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Abstract Anomalous transport cannot be adequately described with classical Fickian advection-
dispersion equations (ADE) with constant coefficients. Rather, fractional calculus models may be used,
which capture salient features of anomalous transport (e.g., skewness and power law tails). FracFit is a
parameter estimation tool based on space-fractional and time-fractional models used by the hydrology
community. Currently, four fractional models are supported: (1) space-fractional advection-dispersion
equation (sFADE), (2) time-fractional dispersion equation with drift (TFDE), (3) fractional mobile-immobile
(FMIM) equation, and (4) temporally tempered L�evy motion (TTLM). Model solutions using pulse initial
conditions and continuous injections are evaluated using stable distributions or subordination integrals.
Parameter estimates are extracted from measured breakthrough curves (BTCs) using a weighted
nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for pulse initial conditions and
continuous injections are presented. Two sample applications are analyzed: (1) pulse injection BTCs in the
Selke River and (2) continuous injection laboratory experiments using natural organic matter. Model
parameters are compared across models and goodness-of-fit metrics are presented, facilitating model
evaluation.

1. Introduction

Anomalous transport cannot be adequately described with classical Fickian advection-dispersion equations
(ADE) with constant coefficients [Metzler and Klafter, 2004; Neuman and Tartakovsky, 2009]. So-called anoma-
lous transport is quite ubiquitous, spanning a multitude of scientific disciplines [Klages et al., 2008], includ-
ing the hydrologic sciences where it has been observed in both surface [Deng et al., 2006; Phanikumar et al.,
2007; Haggerty et al., 2002; Aubeneau et al., 2014] and subsurface [Benson et al., 2001; Berkowitz and Scher,
1997; Cortis and Berkowitz, 2004; Wang and Cardenas, 2014; LeBorgne and Gouze, 2008; Becker and Shapiro,
2000] water environments. Anomalous transport is characterized by subdiffusive or superdiffusive spreading
of a plume, as inferred from the growth rate of its second centered moment, as well as heavy power law
tails in concentration distributions and breakthrough curves (BTCs).

Several modeling approaches have been developed for anomalous diffusion, including continuous time ran-
dom walks (CTRW) [Berkowitz et al., 2006; Boano et al., 2007], multirate mass transfer (MRMT) [Haggerty and
Gorelick, 1995] and fractional advection-dispersion equations [Benson et al., 2000]. All have enjoyed remark-
able success in matching observations from experiments, spanning laboratory to field scales. For both
CTRW [Cortis and Berkowitz, 2005] and MRMT [Haggerty, 2009], publicly available computational toolboxes
for parameter estimation exist. Alternative modeling approaches include spatial and temporal Markov mod-
els [LeBorgne et al., 2008; Meyer and Tchelepi, 2010] and the adjoint equation method [Maryshev et al., 2016].
The goal of this paper is to describe a new toolbox for fractional advection-dispersion models [Liu et al.,
2003; Schumer et al., 2003; Meerschaert et al., 2008]. Given the historical success of fractional calculus in
hydrology [e.g., Benson et al., 2001; Chakraborty et al., 2009; Shen and Phanikumar, 2009], such a general tool
is desirable, allowing for improved intermodel comparison and rapid model validation, as well as enabling
use by a broader fraction of the hydrologic community, not to mention countless other disciplines where
fractional dispersion models are used.
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Motivated by this need, we have developed FracFit, a parameter estimation tool based on common
space-fractional and time-fractional models. FracFit is modular, allowing new models to be developed,
implemented, verified for correctness, and tested in a rapid fashion. A current version is available on GitHub
(https://github.com/jfk-inspire/FracFit-v-0.9). This technical report provides a summary of the models and
numerics used in FracFit, which includes novel optimal weights used in the weighted nonlinear least
squares (WNLS) algorithm for parameter estimation. We then apply FracFit to two data sets, which have
not previously been interpreted with fractional models, illustrating the automated fitting of pulse and con-
tinuous injection BTCs. Space-fractional, time-fractional, and tempered-fractional models are discussed and
compared.

