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Abstract

The mathematically correct specification of a fractional differential equa-
tion on a bounded domain requires specification of appropriate boundary
conditions, or their fractional analogue. This paper discusses the applica-
tion of nonlocal diffusion theory to specify well-posed fractional diffusion
equations on bounded domains.
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1. Introduction

The goal of this paper is to address an important open problem in the
area of fractional diffusion. Over the past ten years, a wide variety of ef-
fective numerical methods have been developed to solve fractional partial
differential equations, see for example [12, 13, 19, 24, 26, 28, 29, 43, 30,
37, 39, 45, 46]. However, for the most part, the underlying mathematical
theory is lacking. Stability and consistency of the methods are proven, but
generally it is not known whether the problems are well-posed, with unique
solutions in some suitable class of functions. Since fractional derivatives are
nonlocal operators, it is not even clear in general how one should specify
boundary conditions. In this paper, we carefully describe this open prob-
lem, and outline one possible solution approach using the newly developed
theory of nonlocal diffusion [1, 9, 14, 17, 42].

c⃝ 2015 Diogenes Co., Sofia
pp. 342–360 , DOI: 10.1515/fca-2015-0023

Auth
or'

s C
op

y



FRACTIONAL DIFFUSION ON BOUNDED DOMAINS 343

2. Fractional diffusion on bounded domains

The positive and negative Riemann-Liouville fractional derivatives are
defined by

Dα
x,Lf(x) =

1

Γ(n− α)

dn

dxn

∫ x

L

f(ξ)

(x− ξ)α+1−n
dξ ,

Dα
−x,Rf(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ R

x

f(ξ)

(ξ − x)α+1−n
dξ ,

where n − 1 < α ≤ n. The special case L = −∞ or R = +∞ is also
called the Liouville derivative. If f(x) = 0 for all x < L, then we also
have Dα

x,Lf(x) = Dα
x,−∞f(x) := Dα

xf(x). If f(x) = 0 for all x > R, then

Dα
−x,Rf(x) = Dα

−x,∞f(x) := Dα
−xf(x).

In numerical solutions of space-fractional diffusion equations, one typ-
ically specifies the problem using the Riemann-Liouville fractional deriva-
tives Dα

±xf(x), but then in order to obtain numerical solutions, one has to
replace these infinitely nonlocal operators by their finitely nonlocal counter-
parts Dα

x,Lf(x) and Dα
−x,Rf(x), since we cannot solve a numerical problem

with an infinite number of grid points.
In a numerical scheme, we approximate the Riemann-Liouville frac-

tional derivatives using a Grünwald-Letnikov finite difference scheme. For
any α > 0 we can define the Grünwald-Letnikov fractional derivative

Dα
±xf(x) = lim

h→0
h−α∆α

±hf(x),

where

∆α
±hf(x) =

∞∑
j=0

(
α
j

)
(−1)jf(x∓ jh),

(
α
j

)
=

Γ(α+ 1)

j!Γ(α− j + 1)
. (2.1)

The equivalence between the Riemann-Liouville and Grünwald-Letnikov
fractional derivatives is established in [33, Theorem 2.1]: If f is bounded,

and f (k) ∈ L1(R) for k ≤ n, for some n > 1 + α, then Dα
±xf(x) exists, and

its Fourier transform∫ ∞

−∞
e−ikxDα

±xf(x) dx = (±ik)αf̂(k).

Since the Riemann-Liouville fractional derivative has the same Fourier
transform [41, Eq. (7.4)], it follows from the uniqueness of the Fourier
transform that the two operators are the same for such functions.

Fourier transforms are fundamental to the theory of numerical analysis
for fractional diffusion equations. For example, in order to construct a
stable numerical scheme, one typically needs to employ a shifted version of
the Grünwald-Letnikov fractional derivative, replacing f(x ∓ jh) in (2.1)
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344 Defterli, D’Elia, Du, Gunzburger, Lehoucq, Meerschaert

by f(x∓ (j+ s)h), where s is an integer (if 1 < α < 2, we take s = 1). The
proof of O(h) convergence for the shifted finite difference, [28, Theorem
2.4], also uses Fourier transform methods.

