PETROV-GALERKIN METHOD FOR FULLY DISTRIBUTED-ORDER
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS *
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Abstract. Distributed-order PDEs are tractable mathematical models for complex multiscaling anomalous trans-
port, where derivative orders are distributed over a range of values. We develop a fast and stable Petrov-Galerkin
spectral method for such models by employing Jacobi poly-fractonomials and Legendre polynomials as temporal
and spatial basis/test functions, respectively. By defining the proper underlying distributed Sobolev spaces and their
equivalent norms, we prove the well-posedness of the weak formulation, and thereby carry out the corresponding sta-
bility and error analysis. We finally provide several numerical simulations to study the performance and convergence
of proposed scheme.
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1. Introduction. Over the past decades, anomalous transport has been observed and in-
vestigated in a wide range of applications such as turbulence [51, 42, 20, 10], porous media
[56, 4, 63, 15, 62, 6], geoscience [5], bioscience [44, 45, 46, 47], and viscoelastic material
[53, 19, 39]. The underlying anomalous features, manifesting in memory-effects, non-local
interactions, power-law distributions, sharp peaks, and self-similar structures, can be well-
described by fractional partial differential equations (FPDEs) [40, 41, 26, 43]. However,
in cases where a single power-law scaling is not observed over the whole domain, the pro-
cesses cannot be characterized by a fixed fractional order [52]. Examples include acceler-
ating superdiffusion, decelerating subdiffusion [18, 52], and random processes subordinated
to Wiener processes [13, 27, 41, 14, 36, 35, 7]. A faithful description of such anomalous
transport requires exploiting distributed-order derivatives, in which the derivative order has a
distribution over a range of values.

Numerical methods for FPDEs, which can exhibit history dependence and non-local fea-
tures have been recently addressed by developing finite-element methods [22, 2], spectral/spectral-
element methods [57, 9, 37, 48, 38, 25], and also finite-difference and finite-volume methods
[11, 33, 3]. Distributed-order FPDEs impose further complications in numerical analysis by
introducing distribution functions, which require compliant underlying function spaces, as
well as efficient and accurate integration techniques over the order of the fractional deriva-
tives. In [58, 28, 17, 54, 32, 21], numerical analysis of distributed-order FPDEs was exten-
sively investigated. More recently, Liao et al. [31] studied simulation of a distributed subdif-
fusion equation, approximating the distributed order Caputo derivative using piecewise-linear
and quadratic interpolating polynomials. Abbaszadeh and Dehghan [1] employed an alter-
nating direction implicit approach, combined with an interpolating element-free Galerkin
method, on distributed-order time-fractional diffusion-wave equations. Kharazmi and Zay-
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ernouri [23] developed a pseudo-spectral method of Petrov-Galerkin sense, employing nodal
expansions in the weak formulation of distributed-order fractional PDEs. In [24], they also in-
troduced distributed Sobolev space and developed two spectrally accurate schemes, namely, a
Petrov—Galerkin spectral method and a spectral collocation method for distributed order frac-
tional differential equations. Besides, Tomovski and Sandev [55] investigated the solution
of generalized distributed-order diffusion equations with fractional time-derivative, using the
Fourier-Laplace transform method.

The main purpose of this study is to develop and analyze a Petrov-Galerkin (PG) spectral
method to solve a (1 +d)-dimensional fully distributed-order FPDE with two-sided derivatives
of the form

max max

T d ,
i o i
f () COFu dr + Zf 0i(ui) [e, "D u + ¢, RXL,,D; ul du;
Tml" i:l l’l

min
i
max

d

J 2y, 2v;

(1) = Z fvm p;v) [k, %Dxf’“ + Ky, I%Db,v»/“] dvi—yu+f,
j=1 VY

subject to homogeneous Dirichlet boundary conditions and zero initial condition, where for
iL,j=1,2,..,d

tel0, T], xje[aj, bj],

20" < 27" € (0, 2], 20 £ 1, 20 £ 1,
2 < 24 € (0, 1], 2¢;f" <2/ e(l, 2],

4

0 < @(r) € L' (T, 7")), 0 < 0ilpi) € L' (™, 1"™)). 0 < pj(v)) € L'(]™ V™)),

and the coefficients ¢, ¢, k;,, ky,, and 7y are constant. We briefly highlight the main contribu-
tions of this study as follows.

o We consider fully distributed fractional PDEs as an extension of existing fractional
PDE:s in [48, 24] by replacing the fractional operators by their corresponding dis-
tributed order ones. We further derive the weak formulation of the problem.

e We construct the underlying function spaces by extending the distributed Sobolev
space in [24] to higher dimensions in time and space, endowed with equivalent as-
sociated norms.

o We develop a Petrov-Galerkin spectral method, employing Legendre polynomials
and Jacobi poly-fractonomials [61] as spatial and temporal basis/test functions, re-
spectively. We also formulate a fast solver for the corresponding weak form of
(1), following [48], which significantly reduces the computational expenses in high-
dimensional problems.

o We establish well-posedness of the weak form of the problem in the underlying
distributed Sobolev spaces respecting the analysis in [49] and prove the stability
of proposed numerical scheme. We additionally perform the corresponding error
analysis, where the distributed Sobolev spaces enable us to obtain accurate error
estimate of the scheme.

We note that the model (1) includes distributed-order fractional diffusion and fractional advection-
dispersion equations (FADEs) with constant coefficients on bounded domains, when the cor-
responding distributions ¢, 0;, and ;, 7, j = 1,2, - - , d are chosen to be Dirac delta functions.
To examine the performance and convergence of the developed PG method in solving differ-
ent cases, we also perform several numerical simulations.

The paper is organized as follows: in Section 2, we introduce some preliminaries from
fractional calculus. In Section 3, we present the mathematical framework of the bilinear form
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and carry out the corresponding well-posedness analysis. We construct the PG method for
the discrete weak form problem and formulate the fast solver in Section 4. In Section 5, we
perform the stability and error analysis in detail. In Section 6, we illustrate the convergence
rate and the efficiency of method via numerical examples. We conclude the paper with a
summary.

2. Preliminaries on Fractional Calculus. Recalling the definitions of the fractional
derivatives and integrals from [61, 41], we denote by *,D7¢(x) and *D7 ¢(x) the left-sided
and the right-sided Reimann-Liouville fractional derivatives of order o > 0,

RL o _ 1 a (" gs)

(2) D7 g(x) = T o) dw f Gosri ds, x¢€]la,b],
RLo =" O

3 Dpgx) = T dx"f G ds, xé€la,b),

in which g(x) € L![a, b] and f o %21 —ds, [ =Y ds e C"[a,b], respectively, where

a (x_s)wrl n
n = [o]. Besides, EDZg(x) and gDZg(x) represent the left-sided and the right-sided Caputo
fractional derivatives, where

C o _ 1 fx g(n)(s)
“) Dif(x) = T ). Gy ds, x¢€la,bl],
_1\? b (n)
o) Dy flx) = D g7 ds, x¢€la,bl].

