters 0,(j) of the
PARMA process in eqn (1), it is typically necessary to solve a system of difference equations that relate these PARMA parameters back
to the infinite order moving average representation. Section 3 discusses the general form of those difference equations, and
develops some useful examples. The PARMA,(1,1) model (eqn 1) with p = g = 1 is an important example, relatively simple to
analyse, yet sufficiently flexible to handle many practical applications (e.g. see Anderson and Meerschaert, 1998; Anderson et al.,
2007). Theorem 2 provides asymptotics for the Yule-Walker estimates, and Theorem 3 gives the asymptotics of the innovations
estimates, for the PARMA,(1,1) model. These asymptotic results can be used for model identification, to determine which seasons
have non-zero PARMA coefficients in the model. For high-resolution data (e.g. weekly or daily data), even a first-order PARMA model
can involve numerous parameters, which can lead to over-fitting. This can be overcome using DFT. Theorem 5 gives DFT asymptotics
for the infinite order moving average parameters .(j). For the PARMA (1,1) model, Theorems 7 and 8 provide DFT asymptotics for
the autoregressive parameters, and the moving average parameters respectively. These results can be used to determine which
Fourier frequencies need to be retained in a DFT model for the PARMA,(1,1) parameters. Section 6 briefly reviews results from
Anderson et al. (2007), where results of this article were used to work out several practical applications. Theorems 1, 7 and 8 were
stated in Anderson et al. (2007) without proof.

2. THE INNOVATIONS ALGORITHM

The innovations algorithm (Brockwell and Davis, 1991, Propn 5.2.2) was adapted by Anderson et al. (1999) to yield parameter
estimates for PARMA models. Since the parameters are seasonally dependent, there is a notational difference between the
innovations algorithm for PARMA processes and that for ARMA processes (compare Brockwell and Davis, 1991). We introduce this
difference through the ‘season’, i. For monthly data, we have v = 12 seasons and our convention is to let i = 0 represents the first
month, i = 1 represents the second, ..., and i = v — 1 = 11 represents the last.

Let )?ffk = Py, Xirk denotes the one-step predictors, where Hy; = sp{X;,...,Xix—1} is the data vector starting at season
0<i<v—1,k>1and Py, is the orthogonal projection onto this space, which minimizes the mean-squared error

Vii = [ Xivk — )A(i(i)kHz =E(Xik — Xi@k)z'

Then,
)A(,-(Qk = ¢,(<i)1xi+k—1 +o 4 ¢Z)I<Xi7 k>1, (4)
where the vector of coefficients d),ii) = (¢,((i)1,...,¢>,((':>,<)/ solves the prediction equations
Teidy =7y (5)
with 37 = (a1 (19122 21(K))' and
i = Disk—e(€ = m)]ymor & (6)
is the covariance matrix of (Xi,x_1,..., X;)/ for eachi=0,...,v — 1. Let
N-1
O =N KX (7)
j=0

denotes the (uncentered) sample autocovariance, where X; = X; — p,. If we replace the autocovariances in the prediction eqgn (5)
with their corresponding sample autocovariances, we obtain the estimator q&,(('j of ¢,(('3
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As the scalar-valued process X; is non-stationary, the Durbin-Levinson algorithm (Brockwell and Davis, 1991, Propn 5.2.1) for
computing qﬁkJ does not apply. However, the innovations algorithm still applies to a non-stationary process. Writing

- k - ~(r
Xi(jr)k = Z Hl(é)j(XHk*i - Xi(IJr)k—j)7 (8)

=1

yields the one-step predictors in terms of the innovations X« — X,Qk . Lund and Basawa (1999, Propn 4) shows that if ¢ > 0 for
i=0,. — 1, then for a causal PARMA  (p,q) process, the covariance matrix I'x; is non-singular for every k > 1 and each i. Anderson
et al. (1999) show that if EX; = 0 and I'y; is non-singular for each k > 1, then the one-step predictors X( )k starting at season i and

their mean-square errors vy ; are given by

vo; = 7;(0),
0) S g0

I l 1

Oge—e = (Vei)~ {%H(k 60— 0 Z—jek,k—;vl’}’
©)
) 2
1
Vii = 7:k(0) = > (s ) Vs

where eqn (7) is solved in the order vy, Hﬁ'}, Vi 95’?2, 95’?1, Vs 0(3')3 0(3')2 9(3?1, v3,i.... and so forth. The results in Anderson et al. (1999)

show that
) - lﬁi(j)v
Vi (i—k) — 07 (10)
i—k .
iy — —m(),

for all ij, where (t) is the season corresponding to index t, so that (jv + i) = i.

If we replace the autocovariances in egn (9) with the corresponding sample autocovariances in eqn (7), we obtain the innovations
estimates OH and vy ;. Similarly, replacing the autocovariances in eqn (5) with the corresponding sample autocovariances yields the
Yule-Walker estimators (b(k)/ The consistency of these estimators was also established in Anderson et al. (1999).

Suppose that the PARMA process given by eqn (1) satisfies assumptions (i) through (iv) and that:

(v) The spectral density matrix f (1) of the equivalent vector ARMA process (Anderson and Meerschaert, 1997, p. 778) is such that
forsome 0 < m <M < oo, we have

mz'z <Zf()z<MZz, —n<i<m,

for all zin R";
(vi) In the finite fourth moment case E¢f < oo, we choose k as a function of the sample size N so that k*/N — 0 as N — oo and
k — oc. In the infinite fourth moment case, where the i.i.d. noise sequence 6; = aﬂsr is RV(x) for some 2 < « < 4, define

an = inf{x : P(|] > x) < 1/N} (1)

a regularly varying sequence with index 1/« (see, e.g., Propn 6.1.37 in Meerschaert and Scheffler, 2001). Here, we choose k as a
function of the sample size N so that k%2a3 /N — 0 as N — oo and k — oc.
Then, the results in Anderson et al. (1999) show that for all ij, where “—" denotes

l//i(j)7

P
N
P
k,((i—k)) = Oj 5
P
N

convergence in probability.
Suppose that the PARMA process given by eqn (1) satisfies assumptions (i) through (v) and that:

(vii) In the finite fourth moment case, we suppose that k = k(N) — oo as N — oo with k*/N — 0. In the infinite fourth moment
case, we suppose ka3 /N — 0 where ay is defined by eqn (11).

Then, results in Anderson and Meerschaert (2005) and Anderson et al. (2008) show that for any fixed positive integer D, we have

N2 —yyu)ru=1,...,D,i=0,..,v— 1) = N(0,W), (13)

where

W = A diag(a2D?, ... 62 DA/, (14)
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D-1
A= Enn [Dyv—n(D+1)]
n=0
_dlag( I 1’ I 227"'70-;2D)7

En :dlag 07"'aovl//O(n)a'“vl//O(n)?"'707"'70’l//v71(n)7'--7l//v—1(n)

n D—n n D—n

and IT an orthogonal Dv x Dv cyclic permutation matrix defined as

0100 0
0010 -0

M=]: @ & : (15)
0000 1
1000 0

Note that [T ™9 = TT""%, I =" = /,and [T = I1""" = IT"".
For the purposes of thls article, it is useful to express the joint asymptotics of the innovations estimates as follows.

