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Abstract

Moving particles that rest along their trajectory lead to time-fractional diffusion equations for the scaling limit

distributions. For power law waiting times with infinite mean, the equation contains a fractional time derivative of order

between 0 and 1. For finite mean waiting times, the most revealing approach is to employ two time scales, one for the mean

and another for deviations from the mean. For finite mean power law waiting times, the resulting equation contains a first

derivative as well as a derivative of order between 1 and 2. Finite variance waiting times lead to a second-order partial

differential equation in time. In this article we investigate the various solutions with regard to moment growth and scaling

properties, and show that even infinite mean waiting times do not necessarily induce subdiffusion, but can lead to super-

diffusion if the jump distribution has non-zero mean.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Anomalous diffusion occurs when a cloud of particles spreads at a rate different from the classical square
root of time law. Continuous time random walks (CTRWs) can be used to derive governing equations for
anomalous diffusion [1,2]. The CTRW model was introduced in Refs. [3,4]. Some recent surveys of CTRW
models, their diverse applications in physics, and connections with fractional governing equations can be
found in Refs. [5–8]. The CTRW is a stochastic process model for the movement of an individual particle
consisting of a random waiting time between randomly sized particle jumps. The random walk can be
separated into two distinct processes. One random process, SðnÞ, describes the location of the particle in space
after n jumps, the other, NðtÞ characterises the number of jumps by time t. The particle location by time t is
then described through subordination by SðNðtÞÞ. The space–time vector process ðSð½t�Þ;NðtÞÞ converges in a
scaling limit to a simpler form ðAðtÞ;EðtÞÞ, so that SðNðtÞÞ converges to AðEðtÞÞ, and the density of the
subordinated process AðEðtÞÞ solves a (fractional-order) governing equation for the motion of a particle
undergoing anomalous diffusion [9–12].
e front matter r 2006 Elsevier B.V. All rights reserved.
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In this article we investigate the limit process EðtÞ. This non-Markovian subordinator EðtÞ is the inverse or
first passage time process for a totally positively skewed g-stable Lévy motion with positive drift. Then we
apply these results to characterise the growth behaviour for CTRW scaling limits in the case where the particle
jumps have finite second moments. We include the important case, often neglected in the CTRW literature,
where the scaling limit AðtÞ of the particle jumps is a Brownian motion with drift. This limit derives from using
two different scales in space, one for the mean jump and another for the deviation from the mean.

Using two scales may seem unnatural, but it is actually quite physical. Consider the case where the particle
jumps have non-zero mean and finite variance. Scaling limits of this process can be understood in terms of
examining the particle diffusion in the long-time limit. As the time scale grows, the mean particle displacement
grows at the same rate, but the displacement from that mean grows at a slower rate, proportional to the square
root of the time scale. Using two spatial scales is necessary to preserve the detail, which ultimately leads to a
Brownian motion with drift in the scaling limit. For a CTRW with finite mean waiting times, the same logic
applies. Using two time scales preserves in detail the limit process that would otherwise be lost, and leads to a
richer set of stochastic models for anomalous diffusion.

2. The model

In the usual CTRW formalism [1], the long-time scaling limit for the waiting time process is a g-stable
subordinator W ðsÞ. Then the inverse Lévy process EðtÞ ¼ inffs40 : W ðsÞ4tg counts the number of particle
jumps by time tX0, reflecting the fact that the time Tn of the nth particle jump and the number Nt ¼

maxfn : Tnptg of jumps by time t are also inverse processes. When the waiting times between particle jumps
have heavy tails with 0ogo1, subordination of the particle location process AðtÞ via the inverse Lévy process
EðtÞ is necessary in the long-time limit to account for the random waiting times, which leads to a time
derivative of order g in the governing equation [2]. In this case ð0ogo1Þ the random variable s ¼ EðtÞ has the
probability density

pðt; sÞ :¼
t

gsðasÞ1=g
gg

t

ðasÞ1=g

 !
. (1)

Here gg is the probability density of the standard g-stable subordinator, so that its Laplace transform isZ 1
0

e�ltggðtÞdt ¼ e�l
g
, (2)

and a is the scaling parameter of the subordinator, so thatZ 1
0

e�lt 1

a1=g
ggðt=a1=gÞdt ¼ e�alg .

When the probability distribution of the waiting times between particle jumps has heavy tails of order
1ogp2, meaning that the probability of waiting longer than t falls off like t�g, a different model is needed. In
this case, convergence of the waiting time process is facilitated by centering to the mean waiting time w, which
is not possible when 0ogo1. Accounting for this leads to a waiting time limit process W ðsÞ that is a
completely positively skewed1 stable Lévy process with index g [10,13]. The inverse or first passage time
process EðtÞ ¼ inffs : W ðsÞXtg counts the number of particle jumps by time t in the scaling limit. In Ref. [13]
we showed that the distribution Hðs; tÞ ¼ PðEðtÞpsÞ of the first passage time process EðtÞ with mean waiting
time w ¼ 1 has the following Laplace–Laplace transform:Z 1

0

Z 1
0

e�us�lT Hðs;TÞdsdT ¼
1� alg�1 þ u=qaðuÞ

uðuþ l� algÞ
, (3)

where qa is the unique analytic function that satisfies

aqaðlÞ
g
� qaðlÞ ¼ l
1The skew is irrelevant in the normal case g ¼ 2.
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for all l in a region containing the right halfplane. Furthermore, we inverted (3) in Ref. [13], which, using
scaling in t, (i.e., replacing t by t=w) reads for general average waiting time w,

PrfEðtÞpsg ¼

Z 1
ðt=w�sÞ=ðasÞ1=g

ggðuÞduþ

Z s

0

maðs� uÞ

ðauÞ1=g
gg

t=w� u

ðauÞ1=g

 !
du, (4)

where the function ma satisfies
R1
0

e�ltmaðtÞdt ¼ 1=qaðlÞ. The second term in (4) compensates for the fact that
the waiting time process W ðsÞ is not monotone, and this term becomes negligible for t large [10, Remark 3.2].