IFn-v)J, (s—xy*i-=n

The relationship between the RL and the Caputo fractional derivatives is given by

Rl gy _ f(a) Cqy
©) DU = s+ SDL)
b
™ By = —48 e,

I'(1—-v)ob-xy
when [v] = 1, see e.g. (2.33) in [41]. In the case of homogeneous boundary conditions,
we obtain DY f(x) = (DI f(x) == Dif(x) and "D} f(x) = D) f(x) := D} f(x). The
Reimann-Liouville fractional integrals of Jacobi poly-fractonomials are analytically obtained
in the standard domain ¢ € [-1, 1] as [61, 60]

RL 7o @, _ F(I’l +ﬁ + 1) +o pa—0.B+o
@®) ST+ P PO = o S (L PP,
and
r 1 +o,b—0
©) RLTE(1 - e P = O D (g gy o g

ITn+a+o+1)

where 0 < o <1, > -1,8> -1, and PZ’ﬁ (&) denotes the standard Jacobi polynomials of
order n and parameters a and 8 [8]. Accordingly,

RL o _ F(I’l+ 1) o,—0 -
(10) 21D Pu(é) = Th-o+D 1)Pn A+
and
(11 EOTPO = o b O -7,
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where P,(¢) := P,?’O(f) represents Legendre polynomial of degree n (see [8]).
Let define the distributed-order derivative as

max

.
(12) POIf(x) = | ¢(0) Dy f(t, %),

where @ — ¢(@) be a continuous mapping in [@uin, ¥max] [24] and ¢t > 0. We note that by
choosing the distribution function in the distributed-order derivatives to be the Dirac delta
function d(7 — 7¢), we recover a single (fixed) term fractional derivative, i.e.,

max

(13) fT 8(t — 10) oDy f(t, x)d7 = \D;° f (1, x),

min

where 79 € (Tins Timax)-

3. Mathematical Formulation. We introduce the underlying solution and test spaces
along with their proper norms, and also provide some useful lemmas to derive the correspond-
ing bilinear form and thus, prove the well-posedness of problem.

3.1. Mathematical Framework. Recalling the definition of Sobolev space for real s >
0 from [24, 29], the usual Sobolev space, denoted by H*(I) on the finite interval I = (0, T), is
associated with the norm || - [|gs¢ry. According to [29, 16],

(14) | sy =1+ |le(1) = |- sy
where ” = ” denotes equivalence relation, |- |igsy = || oD} Ollz2y» and |- lrasry = 1| D5 Ollez -

Take A = (a,b). For the real index o > O and o # n — % on the bounded interval A the
following norms are equivalent [30]

(15) - llaray = - iy = 1 rmeay 21 Tgeays

=

1
where |- lgzoqn) = (1,27 N0, + 11 ) I Ietiriay = (1105 Ol + 11+ 125,) - and
1 .
| - |1*H”(I) = (D7 (), DF())il?. From Lemma 5.2 in [16], we have

1 1 1 1
(16) | Faeiy = 1 Bagea 1 Paoiy = 1027 Ol 1L DFON s -

Let C’(A) represent the space of smooth functions with compact support in A. According to
Lemma 3.1 in [49], the norms || - |lige sy and || - ||-g-(a) are equivalent to || - ||lego(s) in space
Cy (A), where

(SIE

(17) - letrecny = (ILDF Ol + DT Ollgaga + 1 1)

In the usual Sobolev space, for u € H7 (A) we define
uligon) = 1GDT s DI VAL +1(DF u, DI VAIE, Vv € HT(A),

assuming  sup (D7 u, DI VAT + (DT u, DIVAIZ > 0 Vv € H7(A). Denoted by
ueH" (A)

IH(‘)’(A) and "H{ (A) are the closure of C°(A) with respect to the norms |||l g () and ||-|| g (a)in
A, respectively, where C°(A) is the space of smooth functions with compact support in A.
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Recalling from [24], PH(R) represents the distributed Sobolev space on R , which is
associated with the following norm

max

(18) ||-||TH¢<R>=( f 0@ 1+ P F @), dr) ,

o=

where 0 < o(1) € L'([t"™",77]), 0 < ™" < 1%  Subsequently, we denote by ®H¥(I)
the distributed Sobolev space on the bounded open interval I = (0,7), which is defined as
PHA() = {v e LX(I)| I € "HYR) s.t. #|; = v} with the the equivalent norms || - [|.> () and
I - llx= gre(y in [24], where

1

.rl”a\'
Il- ||’~3H‘”(1) = (H : ”12‘2(1) + ﬁmm @) |l ODT( )”Lz(l) ) s
and

1
T/IIH‘(
2
” : ||’~1\H‘/’(]) = (” : ||L2(1) + f ) SD(T) ” D ( )||L7(1) dT) .
Tmm

In each realization of a physical process (e.g., sub- or super-diffusion) the distribution
function ¢(7) can be obtained from experimental observations, while the theoretical setting
of the problem remains invariant. More importantly, choice of distributed Sobolev space and
the associated norms provide a sharper estimate for the accuracy of proposed PG method.

Let Ay = (ai, b)), A; = (a;, b)) X A fori =2,---,d. We define X; = *HP'(A) with
the associated norm || - [l e (o), Where

1

max 5

2

i
(19) ||-||@Hm<m)=[||-||iz(,)+ f "0 (1 DL ORan + 1 D) Olias,) dvl] .
Jmin

1

Subsequently, we construct X such that

Xa = PH? (a2, by); (A1) N LA ((a2, b2); X,

(20) Xy = *H7((a4 ba); L*(Aa-1)) O L (@4, ba); Xa-1),

associated with the norm

1

2

Lz((azlvbd);xd—l ) } .

+-l

@1) el = {1117

DHPd ((ad,bd)llz(/\dfl))

Lemma 3.1. Letv; > Qandv; # n — %foriz 1,---,d. Then

1
2

Ve
(22) ” ||X,1 Zf pl(vl ” DV ()”Lz(l\d) + ” 'Z)V ()”Lz(Ad))dvi + || : ”Iz‘z(Ad)} .