Theorem 1. Let X; = X; — p,, where X, is the per/odlc movmg average process (eqn 2) and u, is a periodic mean function with period v.

Suppose that (i) through (v) and (vii) hold. Letting 0k = 1//,( ), for any non-negative integers j and h with j # h we have
(i) — (i Vi V:
N1/2 }//(J) l//(J) ) :>N(O ( y] jh )) 16
(1p(h) —y(h) "\ Wi Vin ) )’ (16)

where Y(€) = [Yo(£), 1 (€)W, 1 (O], YlO) = WolO)ah1(0),- - -y (0],

X
Vi = {Fnll U8, (Fp_TT- 7Y}, (17)
n=1

with x = min(h, j), and

Fn = diag{‘//O(n)7 W1 (n)7 cety l//vfl (n)}>
Bn = diag{o-(z)o-(;—zn7 (;%()‘17_2”7 ] 63—16;—21 —n}7

where I1 is the orthogonal vxv cyclic permutation matrix (eqn 15).

Proor. For a p x g matrix M, we will write M for its ij entry, and we will write M; for the ii entry of a diagonal matrix. We will also
use modulo arithmetic to compute subscripts, so that Mj,,; = M;;,q = M;;. Since I1; = 1;_;_1;, we have for any matrix M that

MIT); = " MTTy = >~ Mic jujry = Mija
k x

and hence we also have [MIT]; = M;;_. Since [l'[_1],»j = 1yj—i—1}, we also have

[H MH 21{k11}Mk11_MI 1j-15

so that [IT 'MITl; = M;_j_+.
Equation (13) shows that the Dv dimensional column vector s with entries grouped by season, WSLD+£ = J;(¢), has asymptotic
covariance matrix W = ADoA , where [Do),,, = o?a;% for 0 <i<v — 1,1 < ¢ < D, and

D—1
A= ZEmH_m<D+1)7

m=0

where [Eplipse = Yilm)1 (/= my. Define D, = I @D+ and £, = 1T "C*VE,TC*Y. Then, D, and E, are dlagonal matrices
formed by a permutation of coordinates, and D,,,IT~ md+1) = I1-"®*py, E, 11~ 0+ = I ®*VE,. Since (IT9) = IT~¢, we can write
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W = ADoA
D—1 D—1
E H—m(D+1)DO Z Hf(D+1)E[
m=0 (=0
D—1 D-1
_ EmD mm D+1)n(’(D+1)E/
m=0 (=0 (19)
D—1 D-1
_ Z £, D, [T (MO0,
m=0 (=0
D—1 D-1
_ EmDmE[ m,[l—li(mia(D*»”‘
m=0 (=0
Substitute p = m — £ to obtain
D—1
= > GIIPPT where G, = > EnDnm pp (20)
p=1-D m

is a diagonal matrix and m ranges over the setof 0 < m <D — 1 suchthat 0 < m —p <D — 1.
Note that [GPH"’(D”)],S = [Gpl.s+po+1) in €qn (20). Since G, is a diagonal matri, it follows that [GpH’p(D”)],s can be non-zero only
if s =r — p(D + 1). Hence, the only non-zero entries of the matrix W are
Wipjio+j-po+1) = [Gplips)» (21)

for integers T — D < p < D — 1. Then, we can compute

[Em]imj = i(m) oy,

D)oy = 117" Dr1™ 0+ 1)

iD4j
[DO]ID+} m(D+1) [DO] i—m)D+(j—m) — Ul'z—maiii'v (22)
[Em—p,p]iuﬂ = [~ PHIE Hp (o) ]:D+/
=

Em— pLDH p(D+1) l//i—p(m - p)1{j—p>m—p} = l//i—p(m - p)1{j>m}-,
so that the diagonal matrix G, has entries

(Geliosj = D _[EmDmEm-pplins; = D 07 mO Wi(mWip(M = )1 o (23)

m m

where m ranges over the set of 0 < m <D — 1suchthat0 < m —p <D — 1.

Since j < D, the condition m < j, equivalent to m <j — 1, is stronger than m < D — 1. Hence, m ranges over the set of
0<m-p<D-—1suchthat0 < m <j—1.

Since W is symmetric, it suffices to consider 0 < j < h. Substitute p = j — h to see that

[Gj—h]iD+j ZO-I mOi 1 '/// j+h(m ]+h)

where m ranges over the setof 0 < m <j — 1suchthat0 < m — j+ h < D — 1. Since D is arbitrary, we may take D = h. Then, the
condition0 <m —j+ h <D — 1,equivalenttoj —D<m<D—1+4+j— D, reducestoj — D <m <j— 1.Sincej — D <0, this
together with the remaining condition 0 < m < j — 1 shows that the only non-zero entries W,, with ¢ > k are of the form

j—1
J h:D+j Gl mOi ] lpl j+h(m /+h)
m=0

Substitute n = j — m and use eqn (21) to arrive at

WID+/ (i—j+h)D+h = [G} hlip+j = Z O —j+n O / n)lpi—jJrh(h - n)’ (24)

foro <j<h.

Now define a Dv-dimensional column vector lpL with entries grouped by lag: [lpL] (=t)yit1 = ;(£). We want to characterize the
variance—covariance matrix V = CWC of an, where Cis the transition matrix such that lpL = Cs. Then, Cipre = T1—@—1)v4in1y- Write
C as the block matrix
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I EEE—————————————————————

Ch Gy ... G,

G Gy ... Gy
C= . . . )

1 Cp2 ... Cpy

where the submatrix G, is v X D. Since [Gilpe = [Clj—1)v+h,¢—1)pike We se€ that [Cialne = [Clj1)v+n,ip+e €quals zero unless j = ¢ and
h =i+ 1. This shows that C; = J;, the v X D indicator matrix with [Jyls = 14— .—j;. Write

Wy Wy .. Wy Viq Vi, ... Vip

Wy Wy .. Wy Vor Voo ... Vyp
W= . . . and V= . . . ,

Wa Wa ... W, Vor Vb2 ... Vpp

where W, is a D x D matrix and V, is a v X v matrix. Block-matrix multiplication yields
v v
Vi = (O = 37 Gl

It is easy to check that indicator matrices have the property JjAJ, = a;Ji; for any matrix A with [A]; = a; Then,
GWisCh, = JiWishys = [W,S]th,S. In other words, the rs entry of V, equals the jh entry of W,.. Then, from eqn (24) we obtain

[V/h}/+1/ —j+h+1 — [Wl+1l /+h+1 jh — Z Oi_j+n0 1—]‘// 0 )l//ifjJrh(h - n)7 (25)

n=1

for 0 < j < h. Furthermore, [Vjslis1,s41 = [Wisa s41lin = Wipsjspen = O forall s # i — j + h, i.e. there is only one non-zero entry in each
row of Vj,. Since V is symmetric, this determines every entry of V.
Finally, we want to establish egn (17). The diagonal matrices in eqn (18) are such that [F,l.1 = ¥i(n) and [By],.; = 0?62, Then,

