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1. Introduction

This paper develops explicit strong solutions for distributed-order time-fractional diffusion equations on bounded do-
mains D ⊂ Rd , with Dirichlet boundary conditions. The abstract partial differential equation ∂u/∂t = Lu models a diffusion
process. The simplest case L = � = ∑

j ∂
2u/∂x2

j governs a Brownian motion B(t) with density u(t, x), for which the square

root scaling u(t, x) = t−1/2u(1, t−1/2x) holds [13]. The time-fractional diffusion equation ∂βu/∂tβ = Lu which is based on
Caputo fractional derivative of order 0 < β < 1 is used to model anomalous sub-diffusion, in which a cloud of particles
spreads slower than the square root of time [18,19,30,33,36]. Baeumer and Meerschaert [2] investigated the solutions to
the initial-value problem in the general Banach space setting, where L is the generator of a uniformly bounded, strongly
continuous semigroup. Their results can be used to establish weak solutions. See also the pioneering work of Kochubei
[18,19]. Baeumer et al. [3] proved strong solutions for the case where L is a uniformly elliptical operator on Rd , and Meer-
schaert et al. [28] extended this result to bounded domains on Rd , with Dirichlet boundary conditions.

When L = �, the solution u(t, x) is the density of a time-changed Brownian motion B(Et), where the non-Markovian
time change Et = inf{τ > 0: Wτ > t} is the inverse, or first passage time, of a stable subordinator Wt with index β .
The scaling Wct = c1/β Wt in law implies Ect = cβ Et in law for the inverse process, so that u(t, x) = t−β/2u(1, t−β/2x).
Scaling properties for a related fractional differential equation were developed by Buckwar and Luchko [5], see Remark 2.3.
The process B(Et) is the long-time scaling limit of a random walk [24,25], when the random waiting times between jumps
belong to the β-stable domain of attraction. Roughly speaking, a power-law distribution of waiting times leads to a fractional
time derivative in the governing equation. Recently, Barlow and C̆erný [4] obtained B(Et) as the scaling limit of a random
walk in a random environment. More generally, for a uniformly elliptic operator L on a bounded domain D ⊂ Rd , under
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suitable technical conditions and assuming Dirichlet boundary conditions, the diffusion equation ∂u/∂t = Lu governs a
Markov process X(t) killed at the boundary, and the corresponding fractional diffusion equation ∂βu/∂tβ = Lu governs the
time-changed process X(Et) [28].

In some applications, waiting times between particle jumps evolve according to a more complicated process, which
cannot be adequately described by a single power law. A mixture of power laws leads to a distributed-order fractional
derivative in time [8,26,29]. An important application of distributed-order diffusions is to model ultraslow diffusion where
a plume of particles spreads at a logarithmic rate [34]. This paper considers the distributed-order time-fractional diffusion
equations with Dirichlet boundary conditions. Hahn et al. [15] discussed the solutions of such equations on Rd , and the
connections with certain subordinated processes. Kochubei [20] proved strong solutions on Rd for the case L = �. Luchko
[21] proved the uniqueness and continuous dependence on initial conditions on bounded domains. This paper constructs
explicit classical solutions on bounded domains, and identifies the underlying stochastic process, which can be useful for
particle tracking [22,37].

2. Distributed order fractional derivatives

The Caputo fractional derivative [6] is defined for 0 < β < 1 as

∂βu(t, x)

∂tβ
= 1

Γ (1 − β)

t∫
0

∂u(r, x)

∂r

dr

(t − r)β
. (2.1)

Its Laplace transform

∞∫
0

e−st ∂βu(t, x)

∂tβ
ds = sβ ũ(s, x) − sβ−1u(0, x) (2.2)

incorporates the initial value in the same way as the first derivative. The distributed order fractional derivative is

D(ν)u(t, x) :=
1∫

0

∂βu(t, x)

∂tβ
ν(dβ), (2.3)

where ν is a finite Borel measure with ν(0,1) > 0.
For a function u(t, x) continuous in t � 0, the Riemann–Liouville fractional derivative of order 0 < β < 1 is defined by

(
∂

∂t

)β

u(t, x) = 1

Γ (1 − β)

∂

∂t

t∫
0

u(r, x)

(t − r)β
dr. (2.4)

Its Laplace transform

∞∫
0

e−st
(

∂

∂t

)β

u(t, x)ds = sβ ũ(s, x). (2.5)

If u(·, x) is absolutely continuous on bounded intervals (e.g., if the derivative exists everywhere and is integrable) then the
Riemann–Liouville and Caputo derivatives are related by

∂βu(t, x)

∂tβ
=

(
∂

∂t

)β

u(t, x) − t−βu(0, x)

Γ (1 − β)
. (2.6)

The Riemann–Liouville fractional derivative is more general, as it does not require the first derivative to exist. It is also
possible to adopt the right-hand side of (2.6) as the definition of the Caputo derivative, see for example Kochubei [20]. Then
the (extended) distributed order derivative is

D(ν)
1 u(t, x) :=

1∫
0

[(
∂

∂t

)β

u(t, x) − t−βu(0, x)

Γ (1 − β)