Proof. Considering (19), X, is endowed with || |lx, = |- [logwi a,)- Next, X is associated
with || - |lx, = {Il - |1 +1-11? }, where
CHP2 ((¢l2»b2);L2(/\1)) Lz((dzybz)Q)ﬁ)

2
[lull
°HP2(<az,bz>;L2<A1>)

max

/16 by by by 2
- 2 2 2
= f ‘ p2072) f (f |azﬂzul dx; + f Ixz'Z);’,i ul”dx; + f | dXZ) dxy dv,
i a a a B az

Jnax

V2
= f = 200 (Il D I n,, + 11y D2 I, V2 + Ml
i

and

2
”u”Lz((az,bz);X])

V']"“X b, by by by
2 2 2
= f i) f ( f | o Dl dxy + f | Dyt ul dxy + f lul® dxy ) dxa dvy
f ap aj ap aip

yhax
2 2
= Lin Pl(Vl) (”x,DVI MHLZ(A ) ” al@;i M”LZ(AZ))dVI + ”u”Lz(Az)'
1
Let assume that
V’nﬂx\ l

2
N, = Z f i) (1L, D) Olr, 1y + 11 D O, 1))dv,~+||-||iz(AH)}.

min

Then,

2
el
o104 (g ba 200 1)

L

{

n1a>c

ba
lul? dx, + f f Pa(Va)(| o, Dul + 1, Dy ul)dva dxg)dA gy
d

VZ“”
(23) = f . pd(yd) (” Dbd (M)HLZ(Ad) || DVL’ (u)”LZ(Ad))dVd + ||u||12‘2(Ad)’

i
and
(el
Lz((tld,bd);r\’d-l )
ba ymax
= [T (5[ po0 0, 1 Dy )an v,
L 1
b
+ f f lulPdAg-1 dxg
Ag-y
o
(24) = Z f o) (1Dl + 10 DYl )vi + Ny
Therefore, (22) arises from (23) and (24) and the proof is complete. 0

The following assumptions allow us to prove the uniqueness of the bilinear form.
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AssumptioN 1. Foru € Xy

-
sup L i) (10 Dt D) |+ 1(, Dt ( DY)y N)dvi > 0, Vv € Xy

ueXy Jyiin '

wheni=1,---.,d, and A, = [, (a;, b)).

J#I
AssumptioN 2. For u € "CH?(I; L*(Ay)) sup fT T o(0) | Dfu, Div)aldr >
0zue"®He(I,L2(A))
0 Vv e "H?(I; L*(Ay)).
In Lemma 3.3 in [49], it is shown that if 1 <2y; <2fori=1,---,d and u,v € X, then
(DY uv)s, = (D), Div)y,» and (,D¥u,v)y, = (D,  Dyv),,. Consequently,
we derive

ax pax

(25) f pi(vi) (xil)z:"'u, V), dvi = f pi(vi) ( Dy, o, Dv)p, dvi
i i

and
- s

(26) f/ piv) (o DY u, V), dvi = f — pivi) (o, DY,  Dyv)p, dvi
i

Additionally, in the light of Lemma 3.2 in [49], we have

max

(27) f ~pivi) (|(alz)fc';u, X[Z);’/'_V)AJ + I(x,DZf-”’ a[D;;v)AdI)dvi
in

i

= IMITHpi((ai,bf):Lz(Ai})) MIHM ((ai’b’);Lz(AL)),

fori=1,---,d, where Assumption 1 holds.
Next, we study the property of the fractional time-derivative in the following lemmas.

Lemma 3.2, If0 < 2771 < 2¢07M0% < 1 (1 < 27" < 2¢M% < 2) and u,v € " H¥(I), when
ul—o(= %,-) = 0, then

max nax

(28) f (1) (OZ)?Tu, v),dt = f o) ((Dfu, Div), dr,

min

where I = (0, T), 0 < ¢(r) € L!([z"™", 7e]).

Proof. 1t follows from [24] that for u,v € H(I), when ul,—o(= %'l:()) = 0 and v|-7(=
%L:T) = 0, we have

(29) (D7 u.v); = (Dju, Djv),.

Then (28) arises from (29). 0

Let 0 < 27™in < 2¢max < 1 (1 < 27™Min < 27Max < 2) and Q = I x Ay, where I = (0, T) and
Ag = T1L, (@i, b)). We define

(30) "PH(I; LX(Ag))
. LD gy du .
= {ul e, Mzzea) € “PHAD, o= —1i=0) = lyma, = oy =0, i = 1, d).
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which is endowed with the norm || - || , where we have

1«?H¢(1;L2 (Ad))

e erzzenn =) It Mz |

max 1
(31) :<fT o) 11D} W72 dT+”“”iZ<Q))2'

min

Similarly, we define
(32)  "PHY(I LA(Ag)

dv .
= (I iz, € HAD (= Zolm0) = i = Vo, = 00 = 1o+,

which is equipped with the norm || - ||->ge(1:12(a,))- Following (31),
Wlhsszany = [ VMg | oy
pnax i L\
2
(33) = (f . QD(T) ”tD; (V)”LZ(Q)dT + ”V”LZ(Q)) .
min

Lemma 3.3. Foru € POHY(I LAH(Ay)) and 0 < 27N < 27m0% < 1 (1 < 270 < 2¢ma¥ <
2), j: o) [(,OFu, Div)al dt < lulliegeqrrziagy IVl megzagy YV € "CHA (I LA(Ag)).

Proof. From Lemma 3.6 in [49] we have

=

1
(34) 1 DFu Div)al < (Il Dl g, + i) (1 D5V gy + IM120) -

Followingly, by Holder inequality

TI?I(L’C
(35) (01 Dru, Div)aldt

min

T T
= f (1) f f | oDFul| Divld dAg dt
in A JO

max max

T T i . T .
s( f . f f so(T)IoZ),’u|2dszd)z( f | f f o) | DV dtdAd)z
Tmm Ad 0 Tl”lll Ad 0

p/max max

1
= f @@ | D ullza gy dr + ullF ) ( f
Tmm

min

T

1
e 11, D2y dr + W2 )

”u”'v?Hﬁﬂ(l;Lz(Ad)) ”V”’vl‘H%"(l;Lz(Ad)y

Lemma 3.4. For any u € "PH¥(I; L*(Ay)) and 0 < 20" < 27" < 1 (1 < 27" <
27 < 2) there exists a constant ¢ > 0 and independent of u such that

e

G6) up [ €@ 1(Dfu. Div)aldr
u

0#ve"  He(I,L*(Ay)) |V|’¢H“’(1;L2(Ad))

> cluliegeqrr2(ag))

under Assumption 2.