[ijnni(jin)]wns = [F/*n]i+175—j+n = ‘//i(f - ”)1 {i+1=s+j—n}>
(Bnlse = 0’?—105_}17”1{&5}»

[(Fh—nn_<h_n))/]tv = [Fh—nn_m_n)}vt = lpv71 (h - n)'I{V:t’#»hfn}y

so that
[Fi- I Bn] /+1t le(f ) i1 =54 ”}as 1 521 n V=)
= O_t2—10t—1—nWi(J =M Vit1=t4j-n)
and
[ijnni(jin)Bn(Fhfnni(hfn)),]m‘v = Z 0?710;721%%(] - ”)1{i+1:r+j—n} X, _q(h— ”)1{v:r+h—n}
= O—I —j+n Oj /w (] )l//i—j+h (h - n)1{V:ifj+h+1}'
Then, a comparison with eqn (25) shows that egn (17) holds. This completes the proof. O

CoroLLARY 1. Under the assumptions of Theorem 1, we have

12 i) = ¥i) ) :>/\/<o (Vﬁij Vike )) ”
(wk (6) — () v viawe ) )0 (29)
forall 0 <i<v—1and0 <j </, where

Vijkt = Z Oij+n® :—; =Y (€ —n),

if k=i+/{—jmod v, and vy, = 0 otherwise.

For a second-order stationary process, where the period v = 1, we have ¢? = ¢2, and then substituting m = j — n in Corollary 1
yields

wileyonlinelibrary.com/journal/jtsa © 2010 Blackwell Publishing Ltd. J. Time Ser. Anal. 2011, 32 157-174
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N2 () (u) = Y(u) = N(Q kb(m)2>7 (27)

which agrees with Thm 2.1 in Brockwell and Davis (1988).

3. DIFFERENCE EQUATIONS

For a PARMA,(p,q) model given by eqgn (1), we develop a vector difference equation for the -weights of the PARMA process so that
we can determine feasible values of p and g. For fixed p and g with p + g = m, assuming m statistically significant values of /(j), to
determine the parameters ¢.(¢) and 0,(f), egn (2) can be substituted in to eqn (1) to obtain

o0

Z‘pr(j)stﬂ‘ Z Z‘//t ()ee—ij = & — ZOr Je— (28)

=0 =1

and then the coefficients on both sides can be equated so as to calculate ¢.(¢) and 0,(¢):

Y. (0) =
Ye(1) = ()Y, 1 (0) = 70t(1)
'»bt(z) - ¢t(1)¢t—1 (1) d)t(z) 2(0) —Bt(z) (29)
Ve(3) = ¢ (NY1(2) = de(2r 5(1) = D (3)he3(0) = —0(3),

where we take ¢, (/) = 0 for £ > p, and 0,(¢) = 0 for £ > g. The y-weights satisfy the homogeneous difference equations

p
el — Z (KW k(j—k) =0 j = max(p,q+1)
5 (30)
Z k)i (j — k) = —0:()) 0<j<max(p,q+1),
k=1
for 0 <t < v — 1. Defining
A= diag{%(@» ¢1 (/)7 EREK (rbv—1 (Z)}»
V() = o)1 () -1 ()’
00G) = (00(j), 01(j), - - - 0u1 (7)),
‘//jk(f - k) = (‘/Lk(i - k), lp—k+1 (J - k), ERRR) 'r//—k+v—‘l (/ - k))lv
then eqgn (30) leads to the vector difference equations
ZAkw,k(J k)=0 j=max(p,q+1)
1 (31)

)= Y Al —k) =—0()  0<j<max(p,q+1)
k=1
where ,(0) = 1.
Since Yulj — k) = I y(j — k) where I is the orthogonal v x v cyclic permutation matrix given by eqn (15), it follows from
eqn (31) that

ZAkH Y-k =0 j > max(p,q+1)

/
)= > AITRY(—k) =—0(G) 0<j<max(p,g+1)
k=1

(32)

The vector difference eqn (32) can be helpful for the analysis of higher-order PARMA models using matrix algebra. The following
are special cases of eqn (32).

J. Time Ser. Anal. 2011, 32 157-174 © 2010 Blackwell Publishing Ltd. wileyonlinelibrary.com/journal/jtsa
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3.1. Periodic moving average

The periodic moving average process, denoted by PMA (q), is obtained by setting p = 0 in egn (1). The vector difference equation for
this process, from (32), is

V()= —0() 0<j<gq
{ () =0 j>a. (33)

Then, Theorem 1 can be directly applied to identify the order of the PMA process via

N'2(=0(j) + 0(j)) = N(0,Vy), (34)

where Vj; is obtained from eqn (17).

3.2. Periodic autoregressive processes

The periodic moving average process, denoted by PAR,(p), is obtained by setting g = 0 in eqn (1). The vector difference equation for
this process given by eqn (32) is

p
W) =D ATy (i—k) j>p. (35)
k=1
For the PAR,(1) with X; = ¢X,_1 + &, we have (1) = A TT "W(0) = ¢ = {Po,P1,...0y_1 1}

3.3. First order PARMA process

For higher-order PAR or PARMA models, it is difficult to obtain explicit solutions for ¢(¢) and 0(¢), hence model identification is a
complicated problem. However, for the PARMA ,(1,1) model

Xt = ¢ Xe—1 + & — Orer—1, (36)

it is possible to solve directly in eqn (29) to obtain ¥/(0) = 1 and

Qt = ¢r - l//t(1)7 (37)

'//r(z) = ¢t¢t—1 (1 ) (38)

4. ASYMPTOTICS FOR PARMA PARAMETER ESTIMATES

Here, we will apply Theorem 1 to derive the asymptotic distribution of the autoregressive and moving average parameters in the
PARMA (1,1) model (eqn 36).

THeorRem 2. Under the assumption of Theorem 1, we have

N'2( —¢) = N(0,0Q), (39)

where ¢ = [dg, d1s. .. by 1] & = [Popr,....py_1] and the v x v matrix Q is defined by
2

Q= HeVicHy, (40)

k(=1

where V. is given by eqn (17), Hy = —FZH’1F(2 and H, = H’1Ff1l'[ with TI the v X v permutation matrix eqn (15) and F,, is from
eqn (18).