Remark 2.1. It is also possible to use Fourier transform methods
on a bounded domain. One simply needs to redefine f(x) = 0 outside
the domain, and use Fourier transforms on the modified function, as in
Chen and Deng [8]. In this way, one can establish rates of convergence and
develop higher-order (e.g., 4th order) schemes. For example, if 1 < α < 2
and f,Dα

xf(x) are in L1(R) with Fourier transforms in L1(R), then [8,
Lemma 2.3] shows that

Dα
x,Lf(x) = h−α∆α

h,Lf(x) +O(h),

where

∆α
h,Lf(x) =

[(x−L)/h]∑
j=0

(
α
j

)
(−1)jf(x− jh) (2.2)

using the fractional binomial coefficients defined in (2.1). The book of Pod-
lubny [39, pp. 49–55 and 62–63] proves that h−α∆α

h,Lf(x) → Dα
x,Lf(x) as

h → 0 using combinatorial arguments, assuming that f(x) and its deriva-
tives of order up to m + 1 exist and are continuous in the interval [L, x],
where m < α < m+1. Podlubny [39, p. 224] then cites Lubich [25] to show
that the numerical methods developed in [39, Chapter 8] are O(h). This
proof, which does not rely on Fourier transforms, is considerably longer.

3. Illustration

Consider the space-fractional diffusion equation with drift

∂tp(x, t) = −v(x, t)∂xp(x, t) + a(x, t)Dα
xp(x, t) + b(x, t)Dα

−xp(x, t) + g(x, t)

on a finite domain L < x < R, 0 ≤ t ≤ T . If v, a, b are constants and
g = 0, then the Green’s function solutions to this equation on the real
line are stable densities [33, Section 1.2], and there are widely available
tools to compute these special functions (e.g., see [33, Chapter 5]). These
solutions are useful for example in hydrology, where they model solute
transport in underground aquifers [4, 5, 6] and rivers [12, 22, 23]. For the
general, variable coefficient space-fractional diffusion equation, a number
of effective numerical methods have been developed to compute solutions
to this problem, see for example [12, 13, 19, 24, 26, 28, 29, 43, 30, 37, 39,
45, 46]. The most popular in practical applications are finite difference
methods, based on the Grünwald-Letnikov approximation of the Riemann-
Liouville fractional derivatives. These codes are mass-preserving, since
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FRACTIONAL DIFFUSION ON BOUNDED DOMAINS 345

∞∑
j=0

(
α
j

)
(−1)j = 0.

For example, in an application to ground water hydrology, the general
space-fractional diffusion equation with drift is used when the mean plume
velocity v and the fractional diffusivities a, b vary with space and time.
An initial function p0(x) = p(x, 0) describes the concentration of solute at
location x, and the solution p(x, t) predicts the concentration at a later
time t > 0. In the absence of a source term (g = 0), the total mass
C0 =

∫
p(x, t) dx will be a constant that does not vary over time. Since

the finite difference codes are mass-preserving, the approximate numerical
solution will have the same property, i.e., its total mass will not vary over
time. This mass-preserving property is very useful in applications.

The following simple example from [43] is typical for the existing lit-
erature on finite difference solutions of fractional partial differential equa-
tions. As we shall see later in this paper, insights from the newly developed
theory of nonlocal diffusion strongly suggest that this formulation is not
well-posed. The space-fractional diffusion equation

∂tp(x, t) = a(x)D1.8
x p(x, t) + g(x, t) (3.1)

on the bounded domain 0 < x < 1 with

p(x, 0) = x3

p(0, t) = 0

p(1, t) = e−t

a(x) =
Γ(2.2)

6
x2.8

g(x, t) = −(1 + x)e−tx3

(3.2)

has exact solution p(x, t) = e−tx3 for all t > 0. Now a Crank-Nicolson
scheme [43] with ∆t = 1/10 and ∆x = h = 1/10 gives the solution at time
t = 1.0, see Figure 1. Evidently, even with this relatively large step size,
we obtain a good match to the exact solution.

Because the Grünwald-Letnikov approximation of the Riemann-Liouville
fractional derivative is O(h) accurate, the Crank-Nicolson method is only
first-order accurate. A standard application of Richardson extrapolation
(e.g., see [20]) yields a second order method, as evidenced by the error
analysis in Table 1.

Auth
or'

s C
op

y



346 Defterli, D’Elia, Du, Gunzburger, Lehoucq, Meerschaert

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2

Exact

 CN

Figure 1. Comparison of the exact and numerical solution
to the example problem (3.1), from [43].

∆t ∆x CN Error Rate RE Error Rate
1/10 1/10 1.82×10−3 − 1.77×10−4 −
1/15 1/15 1.17×10−3 ≈ 15/10 7.85×10−5 ≈ (15/10)2

1/20 1/20 8.64×10−4 ≈ 20/15 4.41×10−5 ≈ (20/15)2

1/25 1/25 6.85×10−4 ≈ 25/20 2.83×10−5 ≈ (25/20)2

Table 1. Error analysis for the numerical solution to the
example problem (3.1), from [43].