]
ν(dβ), (2.7)

which exists for u(t, x) continuous, and agrees with the usual definition (2.3) when u(t, x) is absolutely continuous.
Distributed order fractional derivatives are connected with random walk limits. For each c > 0, take a sequence of i.i.d.

waiting times ( J c
n) and i.i.d. jumps (Y c

n). Let Xc(n) = Y c
1 + · · · + Y c

n be the particle location after n jumps, and T c(n) =
J c

1 + · · · + J c
n the time of the nth jump. Suppose that Xc(cu) ⇒ A(t) and T c(cu) ⇒ Wt as c → ∞, where the limits A(t)
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and Wt are independent Lévy processes. The number of jumps by time t � 0 is Nc
t = max{n � 0: T c(n) � t}, and [27,

Theorem 2.1] shows that Xc(Nc
t ) ⇒ A(Et), where

Et = inf{τ : Wτ > t}. (2.8)

A specific mixture model from [26] gives rise to distributed order fractional derivatives: Let (Bi), 0 < Bi < 1, be
i.i.d. random variables such that P { J c

i > u | Bi = β} = c−1u−β , for u � c−1/β . Then T c(cu) ⇒ Wt , a subordinator with
E[e−sWt ] = e−tψW (s) , where

ψW (s) =
∞∫

0

(
e−sx − 1

)
φW (dx). (2.9)

Then the associated Lévy measure is

φW (t,∞) =
1∫

0

t−β μ(dβ), (2.10)

where μ is the distribution of Bi . An easy computation gives

ψW (s) =
1∫

0

sβΓ (1 − β)μ(dβ). (2.11)

Then, Theorem 3.10 in [26] shows that c−1Nc
t ⇒ Et , where Et is given by (2.8). The Lévy process A(t) defines a strongly

continuous convolution semigroup with generator L, and A(Et) is the stochastic solution to the distributed order-fractional
diffusion equation

D(ν)u(t, x) = Lu(t, x), (2.12)

where D(ν) is given by (2.3) with ν(dβ) = Γ (1 − β)μ(dβ). The condition

1∫
0

1

1 − β
μ(dβ) < ∞ (2.13)

is imposed to ensure that ν(0,1) < ∞. Since φW (0,∞) = ∞ in (2.9), Theorem 3.1 in [27] implies that Et has a Lebesgue
density

g(t, x) =
t∫

0

φW (t − y,∞) P W x(dy).

Note that Et is almost surely continuous and nondecreasing.
We say that a function h is a mild solution of a fractional differential equation if its Laplace (or Fourier) transform

solves the corresponding algebraic equation. The following lemma shows that h(t, λ) = E[e−λEt ] is an eigenfunction of the
distributed-order fractional derivative D(ν) in the mild sense. It also shows that h(t, λ) is continuous in t > 0, and hence is
also an eigenfunction of the extended distributed order derivative (2.7).

Lemma 2.1. For any λ > 0, h(t, λ) = ∫ ∞
0 e−λx g(t, x)dx = E[e−λEt ] is a mild solution of the distributed-order fractional differential

equation

D(ν)h(t, λ) = −λh(t, λ); h(0, λ) = 1. (2.14)

Proof. First note that h(0, λ) = E(1) = 1. Using (2.2), (2.11) and (2.3), compute the Laplace transform of D(ν)h(t, λ) as

∞∫
0

e−stD(ν)h(t, λ)dt =
∞∫

0

e−st

1∫
0

∂βh(t, λ)

∂tβ
ν(dβ)dt

=
1∫

0

∞∫
0

e−st ∂βh(t, λ)

∂tβ
dt ν(dβ)
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=
1∫

0

(
sβ h̃(s, λ) − sβ−1)ν(dβ)

=
(

h̃(s, λ) − 1

s

)
ψW (s), (2.15)

by applying a Fubini argument which holds because ψW (s) < ∞.
The Laplace transform of g(t, x), the density of Et , is given by [27, Eq. (3.13)]:

g̃(s, x) =
∞∫

0

e−st g(t, x)dt = 1

s
ψW (s)e−xψW (s). (2.16)

Then the double Laplace transform

h̃(s, λ) :=
∞∫

0

e−sth(t, λ)dt =
∞∫

0

e−st

( ∞∫
0

e−λx g(t, x)dx

)
dt

=
∞∫

0

e−λx

( ∞∫
0

e−st g(t, x)dt

)
dx

= ψW (s)

s

∞∫
0

e−(λ+ψW (s))x dx (2.17)

= ψW (s)

s(λ + ψW (s))
. (2.18)

That is, h̃(s, λ) satisfies

λh̃(s, λ) =
(

1

s
− h̃(s, λ)

)
ψW (s). (2.19)

Since Et has continuous paths, the dominated convergence theorem implies that t → E[e−λEt ] = h(t, λ) is a continuous
function. Then (2.14) follows from (2.15), (2.19) and the uniqueness of the Laplace transform. �

The next theorem extends a deep result of Kochubei [20] to show that the functions h(t, λ) from Lemma 2.1 are eigen-
functions of the distributed-order fractional derivative (2.3) in the strong sense. A function h is a classical (strong) solution
of the distributed-order fractional differential equation (2.14) if the equality holds pointwise, and the distributed-order
fractional derivative exists in the classical sense. The proof also shows that ∂th(t, λ) exists, and gives an explicit upper
bound (2.21) on its absolute value, which will be useful in the next section.