Proor. We will use a continuous mapping argument (Brockwell and Davis, 1991, Propn 6.4.3): we say that a sequence of random
vectors X, is AN(p,, 2X) if ¢o(X, — p,) = N(0,%), where X is a symmetric non-negative definite matrix and ¢, — 0 as n — oo.
If X, is AN(1, 2%) and g(x) = (G1(¥),.....gm(x)) is a mapping from R into R™ such that each gi() is continuously differentiable in a
neighborhood of y, and if DED has all of its diagonal elements non-zero, where D is the m x k matrix [(dgi/ox;)()], then g(X,,) is
AN(g(x). 2DED)).
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Theorem 1 with j = 1 and h = 2 yields that X, = (/(1),¥/(2)) is AN(u,N~"V) with z = ((1),(2)) and

VH V12
V= ,
(V21 sz)
where Vy, is given by eqn (17). Apply the continuous mapping g(x) = ¢ to see that eqn (39) holds with Q = HVH', where H is the
v X 2v matrix of partial derivatives

Oy y Oy 4 )
H= (H,H) = R R (41)
1) = (o B 031 s
which we now compute. Use ¢, = Y,(2)/}y,_,(1) from egn (38) to compute
e 5
H = - = - 2 1) “Vimer—
[ T}Km 6[//”,,1(1) (w172(1) !//m( )'//m—1( ) {m=(-1}
and recall from eqn (18) that [F,]; = ¥;_1(n)1—;;. Since [T~ ]u = Tyj—i—1), we have
: -2 -2
=3 e (1) emy = Vot (1) iy
k=1
and then
[~FRITTF? Z'/// 1) =iy (D) meicy = =YW (1) sy,
which shows that H; = —F,IT7'F;2. Since
9 lﬁe_1(2)> .
H = =Y, (1) Time
o= sy (o)) =¥ N
and recalling that [IT"'MII]; = M;_; ; , we also have H, = TT"'F;'IL. O
CoroLLARY 2. Regarding Theorem 2, in particular, we have that
N'2(¢; — ¢) = N0, W;;i)v (42)
for0 <i<v—1, where
_ 20;()Y; 4 (1 PN
w,wmﬁw®£#@y®“)me£Z#wm} ®3)
i n=0

Proor. We need to compute the matrix Q in eqn (40). From eqns (17) and (18), we obtain V;; = B; and [B,,]mj:
02 0'72 1{j:m}- Then,

m—=1"m—1-n
ll/m 2 l//J(z)O—l2
[H1 Vi1, 1{m -1y 1{, m)y = 71{, 1)
r; m—1( - l//j—1(1)26;—2
and
¥;(2)a7- ¥;(2) Vi (20
[H1V11H”ik = — s - 1}71U:k71} *—“1{k:€}7
,ZHP/ 1( ) — a l///—1( )2 lPk—z(n Jﬁ 3

so that H,Vy;H! is a diagonal matrix. Next, note that [BiI1], = [B1],._, = o2 ,0:-31;i_1_ih so that in view of egn (17), we have
1 ij ij—1 i—10i-2 4 i

'L o2 af (1)
Via]; = [Bi11F]; = ZUIZ U =W (D gy = 71021 Tg1=iys
k=1 %i-2 ie2

so that

v 2 l// (1) l// 0.2

il EIW i 1y = - YDy

=i at, W5 (1 ) ‘7/ 3

and finally,
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[Hy ViaHb o = — Z‘: V¥ (Mat, 1{}:/}1111-_2(1)_1 gy = — Y Q¥ (Ma, 1y
=

}
472(1)20?_3 ‘//ifzm)%f—a

so that H;Vi,H, is another diagonal matrix. Then, H,Vo1H; = (H; V12H’2)’ = H,Vi,H, is the same matrix. Lastly, note that since
[m's, l'[],.j = [By] = o—,-{zaiizg{j:,-}, B,, F; and H, are all diagonal matrices, it follows from the definition (17) that

i1, 1
a2 a2 1 (1)?
Vaaly = (B2 + AT By TIF ]y = (% +7H¢§ () >1{k—/>
O3 O3
and
1 o? a2 0, ,(1)?
[HZVZZH,], - ﬂ{_u 1 ket
2y, L0\ 73 e
is also diagonal. Then, it follows from eqn (40) that Q is a diagonal matrix with entries [Q];, , = Wé,— given by eqn (43). O

Theorem 3. Under the assumption of Theorem 1, we have

N'2(0 - 0) = N(0,5), (44)

where () = [(90, O, ..., (9‘,,1]’, 0 = [00,04,....0,_11, and the v x v matrix S is defined by

2
S=>" MVuM,, (45)

k=1
where V. is given in eqn (17), My = —I—le'[*‘Fl‘2 and M, = H”Fﬁl'[. Here, | is the v X v identity matrix, I1 is the v X v

permutation matrix (eqn 15), and F,, is from eqn (18).

Proor. Theorem 1 withj = 1 and h = 2 yields that X,, = (1]/(1), 1/}(2))’ is AN(1,N~"V) with 1V as in the proof of Theorem 2. Recall
from eqgn (37) that 0, = ¢, — Y1), and apply the continuous mapping g(u) = 0 to see that eqn (44) holds with

S=MVM,

where M is a v x 2v matrix of partial derivatives

001 00,4
M= (M 7M2) = ( ) ) (46)
1 al//m—1(1) alpm—1(2) Lm=1,...,v
and then it follows immediately from eqns (37) and (41) that M; = H; — | and M, = H,. O
CoroLLARY 3. Regarding Theorem 3, in particular, we have that
NY2(0; — 0;) = N(0,w2), (47)
for 0 <i<v— 1, where

B ~ 20,y 4 (1 LIS =
Wi = W) {wﬂz)aiéa?] (1- 21000 Sy Y o i . (43

i j=1 n=0
a

Proor. Since M; = H; — land M, = H,, it follows from block matrix multiplication that S = MVM' = HVH' + S = Q + S where
S=Vi — HiViy = VigH) — HaVar — VaoHy, (49)

with [Vi1],, = 62_,0,% and the remaining matrix terms on the right-hand side of eqn (49) have zero entries along the diagonal.
Then, [S]; ;11 = 0704 + [Ql;;;,, Which reduces to wj; in eqn (48). O

Using Corollaries 2 and 3, we can write the (1 — #)100% confidence intervals for ¢; and 6; as

(b1 — 2y aN " PWyi, by + 2, N Pwg),

(0 — 2N~ Pwir, 0 + 2,,N 2wy,
where P(Z > z,) = a for Z ~ N(0,1).
-]
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5. ASYMPTOTICS FOR DISCRETE FOURIER TRANSFORMS

The PARMA (p,q) model (eqn 1) has (p + g + 1)v total parameters. For example, for a monthly series (v = 12) with p = g = 1, there
are 36 parameters. For a weekly series with p = g = 1, there are 156 parameters, representing three periodic functions with period
v = 52. When the period v is large, the authors have found that the model parameters often vary smoothly with time, and can
therefore be explained by just a few non-zero discrete Fourier coefficients. In fact, increasing v often makes the periodically varying
parameter functions smoother (see, e.g, Anderson et al., 2007). The statistical basis for selecting the significant harmonics in the DFT
of the periodically varying model parameters in eqns (1) and (2) depends on the asymptotic distribution of the DFT coefficients. The
PARMA model parameters in eqn (1) can be expressed in terms of the infinite order moving average parameters in eqn (2), as shown
in Section 3. Hence, we begin by computing DFT asymptotics for parameter estimates obtained from the innovations algorithm.