Next we explain how the exact solution to the sample problem (3.1)
has been computed. It is not hard to check that

Dα
x,L(x− L)q =

Γ(q + 1)

Γ(q + 1− α)
(x− L)q−α

Dα
−x,R(R− x)q =

Γ(q + 1)

Γ(q + 1− α)
(R− x)q−α

(3.3)
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FRACTIONAL DIFFUSION ON BOUNDED DOMAINS 347

see for example [33, Example 2.7]. Assume that p(x, t) = 0 for x ≤ 0, so
that D1.8

x p(x, t) = D1.8
x,0p(x, t). Now set p(x, t) = e−tx3 and compute

∂tp(x, t) = −e−tx3 and D1.8
x p(x, t) =

Γ(4)

Γ(2.2)
e−tx1.2.

Plug this into equation (3.1), and solve to obtain g(x, t). By this calculation,
we have shown that there exists at least one solution p(x, t) = e−tx3 to
the fractional partial differential equation (3.1) on the bounded interval
0 < x < 1, that satisfies the conditions (3.2).

What is often overlooked in this analysis is that we have assumed
p(x, t) = 0 for x ≤ 0, to make D1.8

x p(x, t) = D1.8
x,0p(x, t). Suppose instead

that p(x, t) = 1 for −1 < x < 0, and p(x, t) = 0 for x ≤ −1. Then

D1.8
x p(x, t) =

Γ(4)

Γ(2.2)
e−tx1.2 +

1

Γ(0.2)

d2

dx2

∫ 0

−1

1

(x− ξ)0.8
dξ

=
6

Γ(2.2)
e−tx1.2 +

0.8

Γ(0.2)

[
x−1.8 − (x+ 1)−1.8

]
,

(3.4)

and hence the forcing function g(x, t) must change in order to retain the
same exact solution.

We do not know whether the exact solution p(x, t) = e−tx3 to the
fractional diffusion equation (3.1) with initial and boundary conditions (3.2)
is unique. What is clear is that values of p(x, t) at every exterior point
x < 0 affect the solution. If the problem also involves a negative fractional
derivative, then values of p(x, t) at exterior points x > 1 will also affect the
solution. Hence it seems likely that a well-posed space-fractional diffusion
problem on a bounded domain must also specify the value of the solution
at points exterior to the domain, not just at the boundary.

Remark 3.1. In some applications [32, 47], it has proven useful to
consider a tempered fractional diffusion equation like

∂tp(x, t) = a(x)Dα,λ
x p(x, t) + g(x, t). (3.5)

The tempered fractional derivative Dα,λ
x f(x) can be defined for any α > 0

and λ > 0 as the function with Fourier transform (λ + ik)−αF (k), for
suitable functions f(x) with Fourier transform F (k) =

∫
e−ikxf(x)dx [34,

Theorem 2.9]. When 0 < α < 1, we can also define

Dα,λ
x f(x) = λαf(x) +

α

Γ(1− α)

∫ x

−∞

f(x)− f(u)

(x− u)α+1
e−λ(t−u)du, (3.6)

which reduces to the Marchaud fractional derivative [41, Section 5.4] when
the tempering parameter λ = 0. For 0 < α < 1, we have from Sabzikar et
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al. [40, Theorem 5.1] that limh→0 h
−α∆α,λ

h f(x) = Dα,λ
x f(x), where

∆α,λ
h f(x) =

∞∑
j=0

(
α
j

)
(−1)je−λjhf(x− jh)− (1− e−λh)αf(x).

A shifted version of this Grünwald-Letnikov approximation can be used to
construct effective finite difference codes [2, 40]. These codes are mass-
preserving since, by the fractional binomial formula, we have

∞∑
j=0

(
α
j

)
(−1)je−λjh = (1− e−λh)α

A Crank-Nicolson solution to the tempered fractional diffusion equation
(3.5) on the bounded domain 0 < x < 1 with α = 1, 6, λ = 2, β = 2.8,
p(0, t) = 0, and

p(1, t) =
e−λ−t

Γ(β + 1)

p(x, 0) =
xβe−λx

Γ(β + 1)

a(x) =
xαΓ(1 + β − α)

Γ(β + 1)

g(x, t) = c1(x, t)e
−λx−tΓ(1 + β − α)

Γ(β + 1)

c1(x, t) =
(1− α)λαxα+β

Γ(β + 1)
+

αβλα−1xα+β−1

Γ(β)
− 2xβ

Γ(1 + β − α)

(3.7)

was presented in [40, Example 5.3], and compared to the exact solution
p(x, t) = xβe−λx−t/Γ(1 + β). The exact solution to the tempered fractional
diffusion equation (3.5) with boundary conditions (3.7) can be computed in
the same manner as the exact solution to the fractional diffusion equation
(3.1) with initial and boundary conditions (3.2), using (3.3) together with
the fact [33, p. 209] that

Dα,λ
x f(x) = e−λxDα

x [e
λx f(x)]. (3.8)

Here again, the exact solution assumes that p(x, t) = 0 for x < 0 and t ≥ 0,
and without this condition, the solution is not valid.