Proof. Following Lemma 2.4 in [12] and Lemma 3.7 in [49], for any u € 2HY(I, L2 (A))
let V, = H(t — T) (u — ul,=r) assuming that fTZ e Dfu, Diuli=r)al > 0, where H(z) is
the Heaviside function. Evidently, V, € ”®H¢(1 : L*(A,)). From Holder inequality, we obtain

||(V ||rIJH¢(] L2(Ad))

= fﬂm SO(T) ” t@;"(H(t - T) (I/l - u|t=T))|Ii2(Q)dT

max

i . d
= f @I (O =T = ) ) g i

o _(dH(t U — =
= f @Iy (d—(u—uh T)+H<t—T>%)niz(g)dr
= f Gl 2 (H(r )M)um)
6D = [ el DY g dr
TIHI’K D
BY (1), 1Vl o 2eny = Joun €O N0 DF s g dt = Wls - Hence, | DEVLIE, o
=~ || DTM”LZ(Q) Therefore,
Tmax Tmax
38 [ emIDru, DiVaaldr = f e f f | DUl D V.ddr dAg dr
-
S ) f f | Diuldi dA g dr
.rmin [,

_ 2
= [l o2 n

where B > 0 and independent of u. Considering (37) and (38), we obtain

Tmax
up Jw #@1GDfu Divialdr [0 e@Dru, DuVioldr
0£ver® He (1L (M) Vi mrer,z2(a ) - [Vl per2a0)

2 Blulee ez,

Lemma 3.5. If0 < 27" < 20M9% < 1 (1 < 27" < 27%% < Q) and u,v € eI LA (AY),
then

max

P 7
(39) f () ( OZ),ZTM, V)odt = f o(0) ((Dfu, D7v)q dr,

min min

where 0 < <p(‘1') c Ll([Tmin,TmaX]).
Proof. By Lemma 3.2,

max max
7

8 T T
f @(7) (DF u,v)odt = f (1) f f | oD ul vl dt dAg dt
Tm/'n min Ad 0

ma,\ Tma\'
(40) f f (1) f | oDfull , DpvldtdrdAg = f o(0) (Dfu, Div)odr. 0O
Ag Jrmin T

min



3.2. Solution and Test Function Spaces. Take 0 < 27" < 27M% < 1 (1 < 27™" <
27" < 2)and 1 < Zv;"i’l <2 <2 fori=1,---,d. We define the solution space

(41) BAOLTU(Q) 1= IDH‘P(I LZ(A,,,)) N LA X)),

associated with the norm

1

— 2 2 2
(42) llgson-saiey = {1 im0 )

Considering Lemma 3.1,

u . = u(t,.
lleell 2., H Nz, e, L2(1)

1

Vmux
2
(43) Zf pl(vl || Z)Vl (u)”LZ(Q) + || DV (u)”LZ(Q))dVl + ||u||L2(A )} .

Therefore, from (31) and (43),

s
2 2
||u||3¢.p,,...<pd(g):{||u||L2(Q)+ f e D] W} d7

(44) +Z e P00 (1) @y + 125 Ol ]

I—

Similarly, we define the test space
(45) B 00(Q) = U1 L (AD) 0 LA X,

equipped with the norm

2 2 2
Wllgeor - ay ={IMPreirzznny + Wi

"
={IVl2 ) + f @@ 1,DF Wl gy d
T

min

ynax

(46) + Z fvmm pi(vi) || DV' (V)“LZ(Q) +1,D a; (V)”iz(ﬁ))dvi}

=

by Lemma (3.1) and (31). Take Q = I X A, for a positive integer d. The Petrov-Galerkin
spectral method reads as: find u € 8% £4(Q) such that

47 a(u,v) =I(v), Vve BPPP(Q),

where the functional /(v) = (f,v)q and

max

(48) a(u,v) = frb o(1) (D u, D} v)dt

min

mux

+Zf 0i(u;) 61( D M’x@u Vo + ¢, Dﬁ,v’xﬂﬂ M)Q)d/'ll

o
J . . . .
—Z f P (ki DY s DY VI + ki DY v, Dy wa)dv,
. V’/{’m J

+v(u,v)a
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following (25), (26) and Lemma 3.5 and v, ¢j,, ¢, k;;, and k,, are all constant. Besides, 0 <
27 < QMY < ] (1 < 27" < 27M9Y < D) 1 < Zy;”i" <2uf* <2and 1 < 2v’}”" <D<
2fori,j=1,2,---,d.

RemARK 1. In the case T < %, additional regularity assumptions are required to ensure
equivalence between the weak and strong formulations, see [23] for more details.

Uy and Vy are chosen as the finite-dimensional subspaces of 8% #4(Q) and B> 4 (QQ),
respectively. Then, the PG scheme reads as: find uy € Uy such that

(49) a(uy,vy) = l(vy), Yve Vy,

where

max

a(uy,vy) = f o(1) ((Df un, Dy vy)adr

min

max

d
> f i) [en( D s D v + € (o D s D v [
=1

max

d v
J Vi Vi Vi v
-2 fvm P [k, D s Dy vwde + ki, (o DY s Dy vidaldy;
j=1

(50) + y(un, vn)o-

Representing uy as a linear combination of elements in Uy, the finite-dimensional problem
(50) leads to a linear system, known as Lyapunov system, introduced in Section 4.

3.3. Well-posedness Analysis. The following assumption permit us to prove the unique-
ness of the weak form of the problem in (47) in Theorem 3.8.

AssSuMPTION 3. For all v € B¥P1P4(Q)

sup f oM (D5 u, D7 v)aldt > 0,

UEBFP1Pd (Q) min
Vz[xa.\'
! V) v v v
sup 0 (16, D% us D VIal +16,Dy o, DY val)dv; > 0,
WeBPP1 0 (Q) Sy

sup  |(u,v)al > 0,
UEBPPI4d (Q)

when j=1,---,d.
Lemma 3.6. (Continuity) Let Assumption 3 holds. The bilinear form in (48) is continu-
ous, i.e., for u € BHPPI(Q),

(G29)] 48>0, l|a(u,v)| SB”u”B‘N’]~""ﬂd(Q)”V”%‘P»ﬁ]-'"vﬂd(g) Yy € BP0 (),

Proof. Tt follows from (27) and Lemma 3.3. 0
THEOREM 3.7. Let Assumption 3 holds. The inf-sup condition of the bilinear form (48)
forany d > 1 holds with 8 > 0, i.e.,

la(u, v)|

(52) inf sup
0#UEBHIPU(Q) (zyemertoa(@) |VIweorvaylluller - 0a ()

>B>0,

where Q =1 X A\y.
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Proof. For u € 89°1P4(Q) and v € B> P4(Q)) under Assumption 3,

max
7

la(u, V)| = |(u, v)al + f oM (D u, D7 v)aldt

min

max

T

‘ Z [ p (6t D a1 D D

s
(53) + Z f 1) (16, D% 4, Dy Vial + 1, D}, , DY al)dv.
Following (27) and Theorem 4.3 in [49],

d V?’ar
> f i) (1D @), Dy el +1(, D} (). , D al)

max max
V. N

d v
2@12[ f 00 (10, D% @Iz Jdvi fvm 00 (I Dy Wl v

v [ pon (1D @)t [ 00 (1% 0l an]

i i

Thus,
d yax
3 f i) (16, D @), DL Dl + 1, D] W), D (el
i=1
"
> ¢ Z [ 200 (1,25 @i + 1,25 @l v
.
XZf PJ(VJ)(H D (V)||L2(Q),+||a,1)x,(V)||L2(Q))dV/
-
(54) = Cilulrzg:x,) Wieaasx,)-

where C is a positive constant and independent of u. Considering Lemma 3.4, there exists a
positive constant C, > 0 and independent of u such that

max
Lo ¢@I1GD ), Dy(v)aldr
(55) sup = Z CZlulLDH%’(I;LZ(Ad))'
O£vEBH1 14 (Q) WVl reqrr2an