Theorem 2.2. Let ν(dβ) = p(β)dβ for some p ∈ C1(0,1), and 0 < β0 < β1 < 1 be such that

C(β0, β1, p) =
β1∫

β0

sin(βπ)Γ (1 − β)p(β)dβ > 0. (2.20)

Then h(t, λ), the mild solution to (2.14), satisfies |∂th(t, λ)| � λk(t), where

k(t) = [
C(β0, β1, p)π

]−1[
Γ (1 − β1)t

β1−1 + Γ (1 − β0)t
β0−1], (2.21)

and hence is a classical solution.

Proof. Using (2.19) in Kochubei [20], which follows from inverting the Laplace transform in (2.17) of h(t, λ), we have

h(t, λ) = −λ

π

∞∫
0

r−1e−trΦ(r,1)dr (2.22)



Author's personal copy

220 M.M. Meerschaert et al. / J. Math. Anal. Appl. 379 (2011) 216–228

where

Φ(r,1) =
∫ 1

0 rβ sin(βπ)Γ (1 − β)p(β)dβ

[∫ 1
0 rβ cos(βπ)Γ (1 − β)p(β)dβ + λ]2 + [∫ 1

0 rβ sin(βπ)Γ (1 − β)p(β)dβ]2
.

First we show that |∂th(t, λ)| < λk(t). Note that

∣∣∂th(λ, t)
∣∣ =

∣∣∣∣∣−λ

π

∞∫
0

r−1[∂te−tr]Φ(r,1)dr

∣∣∣∣∣
= λ

π

∞∫
0

e−trΦ(r,1)dr

= λ

π

∞∫
0

e−tr
∫ 1

0 rβ sin(βπ)Γ (1 − β)p(β)dβ

[∫ 1
0 rβ cos(βπ)Γ (1 − β)p(β)dβ + λ]2 + [∫ 1

0 rβ sin(βπ)Γ (1 − β)p(β)dβ]2
dr

� λπ−1

∞∫
0

e−tr dr∫ 1
0 rβ sin(βπ)Γ (1 − β)p(β)dβ

= λl(t) (say),

where l(t) is a function of t only. For example, l(t) = Ctβ−1 in the case of a simple fractional derivative. Now,

1∫
0

sin(βπ)Γ (1 − β)p(β)dβ �
β1∫

β0

sin(βπ)Γ (1 − β)p(β)dβ = C(β0, β1, p) > 0, (2.23)

by (2.20). For r > 1, and β0 � β � β1 � 1, we have rβ0 � rβ � rβ1 and so

β1∫
β0

rβ sin(βπ)Γ (1 − β)p(β)dβ �
β1∫

β0

rβ0 sin(βπ)Γ (1 − β)p(β)dβ

= rβ0 C(β0, β1, p). (2.24)

For 0 < r � 1, and β0 � β � β1 � 1, we have rβ0 � rβ � rβ1 and so

β1∫
β0

rβ sin(βπ)Γ (1 − β)p(β)dβ �
β1∫

β0

rβ1 sin(βπ)Γ (1 − β)p(β)dβ

= rβ1 C(β0, β1, p). (2.25)

Using the above facts, we obtain

l(t) = π−1

∞∫
0

e−tr dr∫ 1
0 rβ sin(βπ)Γ (1 − β)p(β)dβ

= π−1

[ 1∫
0

e−tr dr∫ 1
0 rβ sin(βπ)Γ (1 − β)p(β)dβ

+
∞∫

1

e−tr dr∫ 1
0 rβ sin(βπ)Γ (1 − β)p(β)dβ

]

� π−1

[ 1∫
0

e−tr dr∫ β1
β0

rβ sin(βπ)Γ (1 − β)p(β)dβ
+

∞∫
1

e−tr dr∫ β1
β0

rβ sin(βπ)Γ (1 − β)p(β)dβ

]

�
[
C(β0, β1, p)π

]−1

[ 1∫
0

r−β1 e−tr dr +
∞∫

1

r−β0 e−tr dr

]

�
[
C(β0, β1, p)π

]−1[
Γ (1 − β1)t

β1−1 + Γ (1 − β0)t
β0−1] = k(t)



Author's personal copy

M.M. Meerschaert et al. / J. Math. Anal. Appl. 379 (2011) 216–228 221

and so |∂th(t, λ)| � λk(t). Hence, it follows from (2.3) that

∣∣D(ν)h(t, λ)
∣∣ �

∣∣∣∣∣
1∫

0

∂β

∂tβ
h(t, λ)Γ (1 − β)p(β)dβ

∣∣∣∣∣
�

1∫
0

1

Γ (1 − β)

t∫
0

∣∣∣∣∂h(s, λ)