Rescaling time as above, so that the average waiting time is one time unit, is always possible as long as we
have a finite mean waiting time. However, the parameter a is then not the usual scaling parameter, but its time-
normalised version; i.e., if the characteristic function of W ðsÞ is

E½eikW ðsÞ� ¼ esðwikþāð�ikÞgÞ,

the mean-normalised function W 1ðsÞ ¼ w�1W ðsÞ has the characteristic function:

E½eikW 1ðsÞ� ¼ esðwik=wþāð�ik=wÞgÞ

¼ esðikþā=wgð�ikÞgÞ ¼ esðikþað�ikÞgÞ.

Hence

a ¼ ā=wg. (5)

Rewriting (4) in terms of ā we obtain

PrfEðtÞpsg ¼

Z 1
ðt�wsÞ=ðāsÞ1=g

ggðuÞduþ

Z s

0

wmā=wg ðs� uÞ

ðāuÞ1=g
gg

t� wu

ðāuÞ1=g

 !
du. (6)

In the following we choose to continue using the time-normalised parameter a instead of ā, noting that with
relation (5) we can easily switch from one to the other.

3. Dimensional analysis

In order to effectively investigate and compare the first passage time densities, we bring them
into dimensionless form. In (4) we have an expression with four variables, t;w; a; and s. The dimensions
are ½T �time for t, ½B�bulk jumps (a counting unit for the number of jumps s, could also be taken dimensionless),
the average waiting time w has dimension of ½T �=½B� (time per jump). In order for (4) to be dimensionally
correct the argument of gg has to be dimensionless, and hence ðt=w� sÞ=ðasÞ1=g has to be dimensionless. This
forces the variable a to have a dimension of ½Bg�1� (or ā to have a dimension of ½Bg�1�ð½T �=½B�Þg ¼ ½T �g=½B�).

In order to non-dimensionalise (4) we need to obtain a scaling property for the function ma. Now, maðctÞ has
the following Laplace transform:Z 1

0

e�ltmaðctÞdt ¼
1

c

Z 1
0

e�lt=cmaðtÞdt

¼
1

c

1

qaðl=cÞ
.

Since

aqaðl=cÞg � qaðl=cÞ ¼ l=c, (7)

we obtain that

a

cg�1
ðcqaðl=cÞÞg � cqaðl=cÞ ¼ l. (8)
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Substitute a=cg�1 for a in (7), compare with (8) and use the uniqueness of the function qa in (7) established in
Ref. [13, Lemma 3.1] to see that cqaðl=cÞ ¼ qa=cg�1 ðlÞ and thusZ 1

0

e�ltmaðctÞdt ¼
1

qa=cg�1ðlÞ

¼

Z 1
0

e�ltma=cg�1 ðtÞdt.

Therefore, in view of the uniqueness of the Laplace transform:

maðctÞ ¼ ma=cg�1 ðtÞ.

Our goal is to find a parameterisation of (4) such that the parameters are dimensionless and the number of
parameters is reduced. Introducing

x :¼ w=ðt=sÞ ¼ ws=t and r :¼ a=ðt=wÞg�1

we obtain that

cðt; s; a;wÞ ¼ PrfEðtÞpsg

¼

Z 1
ð1�xÞ=ðrxÞ1=g

ggðuÞduþ

Z xt=w

0

mrðt=wÞg�1ðxt=w� uÞ

ðrðt=wÞg�1uÞ1=g
gg

t=w� u

ðrðt=wÞg�1uÞ1=g

 !
du

¼

Z 1
ð1�xÞ=ðrxÞ1=g

ggðuÞduþ

Z x

0

mrðx� uÞ

ðruÞ1=g
gg

1� u

ðruÞ1=g

 !
du ¼ cðx;rÞ.

The variables r and x are dimensionless versions of the mean waiting time w between particle jumps and the
spread a of the deviation from the mean waiting time between jumps, respectively.
4. Plots of first passage time densities

In this section we plot probability densities of the first passage time process EðtÞ for the waiting times in a
CTRW scaling limit. These are the hitting times of positively skewed Lévy motions (with drift if g41).
4.1. The case go1

The cumulative distribution function for the first passage time of the stable subordinator is given by

PrfEðtÞpsg ¼

Z 1
t=ðasÞ1=g

ggðuÞdu

as can easily be deduced from (1). This formula can also be computed using Mittag–Leffler distributions
[1,14,15]. Using x ¼ as=tg we obtain its density in dimensionless form:

pðxÞ ¼
1

gx1þ1=g
gg

1

x1=g

� �
.

The plots of the densities are shown in Fig. 1.
4.2. The case 1ogo2

Note that the dimensionless scale parameter r for the waiting time between particle jumps is proportional to
t1�g. In Fig. 2 we show the evolution of the arrival densities for selected values of g and r. They were computed
by changing the Laplace transform into a Fourier transform and then inverting using the fast Fourier
transform algorithm.
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Fig. 1. First passage time densities of g-stables, go1.
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Fig. 2. First passage time densities, 1ogo2.
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4.3. The case g ¼ 2

If the CTRW waiting times have finite second moments (the case g ¼ 2), then the limit procedure with two
time scales produces a limit process EðtÞ that is the hitting time distribution of a Brownian motion with drift. It
is well known that this hitting time distribution is given by the inverse Gaussian [16].