Furthermore, for u € B9P1£4(Q)

pnax pnax
56) me oM (D5 (w), D7 (v))aldT me oM (D5 (w), D7 (v))aldT
sup = sup
0#£veB# d (Q) VI e rsr2 a0 0£veBEPd (Q) [VIgeer—ra)

and

ynax

Vi Vi
Py f oo 210D (16,DY 1, D Vgl +10, D)), o DY vial)dv,;
sup
0£veBEP1Ld (Q) IVlle2:x,)

d Vi v Vi Vi v
et fon 210D (16D D) Vel + 1, D)), o, D Vel

SN= sup
0£veBF#1 P (Q) Vllggeorea )

12



Therefore, from (54), (55), (56), and (57) we have

-
vl g l@wv)al + [L0 ©@1(DF 1, DY v)aldr
sup —_ >
0zveseerea (@) [VIBer1-va@) " ozvesrerea(@) [Vllgeor-oa )
PR v, v, v, .
DIy fj,,f.-n pi(vj) (|(a,1)xj- U, Dy Val +1(, Dy, s o, Dy, V)Q|)de
+
”V”Q}%ﬂlv"'vﬁd(g)
(58) 2 BC (Ilullz) + b progrzngy + il
where C = min{C,, C;). Accordingly,
. la(u, v)|
(59 inf sup  ————— > Blullgeorva(),
0#ueBe o1 (©) 02veBert o (@) [VIBer - va ()
where 8 = BC is a positive constant and independent. 0
TueorREM 3.8. (Well-Posedness) For 0 < 27" < 27" < 1 (1 < 27" < 27" < 2),
I <2y <2/ < 2, and i = 1,--- ,d, there exists a unique solution to (49), which is

continuously dependent on f € (8™ Y)*(Q), where (B™'>"")*(Q) is the dual space of
BTV YA(Q).

Proof. In virtue of the generalized Babuska-Lax-Milgram theorem [50], the well-posedness
of the weak form in (47) in (1 + d) dimensions is guaranteed by the continuity and the inf-sup
condition, which are proven in Lemma 3.6 and Theorem 3.7, respectively. a

4. Petrov Galerkin Method. To construct a Petrov-Galerkin spectral method for the
finite-dimensional weak form problem in (49), we first define the proper finite-dimensional
basis/test spaces and then implement the numerical scheme.

4.1. Space of Basis (Uy) and Test (Vy) Functions. As discussed in [49], we take the
spatial basis, given in the standard domain & € [-1, 1] as ¢,,(£) = T (Ps1(€) = Pm-1(8)), m =
1,2,---, where P,,(¢) is the Legendre polynomials of order m and o, = 2 + (—1)". Besides,
employing Jacobi poly-fractonomials of the first kind [61, 59], the temporal basis functions
are given in the standard domain 7 € [-1, 1] as ¢ () = o, (1 + n)TP;’IT(n), n=12,...

We also let n(r) = 2t/T — 1 and &;(s) = 2 bvj__(Z/ — 1 to be temporal and spatial affine
mappings from ¢ € [0,T] and x; € [aj,b;] to the standard domain [-1, 1], respectively.
Therefore,

d
Uy = span{(a,lrnT on)(t)l_[(gbmj ofj)(xj) n=12,--- ,N,mj=12,--- ,Mj}.
=1

Jj=

Similarly, we employ Legendre polynomials and Jacobi polyfractonomials of second kind in
the standard domain to construct the finite dimensional test space as

d
Vy = span{(‘l’; on)(t)n((bk/_ O§j>(xj) r=12,--- N, kj=12,--- ,Mj},

=1
where W[ (7) = o.(1 =) P [(), r = 1,2,--- and ®,(&) = ox(P,, (&) — P,_,(6), k =
1,2,---. The coefficient & is defined as o = 2 (=1)¥ + 1.

Since the univariate basis/test functions belong to the fractional Sobolev spaces (see [61])
and 0 < (1) € L'((7™", 7)), 0 < pj(v) € L'((v?"",v’;‘”")) for j =1,---,d, then Uy C
BEL1Ld(Q) and Vy € BPPHP4(Q). Accordingly, we approximate the solution in terms of a
linear combination of elements in Uy, which satisfies initial and boundary conditions.

13



4.2. Implementation of the PG Spectral Method. The solution uy of (49) can be
represented as

(60) uy(x, 1) = Z Z Zun,m md[w,,(o]_[qsm/(x])

n=1 m= mg=1

in Q and also we take vy = ¥(¢) H?:] (ij(x_,-), r=12,...,N, kj =1,2,..., M;. Accord-
ingly, by replacing uy and vy in (49), we obtain the following Lyapunov system

d
(Sf@Ml®M2~--®Md+Z[MT®M1®~~-®Mj_1®SJT”’®M,-+1~--®Md]
=1
(61) +’)/MT®M1®M2“-®M,1)W=F,

in which ® represents the Kronecker product, F denotes the multi-dimensional load matrix
whose entries are given as

(62) Frp, . ff(f Xy, xd) \PT on (f)l_[ %, 05; () dQ,

and S ].To’ =c;, xS s ¢, XS g K, X S V- Ky, X S " The matrices S¥ and M, denote
the temporal stiffness and mass matrices, respectively; S, & SQ/ Sp is +» and M; denote
the spatial stiffness and mass matrices. The entries of spatlal mass matrlx M; are computed
analytically, while we employ proper quadrature rules to accurately compute the entries of
temporal mass matrix M, as discussed in [48]. The entries of S¥ are also computed based
on Theorem 3.1 (spectrally/exponentially accurate quadrature rule in @-dimension) in [24].
Likewise, we present the computation of S jT"’ in Lemma 7.1 in Appendix.

REMARK 2. The choices of coefficients in the construction of finite dimensional basis/test
functions lead to symmetric mass/stiffness matrices, which help formulating the following fast
solver.

4.3. Unified Fast FPDE Solver. In order to formulate a closed-form solution to the
Lyapunov system (61), we follow [60] and develop a fast solver in terms of the generalized
eigen-solutions.