2. Overview of Fractional Models

FracFit is a collection of MATLAB scripts that find the optimal parameter vector h for a particular fraction-
al model. At present, four representative models are implemented; the code is modular allowing additional
models to be implemented with relative ease. In particular, all models use a common interface. Here we
consider the following four forms of FADE commonly used in hydrology:

1. Space-fractional advection-dispersion equation (sFADE) [Benson et al., 2000].
2. Time-fractional dispersion equation with drift (TFDE) [Liu et al., 2003].
3. Fractional mobile-immobile (FMIM) equation [Schumer et al., 2003].
4. Temporally tempered L�evy motion (TTLM) [Meerschaert et al., 2008].

For each model, we consider two setups and solve for concentration C(x, t). These are (i) a pulse initial con-
dition Cðx; t50Þ5KdðxÞ on 21 < x <1 where K is initial mass and (ii) a continuous injection Cðx; t50Þ50
and Cðx50; tÞ5C0, where C0 is a prescribed concentration, on 0 < x <1. The governing equations and sol-
utions for each of the four models are summarized in Table 1. The sFADE model involves positive and nega-
tive Riemann-Liouville derivatives on the real line. The TFDE involves a Caputo derivative on the half-axis.
The FMIM model utilizes a Riemann-Liouville derivative on the half-axis. The TTLM model utilizes a tem-
pered Riemann-Liouville derivative on the half-axis. For the FMIM and TTLM models, the governing equa-
tions are for the mobile phase. The solutions are tabulated in terms of stable probability density functions
(PDFs), stable cumulative density functions (CDFs), and subordination integrals, which can be calculated

Table 1. Summary of Models Available in FracFita

Model Governing Equation Pulse Initial Condition Solution Continuous Injection Solution

sFADE @C
@t 1v @C

@x 5D 11b
2

@a C
@xa 1D 12b

2
@aC

@ð2xÞa
HðtÞ
ðDtÞ1=a

fa;b x2vt
ðDtÞ1=a

� �
�F a;b

x2vt
ðDtÞ1=a

� �

TFDE @
@t

� �c
C52v @C

@x 1D @2 C
@x2

ð1
0

hcðu; tÞCADEðx; uÞ du
ð1

0
hcðu; tÞCCBTCðx; uÞ du

FMIM @C
@t 1b @c C

@tc 1v @C
@x 5D @2 C

@x2

ðt

0
gc t2u; buð ÞCADEðx; uÞ du

ðt

0
gc t2u; buð ÞCCBTCðx; uÞ du

TTLM @C
@t 1b @c;k C

@tc;k 1v @C
@x 5D @2 C

@x2

ðt

0
gc;k t2u; buð ÞCADEðx; uÞ du

ðt

0
gc;k t2u; buð ÞCCBTCðx; uÞ du

Function Equation

ADE solution CADEðx; uÞ5 Kffiffiffiffiffiffiffiffi
4pDu
p exp 2

ðx2vuÞ2
4Du

� �
CBTC solution CCBTCðx; uÞ5 C0

2 erfc x2vu
2
ffiffiffiffi
Du
p

� �
Stable subordinator density gcðt; uÞ5u21=cgc tu21=c

� �
Tempered stable subordinator density gc;kðt; uÞ5e2kt1ubkc

gcðt; uÞ

Inverse stable subordinator density hcðu; tÞ5 t
c u2121=cgc

t
u1=c

� �
aPulse and continuous injection solutions are tabulated for each model in terms of stable distributions or subordination integrals. For

sFADE, fa;bðzÞ denotes the stable PDF and �F a;bðzÞ denotes stable complementary CDF and H(t) is the Heaviside function. For TFDE, hcðu;
tÞ denotes the density of the inverse stable subordinator. For FMIM, gcðt; uÞ denotes the density of the stable subordinator. Finally, for
TTLM, gc;kðt; uÞ denotes the density of the tempered stable subordinator. The stable density fa;bðzÞ, complimentary CDF �F a;bðzÞ, and the
stable subordinator density gcðuÞ are computed using the STABLE toolbox [Nolan, 1997], freely available codes [Veillette, 2012], or
MATLAB’s Statistics and Machine Learning Toolbox.
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with widely available STABLE toolboxes [e.g., Nolan, 1997; Veillette, 2012] or MATLAB’s Statistics and
Machine Learning Toolbox (R2016a and later).

Details on each of these models are available in the noted references. The parameter vector hi associated
with each model is listed in Table 2, along with a description of each parameter, parameter units, and
bounds for each parameter.