∂s

∣∣∣∣ ds

(t − s)β
Γ (1 − β)p(β)dβ

� λ

1∫
0

1

Γ (1 − β)

t∫
0

k(s)
ds

(t − s)β
Γ (1 − β)p(β)dβ

< ∞, (2.26)

using (2.13) and the beta density formula. Thus, the distributed-order derivative D(ν)h(t, λ) exists. Also, it follows now from
Lemma 2.1 that h(t, λ) is an eigenfunction in the strong sense. �
Remark 2.3. Since Theorem 2.2 shows that h(t, λ) is absolutely continuous and the derivative bound (2.26) holds, the
two distributed-order derivatives of h(t, λ) defined in (2.3) and in (2.7) agree. Hence, h(t, λ) is also a classical solution
of Eq. (2.14) with D(ν) replaced by D(ν)

1 . The time-fractional diffusion equations using the Riemann–Liouville fractional
derivative (2.4) have also been considered. For example, scaling relations for solutions of these equations are developed in
Buckwar and Luchko [5]. Also, the distributed-order Riemann–Liouville fractional derivative can be defined similar to (2.3),
and the corresponding diffusion equations in the Riemann–Liouville sense have been considered in [1,12].

3. Distributed order time-fractional diffusion equations

In this section, we prove classical (strong) solutions to distributed-order time-fractional diffusion equations D(ν)u = Lu on
bounded domains D ⊂ Rd . Let Ck(D), Ck,α(D) and Ck(D̄) respectively be the space of k-times differentiable functions in D ,
the space of k-times differential functions with k-th derivative Hölder continuous of index α, and the space of functions
that have all the derivatives up to order k extendable continuously up to the boundary ∂ D of D . Let D∞ = (0,∞) × D and
write u ∈ Ck(D̄) if for each fixed t > 0, u(t, ·) ∈ Ck(D̄). Write u ∈ Ck

b(D̄∞) when u ∈ Ck(D̄∞) is bounded.
A uniformly elliptic operator L in divergence form is a linear operator on L2(Rd) defined for u ∈ C2(Rd) by

Lu =
d∑

i, j=1

∂(aij(x)(∂u/∂xi))

∂x j
(3.1)

with aij = a ji and

λ

n∑
i=1

y2
i �

n∑
i, j=1

aij(x)yi y j � λ−1
n∑

i=1

y2
i , ∀y ∈ Rd (3.2)

for some λ > 0. Let Xt solve dXt = σ(Xt)dWt + b(Xt)dt with X0 = x0, where σ is a d × d matrix, and Wt is a Brownian
motion. Let τD(X) = inf{t � 0: X(t) /∈ D} be the first exit time. Then the semigroup

T (t) f (x) = Ex
[

f (Xt)I
(
τD(X) > t

)] =
∫
D

pD(t, x, y) f (y)dy

has generator LD of the form (3.1) with a = σσ T by an application of the Itô formula. The operator LD has eigenvalues
0 < μ1 < μ2 � μ3 · · · with μn → ∞, and eigenfunctions

LDψn(x) = −μnψn(x), x ∈ D: ψn|∂ D = 0. (3.3)

The heat kernel pD(t, x, y) = ∑∞
n=1 e−μntψn(x)ψn(y), where the series converges absolutely and uniformly on [t0,∞)×D×D

for all t0 > 0. Since the eigenfunctions (ψn) form a complete orthonormal basis, we can write f (x) = ∑
n f̄ (n)ψn(x) for any

f ∈ L2(Rd). We will call f̄ (n) = ∫
D ψn(x) f (x)dx the ψn-transform of f .

In the special case LD = �D , the corresponding Markov process is a killed Brownian motion. We denote the eigenvalues
and the eigenfunctions of �D by {λn, φn}∞n=1, where φn ∈ C∞(D). Let

H�(D∞) ≡ {
u : D∞ → R: �u ∈ C(D∞),

∣∣∂t u(t, x)
∣∣ � k(t)g(x), g ∈ L∞(D), t > 0

}
,

where k(t) is given by (2.21).
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The next result provides strong solutions, in particular in the space H�(D∞) ∩ Cb(D̄∞) ∩ C1(D̄), to distributed-order
time-fractional diffusion equations on bounded domains.

Theorem 3.1. Let D be a bounded domain with ∂ D ∈ C1,α for some 0 < α < 1, and T D(t) be the killed semigroup of Brownian
motion {X(t)} on D. Let Et be the inverse (2.8) of the subordinator Wt , independent of {X(t)}, with Lévy measure (2.10). Suppose
that μ(dβ) = p(β)dβ , as in Theorem 2.2, and D(ν) is the distributed-order fractional derivative defined by (2.3). Then, for any f ∈
D(�D) ∩ C1(D̄) ∩ C2(D) for which the eigenfunction expansion of � f with respect to the complete orthonormal basis {φn: n ∈ N}
converges uniformly and absolutely, the unique classical solution of the distributed order time-fractional diffusion equation

D(ν)u(t, x) = �u(t, x), x ∈ D, t > 0,

u(t, x) = 0, x ∈ ∂ D, t > 0,

u(0, x) = f (x), x ∈ D, (3.4)

for u ∈H�(D∞) ∩ Cb(D̄∞) ∩ C1(D̄), is given by

u(t, x) = Ex
[

f
(

X(Et)
)

I
(
τD(X) > Et

)]

=
∞∫

0

T D(l) f (x)g(t, l)dl

=
∞∑

n=1

f̄ (n)φn(x)h(t, λn), (3.5)

where h(t, λ) = E(e−λEt ) = ∫ ∞
0 e−λx g(t, x)dx is the Laplace transform of Et .