THEOREM 4.1. [48] Take {em , }M’ | as the set of general eigen-solutions of the spatial

stiffness matrix S Tot yith respect to the mass matrix M. Besides, let {€,], A}, }N be the set of

general eigen- solutlons of the temporal mass matrix M with respect to the stlﬁ”ness matrix
S?. Then the unknown coefficients matrix U is obtained as

N M
(63) U= > - anml mer®e) ® @2l
n=1 m=1 mg=1
where
(872, B)F
(64) Knmy o mg = ST my ,
(@ S£87) T, @, M) | Awn .,
and

d
Aoy = (147 )+ 25 Y (25
=1
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RemARk 3. The naive computation of all entries in (64) leads to a computational com-
plexity of ON**?%), including construction of stiffness and mass matrices. By performing
sum-factorization [60], the operator counts can be reduced to O(N**%).

5. Stability and Error Analysis. The following theorems provide the finite dimen-
sional stability and error analysis of the proposed scheme, based on the well-posedness anal-
ysis from Section 3.3.

5.1. Stability Analysis.

THEOREM 5.1. Let Assumption 3 holds. The Petrov-Gelerkin spectral method for (50) is
stable, i.e.,
(65) inf  sup latuy, vy)l >pB>0,

0uneUy 0zveVy VN IlBeri—eallunllger—va(q)

holds with B > 0 and independent of N.

Proof. Regarding Uy C B9 *4(Q) and Vyy C B 7P4(Q), (65) follows directly from
Theorem 3.7. O

REMARK 4. The bilinear form (50) can be expanded in terms of the basis and test func-
tions to obtain the lower limit of B, see [60, 48].

5.2. Error Analysis. Denoting by P(A) the space of all polynomials of degree < M
on A C R, P (A) := Py(A) N TH?(A), where 0 < ¢(1) € L'(("",7"*)) and *H¥?(A)

is the distributed Sobolev space associated with the norm || - [logea). In this section, we

take Iy = (0,T), I, = (a;,b;) fori = 1,...,d, A; = I; X A;_;, and Al{ = Hizl I;. Besides,
k#j

0 < 27" < 27M < 1 (1 < 270 < 27" < D)1 < 2vl'."i” <2 < 2fori=1,---,d.

Where there is no confusion, the symbols /;, A;, and A{ and the intervals of (7", 7"%*) and
(v;"i”, v["*%) will be dropped from the notations.

THEOREM 5.2. [34] Let ry be a real number, where ri # My + % and 1 < ry. There
exists a projection operator H:]"MI from H"(Ay) N H'(Ay) to Pj\‘/(] (A1) such that for any
u € H" (A1) N Hy' (A1), we have ||lu — H::,Mlulleﬂvl Ay < M ullgn sy, where ¢y is a
positive constant.

THeOREM 5.3. [24] Letrg > 1, ro # N + % There exists an operator H‘fO’mem H*()n
L2He(I) to P"/;/(Al) such that for any u € H(I) N "® H*(I), we have

.IJHHX
2 -2 2
llu =17 ulliey < coNT" | (@) N llullaronyd,
pin
where cy is a positive constant and 0 < () € L' (™", 74%Y),

In the following, employing Theorems 5.2 and 5.3 and also Theorem 5.3 from [49], we study

the properties of higher-dimensional approximation operators in the following Lemmas.
THEOREM 5.4. Let ry > 1, rp # M; + % There exists a projection operator Hfl' Ml(Il)

from H™ (I}) N *®HP (L)) to Pp/\'/Il (1)) such that for any u € H(I,) N "®HP'(I}), we have

max

'V

o 2 -2 : 2
”M - HK,II’M] u”l,i‘[.]pl ) < Ml " ) Pl(Vl) MIVI ”M”H’l (Il)dvl’
i

where 0 < p1(vy) € Ll((vTi", v’l"”)‘)).
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Proof. From Theorem 5.2 foru € H"N°H”" we have ||u—1'[‘r’]I M]u||(-Hv1 Ay S Ml ay-
Therefore, for u € H" (I;) N 'HP'(I;) we have

Vm(lx
P1 2 _ % 2
lloe = IE oy wtllizggon 1) = Lf" PrOD =TT ullZgp a1
1

max

- ;
2v=2 2 -2 2
< [ pO M i g = MG [ o0 M v D
y o

min
1

LEMMA 5.5. Let the real-valued 1 < ri, r and Q = I, X L. If u € "°HP>(I,, H" (I})) N
H"™(L,," H{' (1)), then

P1 02 2
llu — Hr1 MlHrz Mzu”Bﬂl’pz(Q) <

) 2 2y A g2
M f -~ p2(n2) (szz||“||H"2(12,L2(11)) + MP M r]||”||H’2(IZ,H’1(I1)))dV2
V.

min
2

max
y/nax

-2 ! 2 2vi A g2
+MT pl(Vl)(M1V]||u||H’l(11,L2(12)) + MM Nl (ll,H’Z(lz)))dVl
V’iﬂ’n
) -
(66) +M2 r2||u||®HP1(11,H"z(12)) + M1 " leell> g2 (1, 71 (1)
1 .
where || - llgnox@ = Il W g, 12y + 11 B 120} 0 < P10 € LUDA™, D), and

0 < pa(v2) € L' (3", vye]).
Proof. For u € "HP(I,, H" (I})) N H™>(I,, H*'(I})), evidently u € H”(I,, H"(I})), u €
H" (I, L*(1})), and u € H" (I}, L*(I,)). Besides, from the definition of || - [lge102() We have

lu =T IO L ullgone )

—{lly — TT°! 02 2 _ 1P 02 2 3
_{”u H Hro M?u”bHﬂl(ll,Lz(Iz)) + ”u H Hr2 M u||QH/’2(11,L2(1]))}2 .

. . 01 02 i
Fgllowmg Lemma 5.3 in [49] and Theorem 5.4, ||u — H Hr2 M2u||t N be sim-
plified to

L1 02 2
e =TT p T 1l b 1, 220,
—lyy — TTP2 P2 _ T~
Sl —TE g u+ 00y u—TE T M2””*Hﬂz(12 L2(1,))
P2 2 2 P1
Sl = Hr MJ‘”?HPZ(IZ,LZ(II)) I gt = T 0 T 8 s 1, 12
—2r e 2v.
SMz : . PZ(V2)M 2||M||Hr2(12 L2(11))d
i
P2 Pl L1 2
UL g = D= T8 01 gy 20 + 0= T s 2
yax
-2 : 2
M o) MG Nl g, 121,002
2 2 i 2 2
- - 2 - 2
(67) + M IZM ! j‘” ,02(V2) MZVZHMHHQ([Z,HH (11))dV2 + M] n ||u||®HP2(12’Hr'1 amy
V nin
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where 7 is the identity operator. Furthermore,

_ T~ P2 2
lle Hrl»MlnrzyMzu”Lz(Iz,H"l )
—Ilyy — TTP! L1 _ 11! P2 2
=llu Hrlleu + Hrl,Mlu Hrl,MlHrz,Mzu”DH"‘(llyLz(lz))
2