3. Parameter Estimation

FracFit’s parameter estimation is based on the weighted nonlinear least squares (WNLS) approach devel-
oped in Chakraborty et al. [2009]. The original method is directly applicable for pulse initial condition cases
as the solutions are either scalar multiples of PDFs or subordination integrals involving PDFs. For the contin-
uous injection cases, the solutions involve CDFs or subordinated CDFs; for these functions, the specific tech-
niques presented in Chakraborty et al. [2009] do not hold and the estimation method requires modification.
Here we briefly review the WNLS method and propose an extension for the estimation of CDFs required for
continuous injection cases.

Using a particle-tracking model, Chakraborty et al. [2009] showed that concentration variance is proportion-
al to concentration, implying that data are heteroscedastic; therefore, a weighted nonlinear regression is
used where the weights are proportional to the reciprocal of measured concentration. As a result, areas of
lower concentration receive greater weight, which is important for capturing anomalous transport charac-
teristics. Assuming we have N measurements of a BTC Ci at times t1; . . . ; tN , we wish to fit a candidate ana-
lytical model C(x, t) to the observed data by minimizing the weighted mean square error (WMSE) function:

EðhÞ5 1
N

XN

i51

wi Ci2Cðx; tiÞð Þ2; (1)

where C(x, t) is the appropriate PDF and the weights are given by wi51=Ci . These weights are applicable to
any BTC that can be normalized into PDFs, including bimodal or multimodal BTCs. However, all the fraction-
al calculus models considered in this report have solutions that are unimodal.

The continuous injection breakthrough curves (CBTCs) are fit in terms of a CDF instead of a PDF; hence, we
expect a different set of weights wi. In Appendix B, we construct an estimator for the CDF showing that the
optimal weights for CBTCs are

wi5
1

ð12C�i ÞC�i
; (2)

where C�i 5Ci=C0. Hence, the weights are largest when C�i is near either one or zero; i.e., at early and late
arrival times, similar to the lower concentrations in the pulse case at early and late times. Since the mea-
sured normalized CBTC contains some (relative) experimental error of order �� 1, we assign weights of

Table 2. Summary of Parameters hi for Four Fractional Hydrology Models: (1) sFADE, (2) TFDE, (3) FMIM, and (4) TTLMa

Model Parameters Units
Lower and Upper
Bounds hl and hu

sFADE Stable index a Unitless 1 < a � 2
h15ða; b; v;DÞ Skewness b Unitless 21 � b � 1

Average plume velocity v [L/T] v> 0
Fractional dispersivity D [La/T] D> 0

TFDE Time-fractional exponent c Unitless 0 < c � 1
h25ðc; v;DÞ Fractional velocity v [L/Tc] v> 0

Fractional dispersivity D L2/Tc D> 0
FMIM Time-fractional exponent c Unitless 0 < c � 1
h35ðc; v; b;DÞ Average plume velocity v [L/T] v> 0
TTLM Capacity coefficient b 1/Tc b > 0
h45ðc; v; b;D; kÞ Fractional dispersivity D [L2/T] D> 0

Tempering rate k [1/T] k > 0

aParameters, units, and default parameter lower bounds hl and upper bounds hu are given, where L denotes a unit of length and T
denotes a unit of time. The user has the option to modify hl and hu for a particular data set. For pulse initial condition Cðx; 0Þ5KdðxÞ
problems, the initial mass K> 0 is an additional parameter.
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zero if Ci < � or Ci > ð12�Þ. We note that this truncation is a modeling choice and may bias the fit. Alter-
natively, the variance of the CBTC may be modeled as r2

i 5max 0; ð12C�i ÞC�i
� �

1�, thereby modifying
equation (2). For pulse initial conditions, the variance may be modeled as r2

i 5max 0; C�i
� �

1�. The curve
fits in sections 4 and 5 use truncation, while the nontruncated weights are provided as an option in
FracFit.