Proof. The proof is similar to Theorem 3.1 in [28]. Assume that u(t, x) solves (3.4). Use Green’s second identity to get∫
D

φn(x)�u(t, x)dx =
∫
D

u(t, x)�φn(x)dx = −λn

∫
D

u(t, x)φn(x)dx = −λnū(t,n).

Using (2.1) and (2.3), we get

∫
D

φn(x)D(ν)u(t, x)dx =
∫
D

φn(x)

1∫
0

∂β

∂tβ
u(t, x)Γ (1 − β)p(β)dβ dx

=
∫
D

φn(x)

1∫
0

1

Γ (1 − β)

t∫
0

∂u(s, x)

∂s

ds

(t − s)β
Γ (1 − β)p(β)dβ dx

=
∫
D

φn(x)

1∫
0

t∫
0

∂u(s, x)

∂s

ds

(t − s)β
p(β)dβ dx

=
1∫

0

t∫
0

( ∫
D

φn(x)
∂

∂s
u(s, x)dx

)
ds

(t − s)β
p(β)dβ (by Fubini, see below)

=
1∫

0

t∫
0

∂

∂s

( ∫
D

φn(x)u(s, x)dx

)
ds

(t − s)β
p(β)dβ

=
1∫

0

1

Γ (1 − β)

t∫
0

∂

∂s
ū(s,n)

ds

(t − s)β
Γ (1 − β)p(β)dβ

= D(ν)ū(s,n). (3.6)
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The Fubini–Tonelli argument for the interchange of order of integration in (3.6) can be justified as follows

∣∣∣∣
∫
D

φn(x)D(ν)u(t, x)dx

∣∣∣∣ =
∣∣∣∣∣
∫
D

φn(x)

1∫
0

t∫
0

∂u(s, x)

∂s

ds

(t − s)β
p(β)dβ dx

∣∣∣∣∣
�

∫
D

∣∣φn(x)
∣∣ 1∫

0

t∫
0

∣∣∣∣∂u(s, x)

∂s

∣∣∣∣ ds

(t − s)β
p(β)dβ dx

�
∫
D

∣∣φn(x)
∣∣∣∣g(x)

∣∣dx

1∫
0

t∫
0

k(s)
ds

(t − s)β
p(β)dβ

�
√|D|‖φn‖L2(D)‖g‖L∞

1∫
0

t∫
0

[
C(β0, β1, p)π

]−1[
Γ (1 − β1)sβ1−1 + Γ (1 − β0)sβ0−1]

× ds

(t − s)β
p(β)dβ,

using (2.21). Further, using the property of beta density, for 0 < γ ,η < 1,

t∫
0

1

(t − s)γ
sη−1 ds = tη−γ

1∫
0

(1 − u)(1−γ )−1uη−1 du = B(1 − γ ,η)tη−γ ,

where B(a,b) denotes the usual beta function. Thus,∣∣∣∣
∫
D

φn(x)D(ν)u(t, x)dx

∣∣∣∣
�

√|D|‖φn‖L2(D)‖g‖L∞
[
C(β0, β1, p)π

]−1

×
[ 1∫

0

t∫
0

Γ (1 − β1)sβ1−1 ds

(t − s)β
p(β)dβ +

1∫
0

t∫
0

Γ (1 − β0)sβ0−1 ds

(t − s)β
p(β)dβ

]

= √|D|‖φn‖L2(D)‖g‖L∞
[
C(β0, β1, p)π

]−1

×
[
Γ (1 − β1)

1∫
0

tβ1−β B(1 − β,β1)p(β)dβ + Γ (1 − β0)

1∫
0

tβ0−β B(1 − β,β0)p(β)dβ

]

< ∞,

which justifies the use of Fubini–Tonelli theorem in (3.6).
Now apply the φn-transforms to both sides of (3.4) to get

D(ν)ū(t,n) = −λnū(t,n). (3.7)

Since u is uniformly continuous on C([0, ε]× D̄), it is uniformly bounded on [0, ε]× D̄ . Thus, by the dominated convergence
theorem, we have limt→0

∫
D u(t, x)φn(x)dx = f̄ (n). Hence, ū(0,n) = f̄ (n). A similar argument shows that t �→ ū(t,n) is a

continuous function of t ∈ [0,∞) for every n.
Denote the Laplace transform t → s of u(t, x) by ũ(s, x) = ∫ ∞

0 e−st u(t, x)dt and call û(s,n) = ∫
D ψn(x)ũ(s, x)dx the ψn-

Laplace transform of u. Taking Laplace transforms on both sides of (3.7) and using (2.15), we get

1∫
0

(
sβ û(s,n) − sβ−1ū(0,n)