Since the hitting time process EðtÞ is not Markovian, the scaling limit AðEðtÞÞ of this CTRW is not a Markov
process. One simple Markovian model of particle motion would replace the subordinator EðtÞ with a Poisson
process. In order to compare these two models, in Fig. 3 we plotted the scale-adjusted Poisson against the
hitting time density, the inverse Gaussian, for various r. For large r (early time) there is an obvious difference:
the inverse Gaussian hitting times are shorter, allowing for more frequent jumps, as the probability of several
jumps in a small amount of time is larger than in the Markovian case. Hence this CTRW limit process is
significantly non-Markovian.

5. The first and second moments

In this section we compute the first and second moments of the waiting time process EðtÞ that is used to
subordinate the process of particle jumps AðtÞ to model particle location at time t in the scaling limit. We show
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that for go1 the first moment grows like tg, while the variance grows like t2g. For g41 we show that for large
time the first moment grows like t while the variance grows like t3�g.
5.1. The case go1

In order to compute the moments of EðtÞ in the case of go1 we compute the Laplace–Laplace transform of
its density pðt; sÞ ¼ ðt=gsðasÞ1=gÞggðt=ðasÞ1=gÞ. Using the dominated convergence theorem and the definition of gg
given by (2), we see that for s40,

~pðl; sÞ:¼
Z 1
0

e�ltpðt; sÞdt ¼ �
1

gs

Z 1
0

d

dl
e�lt

� �
1

ðasÞ1=g
gg

t

ðasÞ1=g

 !
dt

¼ �
1

gs

d

dl

Z 1
0

e�lðasÞ1=guggðuÞdu ¼ �
1

gs

d

dl
e�ðlðasÞ1=gÞg

¼ alg�1e�aslg .

Taking the Laplace transform in s yields

~~pðl; uÞ ¼
Z 1
0

e�us ~pðl; sÞds ¼

Z 1
0

e�usalg�1e�aslg ds

¼ alg�1
Z 1
0

e�sðuþalgÞ ds ¼
alg�1

uþ alg
.

In order to compute the first moment mðtÞ ¼
R1
0 spðt; sÞds, note that

mðtÞ ¼ �
d

du

Z 1
0

e�uspðt; sÞds

� �����
u¼0

.

Hence,

~mðlÞ ¼
Z 1
0

e�ltmðtÞdt ¼ �
d

du

alg�1

uþ alg

� �����
u¼0

¼
l�1�g

a
.

Thus, for go1, we obtain using the well-known Laplace transform formula
R1
0 e�stt�b dt ¼ Gð1� bÞsb�1 that

mðtÞ ¼
tg

aGð1þ gÞ
. (9)
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Similarly, the pth moment is computed by

~mpðlÞ ¼ ð�1Þ
p dp

dup

alg�1

uþ alg

� �����
u¼0

¼
p!l�1�pg

ap
,

leading to

mpðtÞ ¼
p!

apGð1þ pgÞ
tpg.

This extends the result in Ref. [1, Corollary 3.2] by giving the exact form of the constant in front of tpg.
We conclude by computing the variance,

s2ðtÞ ¼
t2g

a2

2

Gð1þ 2gÞ
�

1

Gð1þ gÞ2

� �
.

5.2. The case 1ogo2

We use the same technique to compute the first and second moments of the first arrival processes for g41.
Recall that the Laplace–Laplace transform of the mean-normalised first passage time density is given by (3).
Thus Z 1

0

e�ltm1ðtÞdt :¼

Z 1
0

e�lt

Z 1
0

sdHðs; tÞdt

¼ �
d

du

Z 1
0

e�lt

Z 1
0

e�us dHðs; tÞdt

����
u¼0

¼ �
d

du

1� alg�1 þ u=qaðuÞ

uþ l� alg

����
u¼0

¼
1� alg�1

ðl� algÞ2
�

1=qað0Þ

l� alg

¼
1� a1=ðg�1Þl

l2ð1� alg�1Þ
¼

1� a1=ðg�1Þl

algþ1ð1=alg�1 � 1Þ

¼ �
1� a1=ðg�1Þl

algþ1
X1
n¼0

ð1=alg�1Þn. ð10Þ

This inverts to

m1ðtÞ ¼
X1
n¼0

ðtg�1=aÞn �
tg

aGð1þ gþ nðg� 1ÞÞ
þ

tg�1

að2�gÞ=ð1�gÞGðgþ nðg� 1ÞÞ

� �
.

Note that qað0Þ ¼ a1=ð1�gÞ. Unfortunately, this series does not reveal the type of growth of mðtÞ for large t. The
late time growth behaviour is revealed by the following asymptotic expansion, obtained by expanding Eq. (10)
around l ¼ 0; i.e.,

~m1ðlÞ ¼
1� a1=ðg�1Þl

l2
X1
n¼0

ðalg�1Þn.