4. Nonlocal diffusion

In the previous section, we have presented a simple example to illustrate
the basic issues in the specification of fractional boundary value problems.
In this section, we discuss one possible path to resolving these issues.
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FRACTIONAL DIFFUSION ON BOUNDED DOMAINS 349

The theory of nonlocal diffusion is related to the study of peridynamics,
which extends the physical models of continuum mechanics using integral
equations in place of partial differential equations. Since Riemann-Liouville
fractional derivatives are defined in terms of integrals, space-fractional dif-
ferential equations can also be viewed as a special case of Volterra integral
equations. Then the theory of nonlocal diffusion can be applied to illu-
minate the proper specification of fractional boundary value problems. In
this theory, boundary values are replaced by volume constraints that spec-
ify values of a solution on a set of positive volume, exterior to the bounded
domain of interest [9, 14, 17, ?, 42]. The need for volume constraints from
the point of view of probability is explained in [7].

In the remainder of this section, we describe the connection between
nonlocal diffusion and fractional diffusion, summarize what can be imme-
diately inferred about fractional diffusion problems on a bounded domain
via the theory of nonlocal diffusion, and sketch some of the open problems
for future research in this direction.

In order to explain the close connection between fractional calculus
and nonlocal diffusion, we now recall another definition of the fractional
derivative. The positive and negative Marchaud fractional derivatives [41,
Section 5.4] (also called the generator form [33]) are defined as

Dα
xf(x) =

α

Γ(1− α)

∫ x

−∞

f(x)− f(u)

(x− u)α+1
du

Dα
−xf(x) =

α

Γ(1− α)

∫ +∞

x

f(x)− f(u)

(u− x)α+1
du

for 0 < α < 1. A slightly more complicated form pertains for 1 < α < 2,
see [33, Chapter 3]. If f, f ′, f ′′ are continuous and integrable functions that

vanish at infinity, then the Fourier transform of Dα
±xf(x) is (±ik)αf̂(k) [33,

Theorem 3.17 and Example 3.24], and hence this definition coincides with
the Riemann-Liouville derivative for such functions. Hence the constant
coefficient fractional diffusion equation

∂tp(x, t) = aDα
xp(x, t) + bDα

−xp(x, t)

for 0 < α < 1 can be rewritten in the form

∂tp(x, t) =

∫
R
[p(x− u, t)− p(x, t)]ϕ(u) du (4.1)
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where the Lévy jump intensity

ϕ(u) =


a

α

Γ(1− α)
|u|−α−1 u < 0,

b
α

Γ(1− α)
u−α−1 u > 0.

(4.2)

A change of variable y = x− u in (4.1) yields

∂tp(x, t) =

∫
R
[p(y, t)− p(x, t)] γ(y, x) dy, (4.3)

where the interaction kernel γ(y, x) = ϕ(x − y). Equation (4.3) defines a
Cauchy problem ∂tp = Lp; p(x, 0) = p0(x) on L2(R), where the nonlocal
operator

Lf(x) =

∫
y ̸=0

[f(y)− f(x)] γ(y, x) dy (4.4)

as in Du et al. [14]. If a = b, then L is proportional to the fractional Lapla-
cian in one dimension. The same idea extends to Rd, and if the interaction
kernel γ(y, x) is proportional to |y − x|−α−d then L is proportional to the
fractional Laplacian in d dimensions.

One way to define the nonlocal operator on a bounded domain D is
to simply restrict the domain of integration in (4.4) to y ∈ D. Using
that definition of the fractional Laplacian, Du et al. [14] prove that the
constrained minimization problem

min
u∈Hα/2(D)

Lu−
∫
x∈D

b(x)u(x) dx

is well-posed given the volume constraint u = 0 on the interaction domain

DI := {y ∈ R \D : γ(x, y) ̸= 0 ∃ x ∈ D}.

Here Hs(D) is the usual fractional Sobolev space [36], the natural domain
of the fractional derivatives of order α = 2s. Du et al. [14] also note that
the same problem is ill-posed using Dirichlet boundary conditions u = 0 on
∂D. The volume constraint u = 0 for x ∈ DI is a kind of nonlocal Dirichlet
condition, the proper nonlocal analogue of a Dirichlet boundary condition.