)
Γ (1 − β)p(β)dβ = −λnû(s,n) (3.8)

which leads to

û(s,n) = f̄ (n)
∫ 1

0 sβ−1Γ (1 − β)p(β)dβ∫ 1
0 sβΓ (1 − β)p(β)dβ + λn

. (3.9)
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Use (2.11) to get

û(s,n) = f̄ (n)ψW (s)

s(ψW (s) + λn)

= 1

s
f̄ (n)ψW (s)

∞∫
0

e−(ψW (s)+λn)l dl

=
∞∫

0

e−λnl f̄ (n)
1

s
ψW (s)e−lψW (s) dl, (3.10)

using the property of the exponential density. The φn-transform of the killed semigroup T D(l) f (x) = ∑∞
m=1 e−λmlφm(x) f̄ (m)

is found as follows. Since {φn, n ∈ N} is a complete orthonormal basis of L2(D), we get[
T D(l) f

]
(n) =

∫
D

φn(x)T D(l) f (x)dx

=
∫
D

φn(x)

∫
D

pD(l, x, y) f (y)dy dx

=
∫
D

φn(x)

∫
D

∞∑
m=1

e−λmlφm(x)φm(y) f (y)dy dx

=
∫
D

φn(x)
∞∑

m=1

e−λmlφm(x)

∫
D

φm(y) f (y)dy dx

=
∫
D

φn(x)
∞∑

m=1

e−λmlφm(x) f̄ (m)dx

=
∞∑

m=1

e−λml f̄ (m)

∫
D

φn(x)φm(x)dx

= e−lλn f̄ (n). (3.11)

Since T D(t) is a contraction semigroup on L2(D), T D(t) f ∈ L2(D) and hence Fubini–Tonelli applies. By (3.20) in [26], we
have

1

s
ψW (s)e−ψW (s)l =

∞∫
0

e−st g(t, l)dt, (3.12)

where g(t, l) is the smooth density of Et . Using the results (3.11), (3.12) and (3.10), we get

∞∫
0

e−st ū(t,n)dt = û(s,n) =
∞∫

0

[
T D(l) f

]
(n)

[ ∞∫
0

e−st g(t, l)dt

]
dl

=
∞∫

0

e−st

[ ∞∫
0

[
T D(l) f

]
(n)g(t, l)dl

]
dt.

By the uniqueness of the Laplace transform,

ū(t,n) =
∞∫

0

[
T D(l) f

]
(n)g(t, l)dl

= f̄ (n)

∞∫
0

e−λnl g(t, l)dl
(
using (3.11)

)

= f̄ (n)h(t, λn), (3.13)
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where h(t, λ) = ∫ ∞
0 e−lλ g(t, l)dl is the Laplace transform of Et . Inverting the φn-transform ū(t,n) in (3.13), we get an L2-

convergent solution of (3.4) as

u(t, x) =
∞∑

n=1

ū(t,n)φn(x) =
∞∑

n=1

f̄ (n)φn(x)h(t, λn) (3.14)

for each t � 0. In order to complete the proof, it will suffice to show that the series (3.14) converges pointwise, and satisfies
all the conditions in (3.4).

Step 1. Since h(t, λ) is the Laplace transform of Et , it is completely monotone and non-increasing in λ � 0 with
0 < h(t, λn) � 1. Then an elementary estimate shows that (3.14) convergence uniformly in t ∈ [0,∞) in the L2 sense.

Step 2. Using {Et � x} = {W x � t} [26, Eq. (3.16)], it is easy to check that Et ⇒ E0 ≡ 0 in distribution as t → 0+ and hence
the Laplace transforms converge: h(t, λn) → 1. Then another elementary estimate shows that t → u(t, ·) ∈ C((0,∞); L2(D))

and ‖u(t, ·) − f ‖2,D → 0, as t → 0. The continuity of t �→ u(t, ·) in L2(D) at every point t ∈ (0,∞) follows by a similar
argument.

Step 3. As λn is increasing in n, and h(t, λn) is non-increasing for n � 1, ‖u(t, ·)‖2,D � h(t, λ1)‖ f ‖2,D by Parseval’s identity.

Step 4. Note h(t, λ) = E(e−λEt ) � 1 for all t � 0 and λ � 0. Then a straightforward argument shows that

uN(t, x) =
N∑

n=1

f̄ (n)φn(x)h(t, λn)

is a Cauchy sequence in L∞(D) uniformly in t � 0. Then the series (3.14) defining u(t, x) converges uniformly and absolutely.

Step 5. Since the eigenfunction expansion of � f converges absolutely and uniformly, the series
∑∞

n=1 f̄ (n)h(t, λn)�φn(x) is
absolutely convergent in L∞(D) uniformly in (0,∞). Since D(ν)h(t, λ) = −λh(t, λ), we have

∞∑
n=1

f̄ (n)φn(x)D(ν)h(t, λn) =
∞∑

n=1

f̄ (n)h(t, λn)�φn(x),

where both series converge absolutely and uniformly. Then D(ν) and � can be applied term by term in (3.14) to show that
(3.4) is a classical (strong) solution to (3.4). Since � f has an absolutely and uniformly convergent series expansion with
respect to (φn), it follows using Theorem 2.2 that u ∈H�(D∞) ∩ Cb(D̄∞).