5.1. Moving averages

Write the moving average parameters in eqn (2) at lag j in the form

Ve (j) = colj) + i{c,(j) cos (@) +5:(j) sin <¥> }, (50)

where ¢,(j) and s,(j) are the Fourier coefficients, r is the harmonic and k is the total number of harmonics, which is equal to v/2 or
(v — 1)/2 depending on whether v is even or odd respectively. Write the vector of Fourier coefficients at lag j in the form

o leol)scrG)ysi()s - conyaG)s s ()] (v odd)
) = /
0) { [Co(j),q (j),S1 (j),...,S(‘./z_n(j),C(‘,/z)(j)] (V even). (51)

Similarly, define rj to be the vector of Fourier coefficients for the innovations estimates fp,(j), defined by replacing .(j) by fpr(j),
c(j) by ¢ (j) and sj) by 5,(j) in egns (50) and (51). We wish to describe the asymptotic distributional properties of these Fourier
coefficients to determine those that are statistically significantly different from zero. These are the coefficients that will be included in
our model.

To compute the asymptotic distribution of the Fourier coefficients, it is convenient to work with the complex DFT and its inverse

v—1 .
ve() =P ZeXp(*z’””) v,

t=0 v

v—1 .
'//r(f) _ v71/2 Zexp (2’7‘”’1’) [//? (])7
r=0

v

(52)

and similarly lp;‘ (j) is the complex DFT of lAﬁm(j). The complex DFT can also be written in matrix form. Recall from Theorem 1 the
definitions y/(£) = [Yo(£), %1 (£), ..., %, ()] and (&) = Wol®W1(0),... 0, 1(0)] and similarly define

V0) = W), 3 G)s - o )]

* 0 * (2 * (o * ! (53)
1 (]) = [wo(])? l/’] (])7 ] lpv—l(e)} )
noting that these are all v-dimensional vectors. Define a v x v matrix U with complex entries
U= V71/2(eil‘_‘nr)r,t:o‘,1,....\7717 (54)

so that Y/ () = Uy() and " (j) = U(j). This matrix form is useful because it is easy to invert. Obviously ¥ (j) = Uy(j) is equivalent to
W(j) = U (j) since the matrix U is invertible. This is what guarantees that there exists a unique vector of complex DFT coefficients
¥ (j) corresponding to any vector () of moving average parameters. However, in this case, the matrix U is also unitary (i.e. UU' = I)
which means that U~! = U/, and the latter is easy to compute. Here, U denotes the matrix whose entries are the complex conjugates
of the respective entries in U. Then, we also have y(j) = U/lp*(j) which is the matrix form of the second relation in eqn (52).
Next, we convert from complex to real DFT, and it is advantageous to do this in a way that also involves a unitary matrix. Define

a() =220y () + v 6)) (r=1.2..,[(v=1)/2))
ar(j) = y;(j) (r=0o0rv/2) (55)
b"(j) = 1271/2{lﬁ;ﬁ0) - wf—rO)} (r = 1727 EERR [(V - 1)/2])

and let

N — [000)501 (j)vb1 (j)v"'aa(v—1)/2(j)7b(\'—1)/2(j)], (v Odd)
e(j) { [000)7 an (J)/ by 0)7 EERE) b(\'/2—1) (])7 a2 U)y (V even) (56)

and likewise for the coefficients of v/, (j). These relations (eqn 55) define another v x v matrix P with complex entries such that
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e(j) = PUW(j) = Py~ (j), (57)

and it is not hard to check that P is also unitary, so that /" (j) = P~"e(j) = P'e(j), the latter form being most useful for computations.
The DFT coefficients a,(j) and b,(}j) are not the same as the coefficients c,(j) and s,(j) in eqn (50) but they are closely related. Substitute
the first line of egn (52) into egn (55) and simplify to obtain

)=v WZC (ant) Ve(j) (r=0o0rv/2),

v—1
a,u>\@§jc () =120 - 10/2), (58)

0
br(j):\/7 ism(@)lﬁt(ﬂ (I’:LZ,...,[(V—‘I)/Z]).
tm=0

Inverting the relations (eqn 55) or, equivalently, using the matrix equation ¥*(j) = IB/e(j), we obtain ;(j) = a,(j) for r=10
or v/2 and

UrG)=2""4a () —ib(G)} and () = ¥y G) = 272 {ar() + b)),

forr =1,..., k = [(v — 1)/2]. Substitute these relations into the second expression in eqn (52) and simplify to obtain

i = el + 2 3~ {atcos(2) 0 sn(27) )
Ve (G) = v "2 (a0(j) + ak(j)) \/72{0, cos( )-i—b (j) sin (@)},

for v even, where k is the total number of harmonics, which is equal to v/2 or (v — 1)/2 depending on whether v is even or odd
respectively. Comparison with eqn (50) reveals that

c,:\/%a, (r=12,...,[(v=1)/2)),

¢=v"%a, (r=0o0rv/2), (59)

s,:\/%b, (r=1,2,....[(v=1)/2)).

for v odd and

Substituting into eqn (58) yields

() =v" ‘f:cos (varm) () (r=0orv/2),
m=0

() =2v icos(zn:m)lpm(j) r=1,2,....[(v=1)/2]), (60)

v—1
2nrm
) = 207! an< )wmm (r=1.2,.[(v—1)/2),
and likewise for the Fourier coefficients of i, (j). Define the v x v diagonal matrix

_ { diag(v="72, (v odd)

ag(v 122 V2] , (61)
diag(v="/2,\/2/v,...,\/2/v,v1/?) (v even)

so that in view of eqn (59), we have f(j) = Le(j) and f(j) = Lé(j). Substituting into eqn (57) we obtain

() = LPUY(j) and f(j) = LPUY()). (62)
THeorem 4. For any positive integer j
N'2[F() = £(J)] = N(0,Rv), (63)
where
Ry = LPUV; UP'L'. (64)
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Proor. From Theorem 1, we have
N2 G) — ()] = N(0, V), (65)

where Vj; is given by eqn (17). Define B = LPU so that f(j) = By(j) and f(j) = By (j) using eqn (62). Apply continuous mapping to
obtain N'/2[By(j) — By(j)] = N(0,BV;B') or in other words N”z[f( j) — Bf(j)] = N(0,BV;B'). Although P and U are complex
matrices, the product B = LPU is a real matrix, and therefore B = B = U'P'L’. Then eqns (63) and (64) follow, which finishes the
proof. O

Theorem 5. Let X; be the periodically stationary infinite order moving average process (eqn 2). Then, under the null hypothesis that the
process is stationary with y(h) = y(h) and o, = o, the elements of eqn (51) are asymptotically independent with