_ 1™ 2 L1 _ 1 P2
Sl = TE0 oy Ul oy 1y g2y + I8 4 2= T g T8 g 1l o 1, 12000

Jmax

Vi
) 2 2
M f P1O) M Nl g, 121,471
V!

min
1

4! P2 2 P2 2
ALy = D = T8 I o g 2y + 1= T8 4l 1 120
VV]‘VIU)’
-2 2 2
SMI " ymin pl(yl)MlVIHM"H” (11,L2(12))dv1
1
2 2 i 2 2 2 2
—Ll —2r v —ZF;
(68) + MM 1) MUl g, e,y @vi + M7 lulls g, (LH2 ()
Vi
Therefore, (66) can be derived immediately from (68) and (67). O

Likewise, Lemma 5.4 can be easily extended to the d-dimensional approximation operator as

ho 112
||I/t — Hdu“?Hﬁi(l,',Lz(Afl))

ynax d
-2r; ' 21,112 =27 112
<M i) Ml o i+ MG
=1

i SHAIH'T (L))
i

J#

i d
—2r; ' 2v; =2 2
M f PO M Y MG
Vi =1

' Fior T2 b dv;
in H'i(I;,H'I(1j,L*(A})))
" =

i
d d
=2r; —2ry 2
3 S AN o
Mj Mk ” ||3Hpi(I,-,Hrk’r/(IkXI;,LZ(A;/J‘))))
k=1 j=1 ’
K# ik

ynax d
-2r [ 2v; 112
(69) +o M pivi) M 1—[ MG 1 sy @i
j=1

Jnin
Vi
J#

h — TTP! I X
where IT}; = Hrl,Ml Hrd’Md.

TheoREM 5.6. Let 1 < ry, Iy = (0,T), I; = (a;,b;), Q = Iy X (H?;lli)r Ae = T, I
A =115, Land § <y <y < fori=1,--- ,d. If

i#]

d .
ue ( nl H" (I, :)H,Di(]i’ H »ri—]»ri+]»“',rd(Ald))) N I’DH‘P(IO, H T (Ay)),
i=
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then,

¢ R
llu = IL Mgt

max

.
SN_sz. SD(T)NZT”M”H’O(IO,LZ(Ad))dT
T

min

o d
—2ro 2T 2rj 2
+N fT (N ZM e “HV()(IOH/(I LZ(Af))>dT+

min =

pmax d
-2 2 —2r
N [ N ([ A Wl cngpe
i o
d Jmax
! 2v;=2r;
+ Z ' pi(Vi){M,-V " ”u“H"i(I;,LZ(ALIXIo)) +oe

i=1 Vi

d
2vi=2r; =2r;
(70) + Miv " ( 1_[ M_,« j)“u”H’i(l,,H’l~"'~’¢1(A21,L2(10)))}dvi,
j-1
ik
where I = TIY WYL I ! w, and B is a real positive constant.

Proof. Directly from (44) we conclude that

d

“u”3TV1 Vd (Q) < ||u||lHT(IO L’(A])) + Z “M”LZ(I() *H”l(] LZ(A )
i=1

Next, it follows from Theorem 5.3 that

® ho 12
lle =TI Nndu”mmuo LA
T
2 2T
<N N [Hu”H'O(Io LZ(AJ))+ZM el s, 2 *
Tomin
d
1) HM r’ leell o g1+~ 'd(A,z)))]dT o

Jj=

Therefore, (70) is obtained immediately from (69) and (71).

REMARK 5. Since the inf-sup condition holds (see Theorem 5.1), by Lemma 3.6, the error
in the numerical scheme is less than or equal to a constant times the projection error. Hence
the results above imply the spectral accuracy of the scheme.

6. Numerical Tests. We provide several numerical examples to investigate the perfor-
mance of the proposed scheme. We consider a (1 + d)-dimensional fully distributed diffusion
problem with left-sided derivative by letting ¢;, = ¢, =k, = 0,k, = 1,0 < 2N < Qpmax < |
and 1 < 21/;’”” < 2/ < 2 in (49) fori = 1,---,d, where the computational domain is
Q = (0,2) x [TZ(~1, 1). We report the measured L* error, |le]lz~ = [luy — 4| .

In each of the following test cases, we use the method of fabricated solutions to construct
the load vector, given an exact solution u**. Here, we assume u®" = u, X Hid:l uy,. We project
the spatial part in each dimension, u,,, on the spatial bases, and then, construct the load vector
by plugging the projected exact solution into the weak form of problem. This helps us take
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the fractional derivative of exact solution more efficiently, while by truncating the projection
with a sufficient number of terms, we make sure that the corresponding projection error does
not dominantly propagate into the convergence analysis of numerical scheme.

Case I: We consider a smooth solution in space with finite regularity in time as
(72) u™ =P (1 + ) (1 = x)™)

to investigate the spatial/temporal p-refinement. We allow the singularity to take order of
@ = 107, while D1, P2, and p3 take some integer values. We show the L™ -error for different
test cases in Fig.1, where by tuning the fractional parameter of the temporal basis, we can
accurately capture the singularity of the exact solution, when the approximate solution con-
verges as we increase the expansion order. In each case of spatial/temporal p-refinement, we
choose sufficient number of bases in other directions to make sure their corresponding error
is of machine precision order. We also note that the proposed method efficiently converges,
however, as the order of singularity @ increases, the rate of convergences slightly drops, see
the dashed lines in Fig.1.

Considering @ = 1074, p1 = 2, p» = p3 = 2in (72), and the temporal order of ex-
pansion being fixed (N = 4) in the spatial p-refinement, we get the rate of convergence as
a function of the minimum regularity in the spatial direction. From Theorem 5.6, the rate
of convergence is bounded by the spatial approximation error, i.e. |lell2q) < llellz~@) <

I 5 : | . .. .
M qum,, e1v) MU ullgn 1, 2a0))@v1, Where 1 = pa + 5 — € is the minimum regularity of

the exact solution in the spatial direction for € < % Conforming to Theorem 5.6, the practical
rate of convergence 7| = 16.05 in |le||;~(q) is greater than r; = 2.50.

(1 +1)~dimensional Temporal p—refinement (1 +1)~dimensional Spatial p~refinement (1 +1)~dimensional Spatial p~refinement

w—Error
w—Error
L w—Error

L
L,
L

1 2 3 3 4 5 6 7 3 4 5 6 7 8 9
# Temporal Basis (V) 1 Spatial Basis (M) 2 Spatial Basis (M)

Fig. 1: Temporal/Spatial p-refinement for case I with singularity of order & = 107*. (Left):
p1 = 3, po = p3 = 2, and expansion order of N' X 9. (Middle): p; = 2, p» = p3 = 2, and
expansion order of 3 x M. (Right): p; = 3, p» = p3 = 2, and expansion order of 4 X M.