Step 6. Using the bounds given in Theorem 8.33 of [14] and the absolute and uniform convergence of the series defining f ,
a simple estimate shows that u ∈ C1(D̄).

Step 7. Using (3.14) and (3.11), we get

u(t, x) =
∞∑

n=1

φn(x)

∞∫
0

[
T D(l) f

]
(n)g(t, l)dl

=
∞∫

0

[ ∞∑
n=1

φn(x) f̄ (n)e−lλn

]
g(t, l)dl

=
∞∫

0

T D(l) f (x)g(t, l)dl

= Ex
[

f
(

X(Et)
)

I
(
τD(X) > Et

)]
. (3.15)

Thus, (3.5) is proved.

Step 8. Given two solutions ui , i = 1,2, of (3.4) with the same initial data ui(0, x) = f (x), U = u1 −u2 is also a solution with
the corresponding f ≡ 0. Then it is easy to check that U (t, x) = 0 for all (t, x) ∈ [0,∞) × D which proves uniqueness. �

The next result provides sufficient conditions for Theorem 3.1 to hold, which can easily be verified in practical applica-
tions.
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Corollary 3.2. Let f ∈ C2k
c (D) be a 2k-times continuously differentiable function with compact support in D. If k > 1 + 3d/4, then

(3.4) has a classical (strong) solution. In particular, if f ∈ C∞
c (D), then the solution of (3.4) is in C∞(D).

Proof. The proof is essentially identical to Corollary 3.4 in [28]. �
Next we extend Theorem 3.1 to a more general setting. Define

HL(D∞) = {
u : D∞ → R: Lu(t, x) ∈ C(D∞)

};
Hb

L(D∞) =HL(D∞) ∩ {
u:

∣∣∂t u(t, x)
∣∣ � k(t)g(x), g ∈ L∞(D), t > 0

}
,

where k(t) is defined in (2.21), and L is a uniformly elliptic operator in divergence form (3.1) such that aij = a ji and (3.2)
holds for some λ > 0.

Theorem 3.3. Let {X(t)} be a continuous Markov process with generator L defined in (3.1). Then, under the conditions of Theorem 3.1,
for any f ∈ D(LD) ∩ C1(D̄) ∩ C2(D) the (classical) solution of

D(ν)u(t, x) = Lu(t, x), x ∈ D, t � 0;
u(t, x) = 0, x ∈ ∂ D, t � 0;
u(0, x) = f (x), x ∈ D, (3.16)

for u ∈Hb
L(D∞) ∩ Cb(D̄∞) ∩ C1(D̄), is given by

u(t, x) = Ex
[

f
(

X(Et)
)

I
(
τD(X) > Et

)]
=

∞∫
0

T D(l) f (x)g(t, l)dl =
∞∑
0

f̄ (n)ψn(x)h(t,μn). (3.17)

Proof. The proof is similar to Theorem 3.6 in [28]. Suppose u(t, x) = G(t)F (x) solves (3.16) so that F (x)D(ν)G(t) = G(t)L F (x).
Divide both sides by G(t)F (x) to get

D(ν)G(t)

G(t)
= L F (x)

F (x)
= −μ.

The eigenvalue problem L F (x) = −μF (x), x ∈ D, F |∂ D = 0 is solved by an infinite sequence of pairs (μn,ψn), where (ψn)

forms a complete orthonormal set in L2(D). Also, D(ν)G(t) = −μG(t) is solved by G(t) = G0(n)h(t,μn), where G0(n) = f̄ (n).
The sequence uN (t, x) = ∑N

n=1 f̄ (n)h(t,μn)ψn(x) is Cauchy in L2(D) ∩ L∞(D), uniformly in t ∈ [0,∞). The series defining u
and Lu converge absolutely and uniformly so that D(ν) and L can be applied term by term. Then

u(t, x) =
∞∑

n=1

f̄ (n)h(t,μn)ψn(x) (3.18)

is a classical solution. The stochastic solution and the uniqueness also follow as before. �
Remark 3.4. The stochastic solution in Theorems 3.1 and 3.3 can also be written as

u(t, x) = Ex
[

f
(

X(Et)
)

I
(
τD

(
X(E)

)
> t

)]
.

The argument is similar to Corollary 3.2 in [28].

Remark 3.5. It is not difficult to extend Theorem 3.3 to the case where the mixing measure ν in (2.3) contains atoms.
Suppose μ is a finite measure with supp(μ) ⊂ (0,1) and satisfies (2.13). Assume also that |∂th(t, λ)| � b(λ)ke(t) for some
functions b and ke satisfying the condition

b(λ)

1∫
0

t∫
0

ke(s)ds

(t − s)β
dμ(β) < ∞, (3.19)

for t, λ > 0. Then h(t, λ) = E(e−λEt ) is a classical solution of the eigenvalue problem

D(ν)h(t, λ) = −λh(t, λ); h(0, λ) = 1. (3.20)
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The proof follows from Lemma 2.1, and the fact that (3.19) is a sufficient condition for D(ν)h(t, λ) to be defined as a classical
function. Suppose that

ke(t)
∞∑

n=1

b(λn) f̄ (n)
∣∣φn(x)