N2 {&m(h) — tm(h)} = N (0, V’”?v(h)) (m =0 orv/2),
N2 {em(h) = mm(h)} = N(0,2v" Ty (h) (M =1.2,....[(v=1)/2]), (66)
N2 {3m(h) — um(h)} = N(0,2v"'y(h))  (m=1,2,...[(v—1)/2)),

for all h > 1, where

ity = {40 =0, (67
h—1

wih) =3 (), (69
n=0

Proor. Under the null hypothesis, y,(h) = /(h) and o, = g, is constant in t for each h and hence the F,, and B, matrices in eqn (18)
become respectively, a scalar multiple of the identity matrix: F, = ¥/(n)/, and an identity matrix: B, = I. Then, from eqn (17), using
(I = 1%, we have

th—zlﬁ — )"y (h— " " = Zlﬁ (h!

is also a scalar multiple of the identity matrix. Hence, since scalar multiples of the identity matrix commute in multiplication with any
other matrix, we have from eqn (64) that PUVypU'P' = Vo PUU'P' = Vyy, since P and U are unitary matrices (i.e. PP = land UU' = ).
Then, in Theorem 4, we have

N'2[f(h) — F(h)] = N (0, Ry), (69)
where Ry = LPUV U'P'L' = Vpull', so that
R, — ny(h) diag(v=",2v", ..., 2v7 1 2v7T) (v odd)
T Uny(h) diag(vT 2 L 20T v (v even).

Under the null hypothesis, f(h) = [gb(h),O,A..,O]' and then the theorem follows by considering the individual elements of the vector
convergence (egn 69).

Theorem 5 can be used to test whether the coefficients in the infinite order moving average model (2) vary with the season.
Suppose, for example, that v is odd Then, under the null hypothesis that c¢,,(h) and s,,(h) are zero for all m > 1 and h # 0,

{ci(h),51(h),...,Co J y2(h), 50— 9/ h)} form v — 1 independent and normally distributed random variables with mean zero and
standard error (2v iiy(h) /N The Bonferroni a-level test rejects the null hypothesis that c,,(h) and s,(h) are all zero if
|Z.m)| > z,,, and |Z(m)| > z,, form =1,..., (v — 1)/2, where
Cm(h Sm(h
z(m = —® 7 () - ) (70)

(2v iy (h) /)2 (2viy (h) /N2
ity () is given by eqn (68) with (n) replaced by yi(n), o = a/(v — 1) and P(Z > z,) = o for Z ~ N(0,1). A similar formula holds
when v is even, except that 2v™" is replaced by v=' when m = 0 or v/2 in view of eqn (66). When & = 5% and v = 12, & = 0.05/
11 = 0.0045, z,//» = Zo0023 = 2.84, and the null hypothesis is rejected when any |Z.(m)| > 2.84, indicating that at least one of the
corresponding Fourier coefficients are statistically significantly different from zero. In that case, that the moving average parameter at
this lag should be represented by a periodic function in the infinite order moving average model (2).
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5.2. PARMA model parameters

For large v, it is often the case that the PARMA model parameters ¢(¢), 0,(¢) and a,, will vary smoothly w.r.t. t, and can therefore be
explained by a few of their non-zero Fourier coefficients. For a PARMA (p,q) model, the DFT of ¢(¥), 0,(¢) and a,, can be written as

0:(0) = cao(¥) + Zk:{ca, ) cos (@) + sgr(£) sin (@) },

d(0) = coo(0) + g{cb, cos( Vrt) + Spr(£) sin <27;rt> }, (71)

r=1

2nrt . [ 2mnrt
0t = Cdo + Z Cqr COS T =+ Sgr SIN T .
r=1

Car,br.dr aNd Sqrbr.qr are the Fourier coefficients, r is the harmonic and k is the total number of harmonics as in egn (50). For instance, for
monthly series where v = 12, we have k = 6; for weekly series with v = 52, k = 26 and for daily series with v = 365, k = 182.
In practice, a small number of harmonics k* < k is used.

Fourier analysis of PARMA,(p,q) models can be accomplished using the vector difference equations (eqn 32) to write the Fourier
coefficients of the model parameters in terms of the DFT of y,(j). This procedure is complicated, in general, by the need to solve the
nonlinear system (eqn 32). Here we illustrate the general procedure by developing asymptotics of the DFT coefficients for a
PARMA (1,1) model, using the relationships (37) and (38). Since first order PARMA models are often sufficient to capture periodically
varying behavior (see, e.g. Anderson and Meerschaert, 1998; Anderson et al., 2007), these results are also useful in their own right.

Consider again the PARMA (1,1) model given in egn (36). To simplify notation, we will express the model parameters, along with
their Fourier coefficients, in terms of vector notation. Let 0 = [0q, 01, -+, 0,11, ¢ = [po, 1, -+, Py_1] and ¢ = [0g, 71, -, 7,11 be the
vector of PARMA,(1,1) model parameters. These model parameters may be defined in terms of their complex DFT coefficients 0, ¢;
and ¢* as follows:

0°(¢) =U0(¢) and 0(0) = U0 (0),
¢*(0) =Up(¢) and ¢() =Ue"(0), (72)

¢ =Us and o=Uod"

where U is the v x v Fourier transform matrix defined in eqn (54) and

0" = (05,07, .0, 4],

» V=1
¢* = I:(nbj(;?d))"](ﬂ"vd)vfd ’
o = [JS,GT,~-~ g ]/.

» Pv=1

As in Theorem 4 let the vector form for transformed 0 and ¢ be given by

fy = LPO* = LPUO,

73
fy = LP¢* = LPU¢, (73)
where
) — { [Ca0s Cat,Sats - - - > Cav—1)/25 Sa(v— /2] (v odd) (74)
[Ca0, Ca1, Sars - - - 5 Sa(vj2—1)> Cay /z)] (v even)’
[ { [Cb0, Co1+ St - - -+ Co(y—1)/2:Sb(v—1)/2] (v odd) (75)
¢ [Cb0s Co14Sb15 - - - » Sb(v/2-1)» Cb(v/2)] (v even)’
o 2nrm
Ca =V Zcos( ; >0m (r=0o0rv/2),
1 2nrm
Car =2V~ 1Zcos< >9m L[ =1)/2)), (76)
=L 2nrm
v =27 Y sin(B0 )y (=12 0= 1)/2)
and

wileyonlinelibrary.com/journal/jtsa © 2010 Blackwell Publishing Ltd. J. Time Ser. Anal. 2011, 32 157-174



Journal of

FOURIER-PARMA TIME SERIES Time Series Analysis

v—1
2nrm
-1
Cor = E cos r=0orv/2),
br v 2 ( N )¢m ( V/ )

=0

Cor =20 i cos (Z”V’m> b (r=1,2,...,[(v—1)/2)), (77)

=0

v

Gy = 2! isin(z“”")qsm (=120, [(v=1)/2)

and likewise for the Fourier coefficients of 0, and gf)m. We wish to describe the asymptotic distributional properties of the elements of
eqns (74) and (75).