Du et al. [18] prove well-posedness for the Cauchy problem ∂tp =
Lp; p(x, 0) = p0(x) on L2(R), where the integral in (4.4) is taken over
the entire space, the interaction kernel γ(x, y) = γ(y − x) is translation
invariant, and vanishes off a ball of finite radius |y − x| < λ. They
also assume a zero volume constraint on the interaction domain. This
result could easily be generalized to include the non-homogeneous case
∂tp = Lp+ g; p(x, 0) = p0(x).
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FRACTIONAL DIFFUSION ON BOUNDED DOMAINS 351

Remark 4.1. The tempered fractional diffusion in Remark 3.1 is also
a nonlocal diffusion whose interaction kernel

γ(y, x) = C(y − x)−α−1e−λ(y−x)Iy>x

has an infinite interaction length. It would also be interesting to develop
a suitable theory of well-posed tempered fractional diffusion on a bounded
domain.

To demonstrate the practical utility of nonlocal diffusion theory for ap-
plications to fractional diffusion on a bounded domain, we offer the follow-
ing result, which is a simple consequence of established nonlocal diffusion
theory. Consider the fractional initial value problem

∂tp(x, t) =
1

2

[
Dα
xp(x, t) + Dα

−xp(x, t)
]

p(x, 0) = p0(x) for all L < x < R

p(x, t) = 0 for all x /∈ (L,R) and all t ∈ [0, T ]

(4.5)

on the bounded domain D = (L,R) for some 0 < α < 1 and some T > 0.
Here the interaction length λ = ∞, and the interaction domain DI = R\D.
Define the nonlocal energy semi-norm

|||v||| := 1

2

∫
R×R

|v(x)− v(y)|2ϕ(|y − x|) dy dx

where ϕ(u) is the Lévy jump intensity (4.2) with a = b = 1/2. Define the
nonlocal energy space

V := {v ∈ L2(R) : |||v||| < ∞}
and the nonlocal volume-constrained energy space

Vc := {v ∈ V : v(x) = 0 ∀ x /∈ (L,R)}.

Theorem 4.1. For any p0 ∈ Vc, the fractional diffusion problem (4.5)
has a unique solution in L∞([0, T ], Vc) ∩H1([0, T ], L2(R)).

P r o o f. First, note that Vc is a Hilbert space, and a closed subspace
of L2(R). For details and extensions, see [14, 35]. By the analysis of
well-posedness of the steady state variational problem obtained by setting
∂tp(x, t) = 0 in (4.5), it is easy to see that the bilinear form

a(u, v) =

∫
R×R

(
u(x)− u(y)

)(
v(x)− v(y)

)
ϕ(|x− y|) dy dx

is coercive and continuous on Vc×Vc. In particular, we have that a(u, u) =
|||u|||2. Moreover, it follows from a nonlocal version of Green’s second

Auth
or'

s C
op

y



352 Defterli, D’Elia, Du, Gunzburger, Lehoucq, Meerschaert

identity [17], see also (5.7) in the next section, that a(u, v) = (L(u), v),
where L is defined by (4.4) with γ(y, x) = ϕ(x− y). Thus, the operator L
generates a continuous semigroup, and hence the existence and uniqueness
of a solution p(x, t) in the space L∞([0, T ], Vc) ∩ H1([0, T ], L2(R)) follows
from the standard theory [38]. 2

Remark 4.2. The proof of Theorem 4.1 also extends to fractional
diffusion problems on Rd. If the interaction kernel γ(x,y) is proportional
to |y − x|−α−d, then the operator (4.4) is proportional to the fractional
Laplacian in d dimensions. With a finite interaction length λ > 0, the
interaction kernel is given by γ(x,y) = c|y−x|−α−d1|y−x|≤λ, the interaction

domain is given by DI := {y ∈ Rd \ D : |x − y| < λ}, and the nonlocal
diffusion problem

∂tp(x, t) = Lp(x, t) + g(x, t) ∀x ∈ D, t ∈ (0, T ]

p(x, 0) = p0(x) ∀x ∈ D

p(x, t) = 0 ∀x ∈ DI , t ∈ (0, T ]

(4.6)

with a zero volume constraint has a unique solution. If the interaction
length λ = ∞, then DI = Rd \ D, and the problem (4.6) is equivalent to
the nonlocal Dirichlet problem for the fractional Laplacian on the bounded
domain D, with a zero exterior condition.