Theorem 1. Let 1ogp2. Then the first moment of the hitting time density at time t40 for a stable Lévy motion

with drift with mean velocity one and shape factor a satisfies

m1ðtÞ ¼
XN

n¼0

tðat1�gÞn

Gð2þ nð1� gÞÞ
� a1=ðg�1Þ ðat1�gÞn

Gð1þ nð1� gÞÞ

� �
þ oðt1�Nðg�1ÞÞ (11)

for all integers NX0 and t!1. Terms are set equal to zero if they contain GðkÞ for some negative integer k.
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The second moment satisfies

m2ðtÞ ¼
XN

n¼0

2t2ðnþ 1Þ

Gð3þ nð1� gÞÞ
ðat1�gÞn �

2a1=ðg�1Þtðnþ 1Þ

Gð2þ nð1� gÞÞ
ðat1�gÞn

�

�
2a2=ðg�1Þ

ðg� 1ÞGð1þ nð1� gÞÞ
ðat1�gÞn

�
þ oðt2�Nðg�1ÞÞ ð12Þ

for all integers NX0 and t!1. Again, terms are taken to be zero if they contain GðkÞ for some negative

integer k.

This gives us an estimate for the variance for large t (assuming that the mean waiting time is one):

s2ðtÞ ¼ 2t2
X1
n¼0

nþ 1

Gð3þ nð1� gÞÞ
ðat1�gÞn þ oðt3�gÞ � t

X1
n¼0

ðat1�gÞn

Gð2þ nð1� gÞÞ
þ oðt2�gÞ

 !2

¼
4a

Gð4� gÞ
�

2a

Gð3� gÞ

� �
t3�g þ oðt3�gÞ.

In case where the mean waiting time is not one we can use the scaling procedure outlined in Section 2:
substituting ā=wg for a and t=w for t yields

s2ðtÞ ¼
4ā

Gð4� gÞ
�

2ā

Gð3� gÞ

� �
t3�g

w3
þ oðt3�gÞ.

5.3. The case g ¼ 2

Here the previous calculations are much simplified. Recall that qað0Þ satisfies aqað0Þ
g
� qað0Þ ¼ 0, or in this

case, qað0Þ ¼ 1=a. Using Eq. (10) we obtain that

~mðlÞ ¼
1� al

l2ð1� alÞ
¼ 1=l2.

For the second moment we obtain

~m2ðlÞ ¼
2ð1� al� a2l2ð1� alÞÞ

l3ð1� alÞ2

¼
2ð1þ alÞ

l3
¼ 2=l3 þ 2a=l2.

This yields that mðtÞ ¼ t and

s2ðtÞ ¼ t2 þ 2at� t2 ¼ 2at. (13)

If the mean waiting time is not one, we obtain

s2ðtÞ ¼ 2āt=w3.

6. Moment growth for CTRW scaling limits

In this section we show how the formulas for the moments of the subordinator EðtÞ, obtained in the
previous section, can be used to compute moments of the process AðEðtÞÞ that represents CTRW particle
location at time t in the long-time scaling limit. If the particle jumps have zero mean and finite second
moments, then AðtÞ is a Brownian motion with no drift, i.e., the random vector AðtÞ has mean zero and the
variance of any component grows linearly with time. On the other hand, if the jumps have non-zero mean,
then a two-scale limiting procedure in which the mean jump and the deviation from the mean are treated
separately leads to a Brownian motion with drift in the scaling limit [18, Exercise 10.8]. Then both the mean
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and variance of each component of the vector process AðtÞ grow linearly with time. In either case, if AðtÞ has
vector mean mðtÞ and covariance matrix CðtÞ, then a simple conditioning argument shows that the
subordinated process AðEðtÞÞ has a mean mSðtÞ whose ith coordinate is

mSðtÞi ¼

Z 1
0

mðsÞi dsHðt; sÞ (14)

and covariance matrix CSðtÞ whose ij entry is given by

CSðtÞi;j ¼

Z 1
0

ðCi;jðsÞ þmðsÞimðsÞjÞdsHðt; sÞ �mSðtÞimSðtÞj.

6.1. Subordinated Brownian motion

Assume that the particle jump process AðtÞ is a vector Brownian motion with zero mean, so that
mðtÞ ¼ mSðtÞ ¼ 0, and covariance matrix CðtÞ ¼ tD for some positive definite matrix D. For this process, the
classical model for particle diffusion, the variance of each component grows linearly with time.

In the case of go1, by virtue of (9), the covariance matrix

CSðtÞ ¼
tg

aGð1þ gÞ
D

and hence the subordinated process is subdiffusive, meaning that the variance of any component grows slower
than in the original diffusion process.

In the case of 1ogp2, using (11), we obtain that the covariance matrix

CSðtÞ ¼ tþ
at2�g

Gð3� gÞ
� a1=ðg�1Þ þ oðt2�gÞ

� �
D (15)

as t!1. This process is called ‘‘diffusive’’ since the variance of any component also grows linearly with time.
In practice this may be mistaken for subdiffusive (slower than linear) spreading, since the linear term does not
dominate until late time. In the case g ¼ 2, using that mðtÞ ¼ t we obtain the somewhat surprising result that
the time scaling parameter a has no bearing on the resulting plume spreading, as CSðtÞ ¼ tD.

6.2. Subordinated Brownian motion with drift

Assume that the particle jump process AðtÞ is a vector Brownian motion with drift, so that the mean
mðtÞ ¼ vt, and the covariance matrix CðtÞ ¼ tD for some positive definite matrix D. This model is also diffusive
since the variance grows linearly.

In case go1, the delay affects the mean plume location. Substituting (9) into (14) we obtain

mSðtÞ ¼
tg

aGð1þ gÞ
v.