THEOREM 6. Regarding the DFT of the PARMA,(1,1) model coefficients in eqns (74) and (75), under the assumption of Theorem 1,
we have

N'2[fy — fy] = N(0,Rs),

79
N'2[fy — fy] = N'(0,Ro),
where
fy = LPO" = LPUO,
Rs = LPUSU'P'L’,
X (79)
fy = LP¢p" = LPU¢,
Ro = LPUQU'P'L’,
with Q given by eqn (40) and S given by eqn (45).
Proor. The proof is similar to Theorem 4. Apply continuous mapping along with Theorems 2 and 3. O

Theorem 7. Let X, be the mean-standardized PARMA,(1,1) process (eqn 36), and suppose that the assumptions of Theorem 1 hold.
Then, under the null hypothesis that the X, is stationary with ¢, = ¢, 0, = 0 and o, = o, the elements of f;, defined by eqn (75) with c,,
replaced by ¢y, and sy, replaced by sy, are asymptotically independent with

N2 {&om — ttpm} = N'(0,v"'ng)  (m =0 o0rv/2),
NY2{om — ttom} = N(0,2v o) (m=1,2,...,[(v—1)/2]), (80)
N1/2{§bm - /"bm} = N(O,ZV_11’]Q) (m = 1725 R [(V - 1)/2])7

where
o ={8 SO (&)
4 2 72‘//2(1) 2 1 2
o= <1>{w<2>(1 w(z))wm;w(n)} (®2)

and y(1) = ¢ — 0, Yy(2) = ¢ y(1).

Proor. The proof follows along the same lines as Theorem 2 and hence we adopt the same notation. As in proof of Theorem 5,
we have B, =l and F, = y/(n)l in eqn (18) and so eqn (17) implies (x = min(h, j)):

Vi = S G- IO y(h—n) = S g2 -l = h,
n=1 n=1
SO

Vir = 2 (0) =1,

Vo = [W2(1) + ¢ (01
Viz = y(0)II°IT (1 (

Vor = (NI (0) = y(N)IT" = y()IT’

[
< .
<
+
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and

Vii Vi HQ )

Q=(H, H :
(Hh 2)(Vz1 sz) <H;
where V5; = V}, so that Q is symmetric. Since X, is stationary, every /,(t) = y(t) in eqn (1) and so
2
NCI
¥ (1)

and H, = (1) "I so that

Q = HiVaiHy + HyVarHy + HiVipHy + Ho Voo HY
_ Y@ o <—lﬁ(2) > —¥(2) 4 o -1 (_‘p(z) ) e o
Jon (g ) gy O s+ WO () g ) + 10
_ {lﬁz(z) - 207 (WY () + W2 (1) + TWZ(U}I
- 4 ,
¥ (1)
S0 Q = 1ol is actually a scalar multiple of the identity matrix /. Then, PUQU'P' = QPUU'P' = Q and hence Ry = LQL = QLL or in
other words

g — [ diag(v=",2v71 ... . 2v7T 27T (v odd)
Q7 g diag(v ", 2v 1 L 20 v (v even).

Under the null hypothesis, f, = [¢, O,..., 0] and then the theorem follows by considering the individual elements of the vector

convergence from the second line of eqn (78). d

THeoRem 8. Under the assumption of Theorem 7, the elements of ?0, defined by eqn (74) with c,, replaced by ¢, and s,, replaced by s,,,
are asymptotically independent with

N"*{Cam = ttam} = N'(0,v""n5)  (m =0 or v/2),

N2 {Cam — ttam} = N (0,207 ') (m=1,2,....[(v—1)/2)]), (83)
N1/2{§am - Auam} = N(O7 2V_1775) (m = 1727 RN [(V - 1)/2])7

where
0 (m=0)
ﬂam:{o ($>0)7 (84)
4 2 _2¢2(1) : 4/j — 2
ns = (1){¢<2>(1 l/,(2))+]Z1¢J<1>n2;¢<n>}, (85)

and (1) = ¢ — 0, Y(2) = Ppy(1).

Proor. The proof follows along the same lines as Theorem 3 and hence we adopt the same notation. Note that S = Q + S,
where

S=Vi — HiViy — ViHy — HaVay — VioHy =1,
so as in the proof of Theorem 7 we obtain Rs = LPUSU'P'L' = SLPUUP'L' = SLL', where

SRy I- {W(Z) =202 (MY () + W2 () + 1y (1) + w‘*(n},’

vH(1)
so that
R — ns diag(v="1,2v 1 .. 20T 2y (v odd)
ns diag(v=",2v7 1, 27T v (v even).

Under the null hypothesis, f, = [0, 0,..., 0] and then the theorem follows by considering the individual elements of the vector
convergence from the first line of eqn (78). d

Theorems 7 and 8 can be used to test whether the coefficients in the first-order PARMA model (eqn 36) vary with the season.
Under the null hypothesis that ¢, = ¢, the Bonferroni a-level test statistic rejects if
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Com(h) Som(h)
(Zi1g/N)'? (Zi1/N)"/?

forallm > 0, where o = a/(v — 1), A =v"" form = v/2, A =2y~ form = 1,2,...[(v — 1)/2], and
L . 20%(1 . LI,
o= "(1){%(2)(1 2 ’) +w2<1>§jw2<n>}.
¥(2)
Similarly, the Bonferroni a-level test statistic rejects the null hypothesis 0, = 0 if

Cam(h) Sam(h)
(Zi1s/N)'/? (Zi1s/N)'/?

> Zxr/z and > Zx’/Za (86)

>z, and > Zy/, (87)

where

6. DISCUSSION

The results of this article were applied in Anderson et al. (2007) to a time series of average discharge for the Fraser river near Hope,
British Columbia in Canada. The time series of monthly average flows was adequately fit by a PARMA;,(1,1) model with
12 autoregressive and 12 moving average parameters. The DFT methods of this article were then used to identify eight statistically
significant Fourier coefficients. Model diagnostics indicated a pleasing fit, and a reduction from 24 to 8 parameters. In fact, there were
some indications that the original PARMA;,(1,1) model suffered from ‘overfitting’ because of the large number of parameters. The
weekly flow series at the same site was also considered. In that case, the DFT methods of this article reduced the number of
autoregressive and moving average parameters in the PARMA;,(1,1) from 104 to 4. The parameters in the weekly model varied more
smoothly, leading to fewer significant frequencies that for the monthly data. In fact, the weekly autoregressive parameters collapsed
to a constant, as only the zero frequency was significant. In summary, the results in this article render the PARMA model a useful
and practical method for modeling high-frequency time series data with significant seasonal variations in the underlying correlation
structure.

Acknowledgements

Partially supported by NSF grants DMS-0803360 and EAR-0823965.

REFERENCES

Adams, G. J. and Goodwin, G. C. (1995) Parameter estimation for periodically ARMA models. Journal of Time Series Analysis 16(2), 127-45.

Anderson, P. L. and Meerschaert, M. M. (1997) Periodic moving averages of random variables with regularly varying tails. Annals of Statistics 25, 771-85.

Anderson, P. L. and Meerschaert, M. M. (1998) Modeling river flows with heavy tails. Water Resources Research 34(9), 2271-80.

Anderson, P. L. and Meerschaert, M. M. (2005) Parameter estimates for periodically stationary time series. Journal of Time Series Analysis 26, 489-518.