The WMSE function given by equation (1) is optimized with respect to h using the local optimization
lsqnonlin routine in MATLAB’s Optimization Toolbox. Since lsqnonlin finds a local minimum to the
objective function (1), FracFit requires a reasonable guess h0 to find a global minimum. For sFADE, we
first fit the ADE to find (v, D) and then set a51:5 and b 5 0 as the initial guess. Similarly, for TFDE, we use
(v, D) from the ADE fit and set c50:9. For the FMIM initial guess, we numerically compute the median and
mode and estimate v and b assuming c50:75. Finally, for TLLM, we use the FMIM initial guess and set
k51=maxðtÞ. We stress that these estimates are ad hoc and may not be appropriate for all data sets.
Hence, we also allow the user to manually select both an initial guess h0 and a lower bound hl and upper
bound hu of the search region.

Since local optimization may not converge for all data sets, we have also implemented a global optimiza-
tion option using a genetic algorithm (ga) routine [Conn et al., 1991] in MATLAB’s Global Optimization
Toolbox. The ga is much more expensive than lsqnonlin. Future generations of FracFit may utilize a
two-step optimization scheme, where global optimization is used to find the initial guess for the local opti-
mization scheme.

To evaluate the goodness of fit (GOF), we calculated the mean absolute residual (MAR) defined by

MAR5
1
N

XN

i51

jCi2Cðx; tiÞ=C0j: (3)

MAR quantifies the mean error between model and data and demonstrates the relative change in error
reduction achieved by applying different models to the same data set. Alternative GOF measures, such as
the (corrected) Akaike information criterion (AICc), are only valid for maximum likelihood estimation, which
we have not implemented in FracFit.

As an initial test, we generated synthetic pulse injection data for the sFADE, FMIM, and TTLM models and
present a representative subset here. The time-axis consisted of 400 samples logarithmically spaced on ½40;
2000� with an observation point of x5 1.5. A known parameter ht was chosen for each model to produce a
synthetic BTC that resembled measured data. FracFit was then used to estimate h. The results of this
experiment are shown in Table 3 in dimensionless units. The MAR for sFADE, FMIM, and TTLM are 0.00324,
0.00950, and 0.00488, respectively. For this data set, FracFit is able to estimate the known parameters for
all the models, although the estimate for the tempering rate k in TTLM is off by about 20%. This is unsurpris-
ing and we note that the algorithm is sensitive to the number, duration, and sampling of the synthetic BTC.
For the tempering parameter in TTLM, estimates will be poor if the duration of the BTC is limited relative to
the tempering time scale [Aubeneau et al., 2014].

Table 3. Parameter Estimates for a Synthetic Breakthrough Curve Using (a) sFADE, (b) FMIM, and (c) TTLM

(a) sFADE
Parameter a b v D K

Known ht 1.3 21 0.02 0.002 25
Estimated h 1.3 20.99 0.02 0.002 24.9

(b) FMIM
Parameter c v b D K

Known ht 0.85 0.03 0.12 1.0 31025 25.0
Estimated h 0.841 0.0297 0.111 1.02 31025 24.80

(c) TLLM
Parameter c v b D k K

Known ht 0.85 0.0300 0.12 1.00 31025 0.003 25.0
Estimated h 0.855 0.0301 0.125 1.00 31025 0.00247 24.42
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4. Application 1: Pulse Initial Condition Breakthrough Curves From Transport
Experiment in the Selke River

Our first example with observed data is a series of in-stream pulse injection experiments conducted in the
Selke River [Schmadel et al., 2016]. In this experiment, there were seven in-stream monitoring sites that
were sampled throughout each of the seven tracer injection experiments, leading to 49 BTCs. Three frac-
tional models are evaluated: sFADE, FMIM, and TTLM, as well as the ADE. FracFit is useful for this study in
terms of efficiency and consistency in BTC fitting, especially when considering multiple models.

Four representative BTCs were selected from the data set: two from the first injection, measured at site 6
(x 5 428 m) and site 7 (x 5 294 m), and two from the seventh injection, measured at site 2 (x 5 928 m) and
site 3 (x 5 819 m). The BTC fits for the seventh injection and measured concentration data are shown on

log-log scale in Figure 1. Parameter estimates for
these BTCs are shown in Table 4. A GOF metric
(MAR) evaluated for the three fractional models
and the ADE are shown in Table 5 for all four BTCs.