The effect on the covariance is surprising as for g40:5 the inclusion of the drift gives rise to a super-diffusive
process:

CSðtÞi;j ¼
tg

aGð1þ gÞ
Dij þ t2g

2

a2Gð1þ 2gÞ
�

1

ðaGð1þ gÞÞ2

� �
vivj .

In case 1ogo2, we obtain

mSðtÞ ¼ tþ
at2�g

Gð3� gÞ
þ oðt2�gÞ

� �
v.

For the covariance we compute

CSðtÞi;j ¼ tþ
at2�g

Gð3� gÞ

� �
Dij þ at3�g

4

Gð4� gÞ
�

2

Gð3� gÞ

� �
þ oðt3�gÞ

� �
vivj .
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Note that the highest order terms in the respective covariances are proportional to the square of the velocity,
confirming the argument that the high rate of dispersion is due to a smearing out effect rather than an inherent
super-diffusion.

For g ¼ 2, we see, using (13), that the covariance grows linearly,

Ci;jðtÞ ¼ tDij þ 2atvivj þ t2vivj � t2vivj ¼ ðDij þ 2avivjÞt.

Appendix A. Proof of Theorem 1

The proof requires the following simple lemma.

Lemma 2. Let 0oaop=2, nX1, and let l 2 C with �p=2� ao argðlÞop=2þ a. Then

d

dl

� �n
1

1� alg�1
¼
Xn

i¼1

bi;nl
iðg�2Þ�ðn�iÞ

ð1� alg�1Þ�i�1

for some constants bi;n. For jlj ! 1 this implies that

d

dl

� �n
1

1� alg�1
¼ Oðjlj1�g�nÞ

for all nX0. For l! 0 we have

d

dl

� �n
1

1� alg�1
¼

Oðlg�1�n
Þ if nX1;

Oð1Þ if n ¼ 0:

(

The case n ¼ 0 is obvious and the remaining cases will be proven by induction. Clearly the lemma holds for
n ¼ 1. Assume it holds for some nX1. Then

d

dl

Xn

i¼1

bi;nl
iðg�2Þ�ðn�iÞ

ð1� alg�1Þ�i�1

¼
Xn

i¼1

bi;n iðg� 2Þ � ðn� iÞð Þliðg�2Þ�ðn�iÞ�1
ð1� alg�1Þ�i�1

�
þ liðg�2Þ�ðn�iÞ

ð�i � 1Þð1� alg�1Þ�i�2
ð�aÞðg� 1Þlg�2

�
¼
Xn

i¼1

bi;n ðiðg� 2Þ � ðn� iÞÞliðg�2Þ�ðnþ1�iÞ
ð1� alg�1Þ�i�1

� �

þ
Xnþ1
j¼2

bj�1;nðl
jðg�2Þ�ðnþ1�jÞ

ð�jÞð1� alg�1Þ�j�1
ð�aÞðg� 1ÞÞ

¼
Xnþ1
i¼1

bi;nþ1l
iðg�2Þ�ðnþ1�iÞ

ð1� alg�1Þ�i�1

for bi;nþ1 ¼ bi;nðiðg� 2Þ � ðn� iÞÞ þ bi�1;najðg� 1Þ and with bnþ1;n ¼ b0;n ¼ 0. Hence the formula is valid for
nþ 1 and thus by induction the formula holds for all integers nX1. &

The proof of Theorem 1 is based on two results from Laplace transform theory. The first is the trivial
observation that if the function f has Laplace transform ~f , then the Laplace transform of t 7!tnf ðtÞ has
Laplace transform:

ð�1Þnðd=dlÞn
Z 1
0

e�ltf ðtÞdt.

The second is a Tauberian theorem for Laplace transforms (see, for example Ref. [19, Theorem 2.6.4]), which
tells us that the behaviour of l ~f ðlÞ at zero corresponds to the behaviour of its inverse Laplace transform at
infinity, as long as l ~f ðlÞ is bounded and analytic in a sectorial region containing the right halfplane.
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In order to prove (11), note that for all integers M ;NX0, Eq. (10) is equal to

m̂1ðlÞ ¼
1� a1=ðg�1Þl

l2ð1� alg�1Þ

¼
1

l2
ðalg�1ÞNþ1 � a1=ðg�1Þlðalg�1ÞMþ1

1� alg�1
þ

1

l2
XN

n¼0

ðalg�1Þn � a1=ðg�1Þl
XM
n¼0

ðalg�1Þn
 !

¼:r1ðlÞ þ r2ðlÞ.

Using l’Hopital’s rule, we see that m̂1 is continuously extendable across l ¼ a�1=ðg�1Þ with

m̂1ða
�1=ðg�1ÞÞ:¼ lim

l!a�1=ðg�1Þ

�a1=ðg�1Þ

2lð1� alg�1Þ � aðg� 1Þlg

¼
a1=ðg�1Þ

aðg� 1Þa�g=ðg�1Þ
¼

a2=ðg�1Þ

g� 1
.

By the Riemann continuation theorem (see, for example Ref. [20, Theorem 7.3.4]), the extension is analytic
and hence the extension of m̂1 is analytic in Cnð�1; 0�. Let RX0. Pick the integers M;N such that

ðM þ 1Þðg� 1Þ4RXMðg� 1Þ

and

ðN þ 1Þðg� 1Þ4Rþ 1XNðg� 1Þ.