Anderson, P. L. and Vecchia, A. V. (1993) Asymptotic results for periodic autoregressive moving-average processes. Journal of Time Series Analysis 14,
1-18.

Anderson, P. L., Meerschaert, M. M. and Veccia, A. V. (1999) Innovations algorithm for periodically stationary time series. Stochastic Processes and their
Applications 83, 149-69.

Anderson, P. L., Tesfaye, Y. G. and Meerschaert, M. M. (2007) Fourier-PARMA models and their application to river flows. Journal of Hydrologic
Engineering 12(7), 462-72.

Anderson, P. L., Kavalieris, L. and Meerschaert, M. M. (2008) Innovations algorithm asymptotics for periodically stationary time series with heavy tails.
Journal of Multivariate Analysis 99, 94-116.

Basawa, I. V., Lund, R. B. and Shao, Q. (2004) First-order seasonal autoregressive processes with periodically varying parameters. Statistics & Probability
Letters 67(4), 299-306.

Berk, K. (1974) Consistent autoregressive spectral estimates. Annals of Statistics 2, 489-502.

Bhansali, R. (1978) Linear prediction by autoregressive model fitting in the time domain. Annals of Statistics 6, 224-31.

Boshnakov, G. N. (1996) Recursive computation of the parameters of periodic autoregressive moving-average processes. Journal of Time Series Analysis
17(4), 333-49.

Box, G. E. and Jenkins, G. M. (1976) Time Series Analysis: Forcasting and Control, 2nd edn. San Francisco: Holden-Day.

Brockwell, P. J. and Davis, R. A. (1988) Simple consistent estimation of the coefficients of a linear filter. Stochastic Processes and their Applications 28,
47-59.

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, 2nd edn. New York: Springer-Verlag.

Feller, W. (1971) An Introduction to Probability Theory and its Applications, 2nd edn. New York: John Wiley & Sons.

J. Time Ser. Anal. 2011, 32 157-174 © 2010 Blackwell Publishing Ltd. wileyonlinelibrary.com/journal/jtsa




Journal of

Time Series Analysis Y. G. TESFAYE, P. L. ANDERSON AND M. M. MEERSCHAERT
I EEE—————————————————————

Franses, P. H. and Paap, R. (2004) Periodic Time Series Models. Oxford: Oxford University Press.

Gautier, A. (2006) Asymptotic inefficiency of mean-correction on parameter estimation for a periodic first-order autoregressive model. Communication
in Statistics — Theory and Methods 35(11), 2083-106.

Hipel, K. W. and McLeod, A. I. (1994) Time Series Modelling of Water Resources and Environmental Systems. Amsterdam: Elsevier.

Jones, R. H. and Brelsford, W. M. (1967) Times series with periodic structure. Biometrika 54, 403-8.

Lund, R. B. (2006) A seasonal analysis of riverflow trends. Journal of Statistical Computation and Simulation 76(5), 397-405.

Lund, R. B. and Basawa, I. V. (1999) Modeling and inference for periodically correlated time series. In Asymptotics, Nonparameterics, and Time Seress (ed.
S. Ghosh ). New York: Marcel Dekker, pp. 37-62.

Lund, R. B. and Basawa, I. V. (2000) Recursive prediction and likelihood evaluation for periodic ARMA models. Journal of Time Series Analysis 20(1),
75-93.

Meerschaert, M. M. and Scheffler, H. P. (2001) Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. New York:
Wiley Interscience.

Nowicka-Zagrajek, J. and Wylomanska, A. (2006) The dependence structure for PARMA models with o-stable innovations. Acta Physiologica Polonica B
37(11), 3071-81.

Pagano, M. (1978) On periodic and multiple autoregressions. Annals of Statistics 6(6), 1310-17.

Roy, R. and Saidi, A. (2008) Aggregation and systematic sampling of periodic ARMA processes. Computational Statistics and Data Analysis 52(9),

4287-304.

Salas, J. D., Delleur, J. W., Yevjevich, V. and Lane, W. L. (1980) Applied Modeling of Hydrologic Time Series. Littleton, Colorado: Water Resource
Publications.

Salas, J. D. Obeysekera, J. T. B. and Smith, R. A. (1981) Identification of streamflow stochastic models. ASCE Journal of the Hydraulics Division 107(7),
853-66.

Salas, J. D., Boes, D. C. and Smith, R. A. (1982) Estimation of ARMA models with seasonal parameters. Water Resources Research 18, 1006-10.

Salas, J. D., Tabios lll, G. Q. and Bartolini, P. (1985) Approaches to multivariate modeling of water resources time series. Water Resources Bulletin 21,
683-708.

Samorodnitsky, G., and Taqqu, M. (1994) Stable non-Gaussian Random Processes. New York: Chapman & Hall.

Shao, Q. and Lund, R. B. (2004) Computation and characterization of autocorrelations and partial autocorrelations in periodic ARMA models. Journal of
Time Series Analysis 25(3), 359-72.

Tesfaye, Y. G., Meerschaert, M. M. and Anderson, P. L. (2005) Identification of PARMA models and their application to the modeling of river flows. Water
Resources Research 42(1), W01419.

Tiao, G. C. and Grupe, M. R. (1980) Hidden periodic autoregressive moving average models in time series data. Biometrika 67, 365-73.

Tjestheim, D. and Paulsen, J. (1982) Empirical identification of multiple time series. Journal of Time Series Analysis 3, 265-82.

Thompstone, R. M., Hipel, K. W. and McLeod, A. I. (1985) Forecasting quarter-monthly riverflow. Water Resources Bulletin 25(5), 731-41.

Troutman, B. M. (1979) Some results in periodic autoregression. Biometrika 6, 219-28.

Ula, T. A. (1990) Periodic covariance stationarity of multivariate periodic autoregressive moving average processess. Water Resources Research 26(5),
855-61.

Ula, T. A. (1993) Forcasting of multivariate periodic autoregressive moving average processes. Journal of Time Series Analysis 14, 645-57.

Ula, T. A. and Smadi, A. A. (1997) Periodic stationarity conditions for periodic autoregressive moving average processess as eigenvalue problems. Water
Resources Research 33(8), 1929-34.

Ula, T. A. and Smadi, A. A. (2003) Identification of periodic moving average models. Communications in Statistics: Theory and Methods 32(12), 2465-75.

Vecchia, A. V. (1985a) Periodic autoregressive-moving average (PARMA) modelling with applications to water resources. Water Resources Bulletin 21,
721-30.

Vecchia, A. V. (1985b) Maximum likelihood estimation for periodic moving average models. Technometrics 27(4), 375-84.

Vecchia, A. V. and Ballerini, R. (1991) Testing for periodic autocorrelations in seasonal time series data. Biometrika 78(1), 53-63.

Wylomanska, A. (2008) Spectral measures of PARMA sequences. Journal of Time Series Analysis 29(1), 1-13.

wileyonlinelibrary.com/journal/jtsa © 2010 Blackwell Publishing Ltd. J. Time Ser. Anal. 2011, 32 157-174