Examining the fits in Figure 1, note that neither
the main plume nor the heavy late-time tail was
captured by ADE for any of the BTCs shown. For
the sFADE model, all fits were negatively skewed

Table 4. Parameter Estimates for the Selke River Breakthrough Curve Using (a) sFADE, (b) FMIM, and (c) TTLM Models for Injection 7:
Sites 2 and 3

(a) sFADE
BTC a b v (m/s) D (ma/s) K (ppm)

Inj 7: Site 2 1.59 21 0.339 0.549 1306.8
Inj 7: Site 3 1.49 21 0.338 0.376 1330.9

(b) FMIM
BTC c v (m/s) b (sc21) D (m2/s) K (ppm)

Inj 7: Site 2 0.78 0.421 0.0528 1.563 1693.2
Inj 7: Site 3 0.79 0.445 0.0717 1.048 1796.7

(c) TLLM
BTC c v (m/s) b (sc21) D (m2/s) k (s21) K (ppm)

Inj 7: Site 2 0.67 0.498 0.0948 1.166 0.00219 106098
Inj 7: Site 3 0.64 0.568 0.110 0.108 0.00233 60173

Table 5. MAR for the Selke River BTCs for ADE, sFADE, FMIM,
and TTLM Models

BTC ADE sFADE FMIM TTLM

Inj 1: Site 6 0.3509 0.0459 0.0556 0.0537
Inj 1: Site 7 0.4837 0.0566 0.0640 0.0586
Inj 7: Site 2 0.3248 0.1099 0.1704 0.1193
Inj 7: Site 3 0.4927 0.1630 0.2515 0.0631

Figure 1. Model intercomparison using Selke River data for (left) Injection 7: Site 2 and (right) Injection 7: Site 3. The ADE, sFADE, FMIM, and TTLM models are fit to a pulse injection BTCs
at the four sites.
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with b521, which agrees with earlier studies [Chakraborty et al., 2009; Deng et al., 2004]. This negative
skewness has been attributed to retention and the existence of ‘‘dead zones.’’ While sFADE provides accept-
able fits for the BTCs under consideration, sFADE does admit nonphysical behavior (negative dispersion)
that may manifest itself at other measurement locations/times. Space-time duality calculations in Baeumer
et al. [2009] show an equivalence between space-fractional and time-fractional models, which may account
for the good sFADE fit in Figure 1 and provide a more physical interpretation.

Examining the fits in the left and right sides of Figure 1, sFADE, FMIM, and TTLM yielded a better fit than
ADE. However, sFADE and FMIM failed to capture the late-time truncation of the power law, while TTLM
captured this feature. Recall that TTLM imposes an exponential cutoff to power law waiting times, allowing
TTLM to transition from anomalous to Fickian transport [Meerschaert et al., 2008]. This transition is governed
by the tempering rate k. We note that simultaneous estimation of the capacity coefficient b and tempering

rate k is problematic with a single
(mobile) BTC since the parameters act in
a coupled fashion.

To address this problem, additional data,
such as the BTC at another location, or
measured mobile or immobile mass,
may be utilized [e.g., Briggs et al., 2009].
As an example, we simultaneously fit the
BTCs for Sites 2 and 3 using Injection 7.
We allowed the velocities vi and

Figure 2. Parameter fits h15ða; b; v;DÞ for the sFADE model and h25ðc; v;DÞ for the TFDE model for the four PSS continuous injection BTCs.

Table 6. Parameter Fit h15ða; b; v;DÞ for the sFADE Model

Sample a b v (cm/min) D (cma/min) MAR

PSS1000 1.9565 21 0.33108 0.17855 0.01639
PSS4600 1.4404 20.93009 0.145 0.050669 0.00410
PSS8000 1.4095 20.88437 0.12994 0.059243 0.00349
PSS18000 1.4475 20.66565 0.1629 0.11041 0.00369
NOM 1.08956 0.16792 0.13126 0.27184 0.00543
HPOAs 1.04927 0.04555 0.10141 0.44257 0.00423
TPIAs 1.21822 0.04564 0.09207 0.24646 0.00304
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dispersion coefficients Di to vary between the
sites but used the same exponent c, capacity
coefficient b, and tempering rate k, yielding a
parameter h5ðc; b; k; v1; v2;D1;D2Þ with seven
degrees of freedom. This simultaneous fit
yielded estimates of the exponent c50:63,
capacity coefficient b5 0.115 sc21 and temper-
ing rate k5 0.00239 s21. Parameters such as c,
b, and k may also be allowed to vary with
downstream distance. Analyzing multiple BTCs

shows the variability of model parameters of a given stream and demonstrates local variations in transport
and storage. Simultaneous fits for other models, such as sFADE, are also available in FracFit.