Remark 4.3. It is typical in the theory of nonlocal diffusion to assume
a finite interaction length λ < ∞. This is not consistent with fractional
diffusion problems, where the interaction length in the Riemann-Liouville
derivative (or the fractional Laplacian) is infinite. To address this problem,
D’Elia and Gunzburger[10] consider the steady state problem 0 = Lp + g
on D with p = 0 on DI , where L is the fractional Laplacian. They prove
that solutions to this steady state problem can be obtained as the limit
of solutions of the same nonlocal problem with a finite interaction length,
by letting the interaction length tend to infinity [10, Theorem 3.1]. That
is, they apply the interaction kernel γ(y, x) = c|y − x|−α−d1|y−x|≤λ and
let λ → ∞. Specifically, the difference between the two solutions, mea-
sured in the Hα/2(D ∪DI) norm, is proportional to λ−α as λ → ∞.
It would be interesting to extend these results to the Cauchy problem
∂tp = Lp; p(x, 0) = p0(x), as well as other non-symmetric fractional deriv-
ative operators. For example, one can consider the anisotropic fractional
derivative operator L = ∇α

M such that Lf(x) has the Fourier transform∫
|θ|=1

(ik · θ)αM(dθ)f̂(k),
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FRACTIONAL DIFFUSION ON BOUNDED DOMAINS 353

see [33, Section 6.5].

Remark 4.4. In numerical analysis, practical considerations necessi-
tate a finite domain, with a finite interaction length. Hence in this setting,
the finite interaction length typically assumed in the nonlocal theory is
quite natural. For example, if one considers the space-fractional diffusion
equation with drift

∂tp(x, t) = −v(x, t)∂xp(x, t)+a(x, t)Dα
x,Lp(x, t)+b(x, t)Dα

−x,Lp(x, t)+g(x, t)

on a finite domain L < x < R, 0 ≤ t ≤ T , then nonlocal diffusion the-
ory with a finite interaction length is directly applicable. Although the
Riemann-Liouville fractional derivative D±x is more natural in applications
(e.g., to ground water hydrology), the imposition of a finite interaction
length is inevitable in numerical work.

Another interesting open problem is the appropriate specification of
reflecting (and other) boundary conditions. A first step in this direction
was taken by Baeumer et al. [3]. Consider a Brownian motion reflected at
the origin, so that particles remain in the positive half-line. The transition
densities p(x, y, t) of Zt+s = y given Zs = x solve the diffusion equation
∂tp(x, y, t) = ∂2

yp(x, y, t) together with the reflecting boundary condition

∂yp(x, y, t)

∣∣∣∣
y=0+

:= lim
h→0+

p(x, y + h, t)− p(x, y, t)

h

∣∣∣∣
y=0

= 0 for all t > 0,

see for example Itô and McKean [21, Eq. 8]. Replacing the Brownian
motion by a negatively skewed stable Lévy motion with index 1 < α < 2,
the corresponding transition densites solve the fractional diffusion equation
∂tp(x, y, t) = Dα

−yp(x, y, t) with the fractional reflecting boundary condition

Dα−1
−y p(x, y, t)

∣∣∣∣
y=0+

= 0 for all t > 0. (4.7)

Just like the classical case of a reflecting Brownian motion, the fractional
reflecting boundary condition (4.7) enforces a no-flux condition at the point
y = 0 in the state space. The boundary condition (4.7) can therefore be
considered as the appropriate fractional analogue of a reflecting boundary
condition in the traditional diffusion equation. It would be very interesting
to extend this result to more general fractional diffusion equations in one
and several dimensions.

In the nonlocal diffusion setting, the appropriate specification of such
Neumann type volume constraints was discussed in [14, 17]; in short, Neu-
mann constraints in the nonlocal diffusion theory simply require equation
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(5.6) in the following section to hold, not only for x ∈ D, but also for
x ∈ DI . It would be very interesting to connect (4.7) to the treatment of
nonlocal Neumann volume constraints specified in [14, 17].

5. Nonlocal vector calculus

In this section, we describe the recently developed theory of nonlocal
vector calculus, including nonlocal analogues of the divergence and gradi-
ent. Given vector-valued mappings ν(x,y),β(x,y) : Rd ×Rd → Rd with β
antisymmetric, i.e., β(y,x) = −β(x,y), the action of the nonlocal diver-
gence operator D : Rd → R on ν is defined as

D
(
ν
)
(x) :=

∫
Rd

(
ν(x,y) + ν(y,x)

)
· β(x,y) dy ∀x ∈ Rd. (5.1a)

This definition follows from reasonable assumptions about how a diver-
gence operator should act, followed by an application of the Schwarz kernel
theorem; see [17].