Then ðd=dlÞRr2ðlÞ inverts to

ð�1ÞRtR
XN

n¼0

tðat1�gÞn

Gð2þ nð1� gÞÞ
� a1=ðg�1Þ

XM
n¼0

ðat1�gÞn

Gð1þ nð1� gÞÞ

 !
,

where terms that are not defined are taken to be zero (the respective derivatives of these terms on the Laplace
transform side vanish). Now, the extension of m̂1 and r2 are analytic in a sectorial region containing the right
halfplane, and thus the extension of r1 is analytic there as well and so is the extension of ðd=dlÞRr1ðlÞ
(derivatives of analytic functions are analytic functions).

We would like to show that lðd=dlÞRr1ðlÞ is bounded in a sectorial region containing the right halfplane and
converges to zero as l goes to zero. Realise that

d

dl

� �R

r1ðlÞ ¼
XR

i¼0

ðcil
ðg�1ÞðNþ1Þ�2�i

� dil
ðg�1ÞðMþ1Þ�1�i

Þ
d

dl

� �R�i
1

1� alg�1
(A.1)

for some constants ci; di. Using Lemma 2 we obtain that for jlj ! 1,

l
d

dl

� �R

r1ðlÞ ¼ Oðl1þðg�1ÞðNþ1Þ�2þ1�g�R
Þ þOðl1þðg�1ÞðMþ1Þ�1þ1�g�R

Þ

¼ OðlNðg�1Þ�ðRþ1Þ
Þ þOðlMðg�1Þ�R

Þ.

For l! 0 we write r1ðlÞ ¼ r10ðlÞ þ r11ðlÞ where r10ðlÞ contains the terms with ioR and r11ðlÞ contains the
terms with i ¼ R. Then we obtain that

l
d

dl

� �R

r10ðlÞ ¼ Oðl1þðg�1ÞðNþ1Þ�2þg�1�R
Þ þOðl1þðg�1ÞðMþ1Þ�1þg�1�R

Þ

¼ OðlðNþ1Þðg�1Þ�ðRþ2�gÞÞ þOðlðMþ1Þðg�1Þ�ðRþ1�gÞÞ

while

l
d

dl

� �R

r11ðlÞ ¼ OðlðNþ1Þðg�1Þ�ðRþ1ÞÞ þOðlðMþ1Þðg�1Þ�R
Þ,
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so that r11ðlÞ dominates. Then it follows that the extension of lðd=dlÞRr1ðlÞ is bounded in a sectorial region
containing the right halfplane and converges to zero as l goes to zero. By the Tauberian theorem for Laplace
transforms (see, for example Ref. [19, Theorem 2.6.4]) there exists a continuous function g such thatR1
0

e�ltgðtÞdt ¼ ðd=dlÞRr1ðlÞ with limt!1 gðtÞ ¼ 0. Hence

ð�tÞRm1ðtÞ ¼ ð�tÞR
XN

n¼0

tðat1�gÞn

Gð2þ nð1� gÞÞ
� a1=ðg�1Þ

XM
n¼0

ðat1�gÞn

Gð1þ nð1� gÞÞ

 !
þ gðtÞ

or

m1ðtÞ ¼
XN

n¼0

tðat1�gÞn

Gð2þ nð1� gÞÞ
� a1=ðg�1Þ ðat1�gÞn

Gð1þ nð1� gÞÞ
þ oðt1�Nðg�1ÞÞ

as t!1. The extra terms in the second sum can be added due to the ‘‘little o’’ term. Note that if (11) holds
for one N0, it holds for all NoN0 as well. Hence we showed (11) for all NpðRþ 1Þ=ðg� 1Þ. Since R was
chosen arbitrarily, we showed it for all N 2 N.

The proof for the second moment is analogous, using the fact that qa is an inverse function, namely
aqaðlÞ