∣∣ < ∞, (3.21)

where the series converges absolutely and uniformly for t > 0. Define

HL(D∞) = {
u : D∞ → R: Lu(t, x) ∈ C(D∞)

};
Hb,e

L (D∞) =HL(D∞) ∩ {
u:

∣∣∂t u(t, x)
∣∣ � ke(t)g(x), g ∈ L∞(D), t > 0

}
,

where ke and b satisfy (3.19) and (3.21). Then under the remaining conditions for Theorem 3.3, the classical solution of
(3.16) for u ∈Hb,e

L (D∞) ∩ Cb(D̄∞) ∩ C1(D̄) is given by (3.17). The proof is similar to Theorem 3.3, using (3.19) and (3.21).

Example 3.6. Let

μ(dβ) =
n∑

j=1

c
β j

j

(
Γ (1 − β j)

)−1
δ(β − β j)dβ,

where 0 < β1 < β2 < · · · < βn < 1, c j ’s are positive constants and δ is the Dirac measure. Consider the subordinator defined
by

Wt =
n∑

j=1

c j W
β j
t ,

where W
β j
t ’s are the independent stable subordinators. The functions ke(t) and b(λ) that satisfy (3.21), (3.19) and∣∣∂th(t, λ)

∣∣ � b(λ)ke(t)

are ke(t) = (c
β j

j sin(β jπ))−1(tβ j−1) for all j = 1, . . . ,n and b(λ) = λ, respectively. The proof follows the same steps for
Eq. (2.19) in [20] and using the properties of μ(β). Then it follows from Remark 3.5 that (3.17) is the classical solution
to (3.16).

4. Discussion

Here we describe some possible extensions and open problems. First we consider the problem of strong solutions to
fractional diffusion equations with jumps. The generator L defined by

Lu(t, x) =
d∑

i, j=1

aij(x)
∂2u(t, x)

∂xi∂x j
+

d∑
i=1

bi(x)
∂u(t, x)

∂xi
+

∫
y =0

(
u(t, x − y) − u(t, x) +

∑d
i=1

∂u(t,x)
∂xi

yi

1 + ∑d
i=1 y2

i

)
φ(x,dy) (4.1)

appears in the backward equation ∂u/∂t = Lu of a Markov process X(t) [17,32]. The probability distribution of the Markov
process X(t) solves the forward equation ∂v/∂t = L∗v , where L∗ is the L2 adjoint of the generator L. The integral term
in (4.1) generates a jump diffusion (e.g., a stable process). For stable generators, the explicit connection with stochastic
differential equations driven by a stable Lévy process was established by Zhang et al. [37] and Chakraborty [7]. In that
case, the integral term in (4.1) can be written in terms of fractional derivatives in the space variable. Hahn et al. [15]
studied the time-fractional equation ∂βu/∂tβ = Lu in this case, as well as the distributed-order extension. They established
a connection with stochastic differential equations driven by a time-changed Lévy process X(Et), so that their result includes
jump diffusions on Rd . It would be interesting to develop strong solutions to fractional and distributed-order jump diffusion
equations on Rd .

Note that the general results of [2] remain valid for bounded domains. Hence, the solution formula (3.5) still holds in
the appropriate Banach space, and can be used to prove distributional solutions, e.g., in L2(Rd). Eigenvalue expansions can
be found explicitly in some special cases. The main technical difficulty is to obtain regularity of the eigenfunctions, or at
least sharp bounds, for the generator (4.1) in the case of jump diffusions on bounded domains. See Chen et al. [11] for a
recent study on this problem. One explicit example is to take L = −(−�)α/2 for 0 < α < 2, the classical fractional power of
the Laplacian [16], which generates a spherically symmetric stable Lévy process. This results from (4.1) with a = b = 0 and
φ(x,dy) = Cd,α‖y‖−α−1 dy, where Cd,α is a constant that depends on the stable index α and the dimension d of the space,
see for example [23]. This is a type of fractional derivative in space, called the Riesz fractional derivative of order α [31].
Some results for this case are available in Chen and Song [9], Chen et al. [10] and Song and Vondrac̆ek [35]. The construction
of strong solutions for general time-fractional jump diffusions on bounded domains remains a challenging open problem.
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Meerschaert and Scheffler [27] discuss generalized diffusion equations of the form ψW (∂/∂t)u(t, x) = Lu(t, x) +
δ(x)ψW (t,∞), where ψW (s) is the Laplace exponent of a non-decreasing Lévy process (subordinator) whose Lévy mea-
sure φW has infinite total mass, and L is the generator of another Lévy process. This is a distributed order time-fractional
diffusion equation (2.12) in the special case when (2.9) holds. As in Section 2, the paper [27] shows that the density u(t, x)
of the CTRW scaling limit A(Et) solves the generalized diffusion equation, when Et is the inverse of the subordinator Wt

with E[e−sWt ] = e−tψW (s) . The problem of finding the strong solutions of generalized diffusion equations remains open even
on Rd .
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