Given a scalar-valued mapping u(x) : Rd → R, the action of the adjoint
operator D∗ : Rd × Rd → Rd on u is given by [14]

D∗(u)(x,y) = −
(
u(y)− u(x)

)
β(x,y) ∀x,y ∈ Rd; (5.1b)

and we note that −D∗ defines a nonlocal gradient operator.
Given a scalar-valued mapping u(x) : Rd → R, the action of the operator

L : Rd → R on u is defined as

Lu := −D(ΘD∗u) +D(µu) ∀x ∈ Rd, (5.2)

where, without loss of generality [11], one can assume that Θ(x,y) =
ΘT (x,y) = Θ(y,x) and µ(x,y) = µ(y,x). Using (5.1), Lu has the explicit
form

Lu(x) =
∫
Rd

(
u(y)γ(y,x)− u(x)γ(x,y)

)
dy for x ∈ Rd, (5.3)

where

γ(x,y) = β(x,y) ·
(
Θ(x,y)β(x,y)

)
− µ(x,y) · β(x,y). (5.4)

Given an open subset D ⊂ Rd, recall that the interaction domain cor-
responding to D is defined by

DI := {y ∈ Rd \D such that β(x,y) ̸= 0 ∀x ∈ D} (5.5)

so that DI consists of those points outside of D that interact with points
in D. In this case, we have that

Lu(x) =
∫
D∪DI

(
u(y)γ(y,x)− u(x)γ(x,y)

)
dy ∀x ∈ D. (5.6)
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Note that the cases DI = Rd \D or D = Rd are not excluded.
In [17], a nonlocal vector calculus is developed for the operators D and

D∗ including nonlocal gradient and curl operators, mimicking the classical
vector calculus for differential operators. Included in the nonlocal calculus
are analogues of well-known vector identities and theorems such as the
divergence theorem and the Green identities. Of special relevance to this
study is the nonlocal Green’s second identity: given u(x) and v(x) defined
for x ∈ D ∪DI , then∫

D∪DI

v(x)D(ΘD∗u)(x) dx

=

∫
D∪DI

∫
D∪DI

D∗(u)(x,y) · (ΘD∗v)(x,y) dydx.

(5.7)

Remark 5.1. A fractional vector calculus has also been developed by
Meerschaert et al. [31] and Tarasov [44]. The theory defines a fractional
gradient, divergence, curl, and a fractional divergence theorem and Stokes
theorem. It would be interesting to reconcile the vector fractional calculus
in those papers with the nonlocal vector calculus described above. For
example, the vector fractional calculus defines the β-fractional divergence
[31, Eq. (12)] of a vector field V : Rd → Rd as

divβM V (x) :=

∫
|θ|=1

∫ ∞

0
[V (x)− V (x− tθ)] · θ βdt

Γ(1− β)tβ−1
M(dθ),

and it may be possible to relate this to (5.1a).

6. Concluding remarks

This paper describes an important open problem in fractional calculus:
How should one formulate a well-posed fractional diffusion problem on a
bounded domain, so that there exists a unique solution that depends con-
tinuously on the initial data? A simple example is presented to show the
necessity of volume constraints instead of boundary values. Since fractional
derivatives are nonlocal operators, it is natural that a “nonlocal boundary
condition” has to extend past the boundary. One method of identifying
and proving the proper formulation of a fractional diffusion problem on
a bounded domain is to apply the recently developed theory of nonlocal
diffusion. Since fractional derivatives are a special case nonlocal operators,
established results from the theory of nonlocal diffusion can be applied to
identify a well-posed formulation.

The connection between nonlocal and fractional theories is not yet com-
plete. Usually, nonlocal diffusion models involve a symmetric interaction
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kernel, with a finite interaction length. The fractional Laplacian, or the
Riesz fractional derivative in one dimension, correspond to a nonlocal op-
erator with an infinite interaction length. Riemann-Liouville fractional
derivatives are nonlocal operators with an asymmetric power law inter-
action kernel. Liouville fractional derivatives are nonlocal operators with
an asymmetric interaction kernel and an infinite interaction length. Vec-
tor fractional derivatives are also nonlocal operators, with an asymmetric
interaction kernel in d dimensions, and an infinite interaction length. Re-
search in nonlocal diffusion theory is ongoing, to incorporate asymmetric
interaction kernels and infinite interaction lengths, see for example [10].
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[21] K. Itô and H.P. McKean, Brownian motions on a half line. Illinois J.
Math. 7 (1963), 181–231.

[22] B. Hunt, Asymptotic solutions for one-dimensional dispersion in rivers.
J. Hydraulic Eng. 132, No 1 (2006), 87–93.

[23] S. Kim and M.L. Kavvas, Generalized Fick’s law and fractional ADE
for pollutant transport in a river: detailed derivation. J. Hydro. Eng.
11, No 1 (2006), 80–83.

[24] F. Liu, V. Ahn and I. Turner, Numerical solution of the space fractional
Fokker-Planck equation. J. Comput. Appl. Math. 166 (2004), 209–219.