g
� qaðlÞ ¼ l, which implies that ðd=dlÞqaðlÞ ¼ 1=ðagqaðlÞ

g�1
� 1Þ. Thus, we obtain for the second

derivative that

Z 1
0

e�lt

Z 1
0

s2 dHðs; tÞdt ¼
d2

du2

Z 1
0

e�lt

Z 1
0

e�us dHðs; tÞdt

����
u¼0

¼
d2

du2

1� alg�1 þ u=qaðuÞ

uþ l� alg

� �����
u¼0

¼
d

du
�
1� alg�1 þ u=qaðuÞ

ðuþ l� algÞ2
þ

1=qaðuÞ � u=qaðuÞ
21=ðagqaðuÞ

g�1
� 1Þ

uþ l� alg

� �����
u¼0

¼ 2
1� alg�1

ðl� algÞ3
�

1=qað0Þ

ðl� algÞ2
�

1=qað0Þ

ðl� algÞ2

þ
�1=qað0Þ

21=ðagqað0Þ
g�1
� 1Þ � 1=qað0Þ

21=ðagqað0Þ
g�1
� 1Þ

l� alg

¼ 2
1

l3ð1� alg�1Þ2
� 2

l=qað0Þ

l3ð1� alg�1Þ2

� 2
1=qað0Þ1=ðgðaqað0Þ

g
� qað0ÞÞ þ ðg� 1Þqað0ÞÞ

l� alg

¼ 2
1

l3ð1� alg�1Þ2
� 2

l=qað0Þ

l3ð1� alg�1Þ2
� 2

1=qað0Þ1=ðg� 1Þqað0Þ

l� alg

¼ 2
1� l=qað0Þ � l2ð1� alg�1Þ=qað0Þ

2
ðg� 1Þ

l3ð1� alg�1Þ2
,

which can be expanded as

¼
2 1� l=qað0Þ
� �

l3
1

aðg� 1Þlg�2
d

dl
1

1� alg�1
�

2

qað0Þ
2
ðg� 1Þlð1� alg�1Þ

¼
2 1� l=qað0Þ
� �
l3aðg� 1Þlg�2

d

dl

XQ

n¼0

ðalg�1Þn þ
ðalg�1ÞQþ1

1� alg�1

 !
�

2

qað0Þ
2
ðg� 1Þlð1� alg�1Þ

¼
2 1� l=qað0Þ
� �

l3
XQ

n¼1

nðalg�1Þn�1 þ
ðQþ 1Þðalg�1ÞQ

1� alg�1
þ
ðalg�1ÞQþ1

ð1� alg�1Þ2

 !
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�
2

qað0Þ
2
ðg� 1Þlð1� alg�1Þ

¼
2 1� l=qað0Þ
� �

l3
XQ�1
n¼0

ðnþ 1Þðalg�1Þn þ
ðQþ 1Þðalg�1ÞQ

1� alg�1
þ
ðalg�1ÞQþ1

ð1� alg�1Þ2

 !

�
2

qað0Þ
2
ðg� 1Þlð1� alg�1Þ

:¼m̂2ðlÞ

for any integer QX1. Even more, the factor involving Q has the same value for any QX1. Letting Q� 1 be N

or M, respectively, we obtain that

m̂2ðlÞ ¼
2

l3
XN

n¼0

ðnþ 1Þðalg�1Þn þ
ðN þ 2Þðalg�1ÞNþ1

1� alg�1
þ
ðalg�1ÞNþ2

ð1� alg�1Þ2

 !

�
2=qað0Þ

l2
XM
n¼0

ðnþ 1Þðalg�1Þn þ
ðM þ 2Þðalg�1ÞMþ1

1� alg�1
þ
ðalg�1ÞMþ2

ð1� alg�1Þ2

 !

�
2

lqað0Þ
2
ðg� 1Þ

XP

n¼0

ðalg�1Þn þ
ðalg�1ÞPþ1

1� alg�1

 !

¼ 2
1

l3
XN

n¼0

ðnþ 1Þðalg�1Þn �
a1=ðg�1Þ

l2
XM
n¼0

ðnþ 1Þðalg�1Þn �
a2=ðg�1Þ

lðg� 1Þ

XP

n¼0

ðalg�1Þn
 !

þ
2

1� alg�1
ðN þ 2Þðalg�1ÞNþ1

l3
�

a1=ðg�1ÞðM þ 2Þðalg�1ÞMþ1

l2
�

a2=ðg�1Þðalg�1ÞPþ1

lðg� 1Þ

� �

þ
2

ð1� alg�1Þ2
ðalg�1ÞNþ2

l3
�

a1=ðg�1Þðalg�1ÞMþ2

l2

� �
:¼ r1ðlÞ þ r2ðlÞ þ r3ðlÞ.

Again, the function m̂2 is not defined at l ¼ a�1=ðg�1Þ. Remember that qað0Þ ¼ a�1=ðg�1Þ. Since2

lim
l!a�1=ðg�1Þ

m̂2ðlÞ ¼ lim
l!a�1=ðg�1Þ

2ð1� l=qað0Þ � l2ð1� alg�1Þ=qað0Þ
2
ðg� 1ÞÞ

l3ð1� alg�1Þ2

¼ lim
l!a�1=ðg�1Þ

2ð�1=qað0Þ � 2lð1� alg�1Þ=qað0Þ
2
ðg� 1Þ þ alg=qað0Þ

2
Þ

3l2ð1� alg�1Þ2 � 2ð1� alg�1Þaðg� 1Þlgþ1

¼ lim
l!a�1=ðg�1Þ

2ð2ðalg�1=qað0Þ
2
Þ þ aglg�1=qað0Þ

2
Þ

2a2l2g�1ðg� 1Þ2
¼

ð2þ gÞ=qað0Þ
2

a2ðg� 1Þ2a�1=ðg�1Þð2g� 1Þ

¼
2þ g

ðg� 1Þ2
að2=ðg�1ÞÞ � 2þ ð2g� 1Þ=ðg� 1Þ ¼

2þ g

ðg� 1Þ2
aðð2�2ðg�1Þþ2g�1Þ=ðg�1ÞÞ ¼

2þ g

ðg� 1Þ2
a3=ðg�1Þ,

the function m̂2 is analytically extendable to the slit plane, Cnð�1; 0�. Since r1 is analytic in the slit plane, so is
the extension of r2þ r3.

Let RX0. Pick integers M ;N ;P such that

ðPþ 1Þðg� 1Þ4RXPðg� 1Þ,

ðM þ 1Þðg� 1Þ4Rþ 1XMðg� 1Þ,

ðN þ 1Þðg� 1Þ4Rþ 2XNðg� 1Þ.
2In the third line I omitted the terms that are going to be zero.
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Then ðd=dlÞRðr1ðlÞÞ inverts to

ð�1ÞRtR
XN

n¼0

2t2ðnþ 1Þ

Gð3þ nð1� gÞÞ
ðat1�gÞn �

XM
n¼0

2a1=ðg�1Þtðnþ 1Þ

Gð2þ nð1� gÞÞ
ðat1�gÞn

 

�
XP

n¼0

2a2=ðg�1Þ

ðg� 1ÞGð1þ nð1� gÞÞ
ðat1�gÞn

!
.