Case II: We consider u®™ = "1 sin(27x,), where p; = 3, and let & = 0.1 and @ = 0.9. We
set the number of temporal basis functions, N' = 4, and show the convergence of approximate
solution by increasing the number of spatial basis, M in Fig. 2. The main difficulty in
this case is the construction of the load vector. To accurately compute the integrals in the
construction of the load vector, we project the spatial part of the forcing function, sin(27x;),
on the spatial bases. To make sure that the corresponding error is of machine-precision order
and thus, not dominant, we truncate the projection at 25 terms, where there error is of order
1078, Therefore, the quadrature rule over derivative order should be performed for 25 terms
rather than only a single sin(27x;) term. This will increase the computational cost.
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(1+1)—dimensional Spatial p—refinement

Lo —Error

1 Spatial Basis (M)

Fig. 2: Spatial p-refinement for case II, p; =3, = 0.1, and @ = 0.9.

Case III: (High-dimensional p-refinement) We consider the exact solution of the form

3
(73) u = [ (-
i=1

with singularity of order a = 107*, where p; = 3, and p»; = pais1 = 1. Similar to previous
cases, we set the number of temporal bases, N' = 4, and study convergence by uniformly
increasing the number of spatial bases in all dimensions. Fig. 3 shows the results for (1 + 2)-
dimensional and (1 + 3)-dimensional problems with expansion order of N' X M; X M,, and
N X M; x My x Ms, respectively. Following Case I, the computed rate of convergence
F| = P = 73 = 16.13 in (73) for @ = 107 is greater than the minimum regularity of the exact
solution r ~ 2.05, which is in agreement with Theorem 5.6.

(1 +2)—dimensional Spatial p—refinement (1+3)—di i Spatial p—

10 10

. 107 . 107
g g
b b

2 107 z 107
~ ~

10711 10711

1 22 32 42 52 62 72 82 92 1 23 33 43 53 63 73 83 93
1 Spatial Basis (M x Mb) 1 Spatial Basis (M) X MbXx M)

Fig. 3: Spatial p-refinement for case III with singularity of order & = 107, (Left): (1 + 2)-
dimensional, p; = 3, py; = p2i+1 = 1, where the expansion order is N' X M; X M,. (Left):
(1+3)-dimensional, p; = 3, py; = pai+1 = 1, where the expansion order is N X M X My X M.

In addition to the convergence study, we examine the efficiency of the developed method
and fast solver by comparing the CPU times for (1 + 1)-, (1 + 2)-, and (1 + 3)-dimensional
space-time hypercube domains in case IIl. The computed CPU times are obtained on an
INTEL(XEON E52670) processor of 2.5 GHZ, and reported in Table 1.

7. Summary. We developed a unified Petrov-Galerkin spectral method for fully distributed-
order PDEs with constant coefficients on a (1 +d)-dimensional space-time hypercube, subject
to homogeneous Dirichlet initial/boundary conditions. We obtained the weak formulation of
the problem, and proved the well-posedness by defining the proper underlying distributed
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Table 1: CPU time, PG spectral method for fully distributed (1+d)-dimensional diffusion
problems. u® = 1+ x H?zl(l + x)P(1 = x;)P**', where @ = 107, p; = 3, and the
expansion order is 4 x 11,

P2i = paiv1 =2 P2 = Ppaiv1 =3
d=I d=2 d=3 d=1 d=2 d=3
[ CPU Time [Sec] | 1546.81 1735.03 2358.67 1596.16 1786.61 2407.22
[ el ][ 684x1077 [ 445x 1072 [ 327x 107 [ 627x 1077 [ 3.86 x 1072 | 2.71 x 107"

Sobolev spaces and the associated norms. We then formulated the numerical scheme, exploit-
ing Jacobi poly-fractonomials as temporal basis/test functions, and Legendre polynomials as
spatial basis/test functions. In order to improve efficiency of the proposed method in higher-
dimensions, we constructed a unified fast linear solver employing certain properties of the
stiffness/mass matrices, which significantly reduced the computation time. Moreover, we
proved stability of the developed scheme and carried out the error analysis. Finally, via sev-
eral numerical test cases, we examined the practical performance of proposed method and
illustrated the spectral accuracy.

Appendix: Entries of Spatial Stiffness Matrix. Here, we provide the computation of
entries of the spatial stiffness matrix by performing an affine mapping ¢ from the standard
domain /1;’” e[-1,1]tou; € [y’]?’“x,/,z’;“"].

Lemma 7.1. The total spatial stiffness matrix S JT‘” is symmetric and its entries can be
exactly computed as:

(74) ST =, x ST+, x ST — ki, X SV =Ky, X ST,

where j=1,2,--- ,d.
Proof. Regarding the definition of stiffness matrix, we have

max

1
{S?f}r,n = fl f:m Qj(l-lj),lzjg(¢,,(Xj))§j2)l;’(q)r(xj'))dxj,
-1y

1 1 sm
51 [ [ o0 0 (Prare) - (&)

X ¢ D (Pe(@) - Pici(€))) dt;.
(75) = lgl[gfi],nﬂ =S =S v 8

r+l,n— r—1,n+1 r—l,n—l]’

ﬂl[mx_yr(tin
where ) = o-,a'n( —— )and

stn

~0: 1 1 sin !
St = f | f | 0/BW™) D (Pu&)) D) (PHED)de;du”

1
s I'(r+1) I'h+1)
= f Qj(ﬁ(ﬂ jt )) stn stn
-1 F(r—,Ltj +1) F(n—,uj. +1)

1 stin s st st _ s
Xf (1 —é—']z.)f'uj Pr'ul Hj PI:,‘/ TH; dfjd/,l;m.
-1
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5% can be computed accurately using Gauss-Legendre (GL) quadrature rules as

0
<o T(r+1) T(n+1)
Sr,” :ZF(I‘— stnl + l)r( _ stnl + I)QJ"‘]WC] x
= Hjla nTH
1
— A:Inlq 7#.;1»1‘ ’#;ml .;m‘ ’7ﬂ;ml
(76) f (1= Pl p ey P e,
-1

in which Q > M; + 2 represents the minimum number of GL quadrature points {,u;’”lq}f}:l

for exact quadrature, and {wq}Q are the corresponding quadrature weights. Exploiting

q=1

stn

the property of the Jacobi polynomials where Pﬁf’ﬁ (=€) = (—1)”Pﬁ’”(§ ), we have §,Q 5=
(=1)tr+m ff 7. . Following [48], &, and o, are chosen such that (—1)"*" is canceled. Accord-
ingly, {7 bur = {87 ben = {87 }rn = {S7'}1n due to the symmetry of S’ and S7. Similarly, we
get {S ;’j bor = S 7" bn = (8%}, = {S¥} ... Eventually, we conclude that the stiffness matrix
S lg’, SY.S lp /.S and thereby {SJT"’},“ as the sum of symmetric matrices are symmetric. [
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