[25] Ch. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17,
No 3 (1986), 704–719.

[26] V.E. Lynch, B.A. Carreras, D. del-Castillo-Negrete, K.M. Ferreira-
Mejias, H.R. Hicks, Numerical methods for the solution of partial dif-
ferential equations of fractional order. J. Comput. Phys. 192 (2003),
406–421.

[27] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity:
An Introduction to Mathematical Models. World Scientific (2010).

[28] M.M. Meerschaert and C. Tadjeran, Finite difference approximations
for fractional advection-dispersion flow equations. J. Comput. Appl.
Math. 172 (2004), 65–77.

[29] M.M. Meerschaert and C. Tadjeran, Finite difference approximations
for two-sided space-fractional partial differential equations. Appl. Nu-
mer. Math. 56 (2006), 80–90.

[30] M.M. Meerschaert, H.P. Scheffler and C. Tadjeran, Finite difference
methods for two-dimensional fractional dispersion equation. J. Comput.
Phys. 211 (2006), 249–261.

[31] M.M. Meerschaert, J. Mortensen, and S.W. Wheatcraft, Fractional
vector calculus for fractional advection-dispersion. Physica A: Statisti-
cal Mechanics and Its Applications 367 (2006), 181–190.

[32] M.M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffu-
sion in heterogeneous systems. Geophys. Res. Lett. 35 (2008), L17403.

[33] M.M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional
Calculus. De Gruyter Studies in Mathematics 43, De Gruyter, Berlin
(2012), ISBN 978-3-11-025869-1.

[34] M.M. Meerschaert and Farzad Sabzikar, Stochastic integration for tem-
pered fractional Brownian motion. Stoch. Proc. Appl. 124, No 7 (2014),
2363–2387.

[35] R. Mengesha and Q. Du, Analysis of the peridynamic model with a sign
changing kernel. Discr. Cont. Dynam. Syst. B 18 (2013), 1415–1437.

Auth
or'

s C
op

y



FRACTIONAL DIFFUSION ON BOUNDED DOMAINS 359

[36] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the
fractional Sobolev spaces. Bull. Sci. Math. 136, No 5 (2012), 521–573.

[37] Z. Odibat and S. Momani, Numerical methods for nonlinear partial dif-
ferential equations of fractional order. Applied Mathematical Modelling
32, No 1 (2008), 28–39.

[38] A. Pazy, Semigroups of Linear Operators and Applications to Partial
Differential Euations. Springer-Verlag, New York - Berlin - Heidelberg
- Tokyo (1983).

[39] I. Podlubny, Fractional Differential Equations: An Introduction to
Fractional derivatives, Fractional Differential Equations, to Methods
of Their Solution and Some of Their Applications. Academic Press,
San Diego, California (1999).

[40] F. Sabzikar, M.M. Meerschaert, and J. Chen, Tempered frac-
tional calculus. J. Comput. Phys., To appear. Preprint at
http://www.stt.msu.edu/users/mcubed/TFC.pdf.

[41] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Deriva-
tives: Theory and Applications. Gordon and Breach, London (1993).

[42] P. Seleson, M. Gunzburger, and M. Parks, Interface problems in nonlo-
cal diffusion and sharp transitions between local and nonlocal domains.
Comput. Meth. Appl. Mech. Enrgr. 266 (2013), 185–204.

[43] C. Tadjeran, M.M. Meerschaert, and H.-P. Scheffler, A second order
accurate numerical approximation for the fractional diffusion equation.
J. Comput. Phys. 213 (2006), 205–213.

[44] V.E. Tarasov, Fractional vector calculus and fractional Maxwell’s equa-
tions. Annals of Physics 323, No 11 (2008), 2756–2778.

[45] S.B. Yuste and L. Acedo, An explicit finite difference method and a new
von Neumann type stability analysis for fractional diffusion equations.
SIAM J. Numer. Anal. 42 (2005), 1862–1874.

[46] H. Zhang, F. Liu, M.S. Phanikumar, and M.M. Meerschaert, A
novel numerical method for the time variable fractional order mobile-
immobile advection-dispersion model. Comput. Math. Appl. 66, No 5
(2013), 693–701.

[47] Y. Zhang, M.M. Meerschaert, and A.I. Packman, Linking fluvial
bed sediment transport across scales. Geophys. Res. Lett. 39 (2012),
L20404.

1 Department of Statistics and Probability
Michigan State University
East Lansing, MI 48824, USA
e-mail: defterli@stt.msu.edu

and

Auth
or'

s C
op

y



360 Defterli, D’Elia, Du, Gunzburger, Lehoucq, Meerschaert

Department of Mathematics and Computer Science
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