Next, we will show that the inverse of the remaining terms, that is, the inverse of ðd=dlÞRðr2þ r3Þ, converges
to zero as the argument gets larger. So we have to show that the extension of lðd=dlÞRðr2þ r3Þ is analytic and
bounded in a sectorial region containing the right halfplane, as well as converges to zero as l goes to zero. We
already showed that the analyticity condition is satisfied. Thus, all we have to control is the behaviour at
infinity and at zero. Now,

d

dl

� �R

r3ðlÞ ¼
d

dl

� �R
ð2ðalg�1ÞNþ1 � 2a1=ðg�1Þlðalg�1ÞMþ1Þ

l2
alg�2

ð1� alg�1Þ2

¼
XR

i¼0

ðcil
ðg�1ÞðNþ1Þ�2�i

� dil
ðg�1ÞðMþ1Þ�1�i

Þ
d

dl

� �R�i
alg�2

ð1� alg�1Þ2

¼
XR

i¼0

ðcil
ðg�1ÞðNþ1Þ�2�i

� dil
ðg�1ÞðMþ1Þ�1�i

Þ
d

dl

� �R�iþ1
1=ðg� 1Þ

1� alg�1
.

Using Lemma 2, we obtain for jlj ! 1,

l
d

dl

� �R

r3ðlÞ ¼ Oðjlj1þðg�1ÞðNþ1Þ�2þ1�g�ðRþ1ÞÞ

þOðjlj1þðg�1ÞðMþ1Þ�1þ1�g�ðRþ1ÞÞ ¼ Oðjljðg�1ÞN�2�RÞ þOðjljðg�1ÞM�1�RÞ.

For l! 0

l
d

dl

� �R

r3ðlÞ ¼ Oðjlj1þðg�1ÞðNþ1Þ�2þg�1�ðRþ1ÞÞ þOðjlj1þðg�1ÞðMþ1Þ�1þg�1�ðRþ1ÞÞ

¼ Oðjljðg�1ÞðNþ2Þ�ðRþ2ÞÞ þOðjljðg�1ÞðMþ2Þ�ðRþ1ÞÞ.

Hence, lðd=dlÞRr3ðlÞ stays bounded as jlj ! 1 and converges to zero as l! 0.
The function lðd=dlÞRr2ðlÞ has the same properties, since

d

dl

� �R

r2ðlÞ ¼
XR

i¼0

ðcil
ðg�1ÞðNþ1Þ�3�i

� dil
ðg�1ÞðMþ1Þ�2�i

� eil
ðg�1ÞðPþ1Þ�1�i

Þ
d

dl

� �R�i
1

1� alg�1
,

which implies that for jlj ! 1,

l
d

dl

� �R

r2ðlÞ ¼ Oðl1þðg�1ÞðNþ1Þ�3þ1�g�R
Þ þOðl1þðg�1ÞðMþ1Þ�2þ1�g�R

Þ þOðl1þðg�1ÞðPþ1Þ�1þ1�g�R
Þ

¼ OðlNðg�1Þ�ðRþ2Þ
Þ þOðlMðg�1Þ�ðRþ1Þ

Þ þOðlPðg�1Þ�R
Þ.

For l! 0 we write r2ðlÞ ¼ r20ðlÞ þ r21ðlÞ where r20ðlÞ contains the terms with ioR and r21ðlÞ contains the
terms with i ¼ R. Then we obtain that

l
d

dl

� �R

r20ðlÞ ¼ Oðl1þðg�1ÞðNþ1Þ�3�iþg�1�ðR�iÞ
Þ þOðl1þðg�1ÞðMþ1Þ�2�iþg�1�ðR�iÞ

Þ

þOðl1þðg�1ÞðPþ1Þ�1�iþg�1�ðR�iÞ
Þ

¼ OðlðNþ1Þðg�1Þ�ðRþ3�gÞÞ þOðlðMþ1Þðg�1Þ�ðRþ2�gÞÞ þOðlðPþ1Þðg�1Þ�ðRþ1�gÞÞ
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while

l
d

dl

� �R

r21ðlÞ ¼ OðlðNþ1Þðg�1Þ�ðRþ2ÞÞ þOðlðMþ1Þðg�1Þ�ðRþ1ÞÞ þOðlðPþ1Þðg�1Þ�R
Þ

so that r21ðlÞ dominates. Hence lðd=dlÞRðr2þ r3ÞðlÞ is bounded in a sectorial region containing the right
halfplane and converges to zero as l goes to zero. Thus the Laplace inverse of ðd=dlÞRðr2þ r3ÞðlÞ, say gðtÞ

converges to zero as t goes to infinity. Hence

ð�tÞRm2ðtÞ ¼ ð�tÞR
XN

n¼0

2t2ðnþ 1Þ

Gð3þ nð1� gÞÞ
ðat1�gÞn �

XM
n¼0

2a1=ðg�1Þtðnþ 1Þ

Gð2þ nð1� gÞÞ
ðat1�gÞn

 

�
XP

n¼0

2a2=ðg�1Þ

ðg� 1ÞGð1þ nð1� gÞÞ
ðat1�gÞn

!
þ gðtÞ

or

m2ðtÞ ¼
XN

n¼0

2t2ðnþ 1Þ

Gð3þ nð1� gÞÞ
ðat1�gÞn �

2a1=ðg�1Þtðnþ 1Þ

Gð2þ nð1� gÞÞ
ðat1�gÞn

�
2a2=ðg�1Þ

ðg� 1ÞGð1þ nð1� gÞÞ
ðat1�gÞn þ oðt2�Nðg�1ÞÞ.

Hence we showed (12) for all NpðRþ 2Þ=ðg� 1Þ. Since R was chosen arbitrarily, the theorem is proven. &
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