5. Application 2: Continuous Injection Breakthrough Curves From Natural Organic
Matter (NOM) Transport

As a second example, we fit continuous injection breakthrough curves (CBTCs) from laboratory experiments.
These experiments studied transport of organic matter through porous media columns and displayed
strong anomalous transport characteristics [Dietrich et al., 2013; McInnis et al., 2014, 2015]. The data were
originally fit with a CTRW model using the CTRW toolbox [Cortis and Berkowitz, 2005].

Two data sets are considered: (1) synthetic polystyrene sulfonates (PSSs) in columns packed with naturally
Fe/Al-oxide-coated sands from Oyster, Virginia [McInnis et al., 2015] and (2) dissolved organic matter (DOM)
from Nelson’s Creek, MI, in a column of porous medium (oxide-coated quartz sand) [McInnis et al., 2014].
Both are continuously injected through sands via a gravity feed system with concentration measured at the
outlet. Full details of the experiments are available in McInnis et al. [2014, 2015].

Figure 2 displays the sFADE and TFDE fits for the PSS samples. Comparable fits (not shown) were obtained
for the DOM cases. The fitted parameter h15ða;b; v;DÞ for the sFADE and h25ðc; v;DÞ for the TFDE are
shown in Tables 6 and 7, respectively, along with the mean absolute residual (MAR), allowing comparison
with the CTRW model fits from McInnis et al. [2015].

For both models, PSS1000 yields the poorest fit, with an MAR an order of magnitude larger than all others.
For all cases, except PSS8000, the sFADE appears to yield slightly smaller MAR, although it benefits from
having one additional free parameter. Generally, the MAR is comparable to those obtained by the CTRW in
McInnis et al. [2015]. Our goal is not to compare CTRW and FADE model fits but rather demonstrates Frac-
Fit’s ability to interpret a continuous injection anomalous transport breakthrough curve, which is clearly
shown here.

6. Conclusion

FracFit is a flexible tool that facilitates parameter estimation for a variety of models, such as sFADE,
TFDE, FMIM, and TTLM. Future models may be implemented within this framework; since models are
treated in a consistent manner, intercomparison of models may be performed seamlessly. The user may
choose either a local, gradient-based optimization scheme or a global optimization scheme. One interesting
application is studying the duality between space-fractional and time-fractional models [Baeumer et al.,
2009]: under certain conditions, a time-fractional model can be equivalent to a space-fractional model.

Appendix A: Derivation of an Approximate sFADE CBTC Expression

The CBTC solution requires a fixed boundary condition at x 5 0; however, no closed form analytical solution
exists at this time. The CBTC solution may be approximated by the ‘‘dam break’’ problem on the real line.
We derive an analytical approximation following what is done for the classical ADE (a 5 2) in Danckwerts
[1953]. Consider the sFADE model (top row of Table 1) on 21 < x <1 subject to initial condition C0ðx; 0Þ
5C0 if x< 0 and C0ðx; 0Þ50 if x � 0. Using the sFADE pulse initial condition solution, the CBTC solution is
approximated by

Table 7. Parameter Fit h25ðc; v;DÞ for the TFDE Model

Sample c v (cm/minc) D (cm2/min) MAR

PSS1000 0.98087 0.36339 0.78824 0.03611
PSS4600 0.91581 0.21482 0.020473 0.00769
PSS8000 0.90001 0.21157 0.03856 0.00228
PSS18000 0.8695 0.28709 0.13912 0.00453
NOM 0.95682 0.11083 1.96505 0.01423
HPOAs 0.84591 0.15961 0.51451 0.01550
TPIAs 0.75066 0.25419 1.15895 0.00980
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Cðx; tÞ5
ð1

21
CsFADEðx0; 0ÞGðx2x0; tÞ dx0; (A1)

where G(x, t) is the Green’s function of sFADE. Evaluating the integral in equation (A1) yields

Cðx; tÞ
C0

512Fa;b
x2vt

ðDtÞ1=a

 !
5�F a;b

x2vt

ðDtÞ1=a

 !
; (A2)

where �F a;bðzÞ denotes the complementary CDF function (survival function). To verify this approximation, we
compared it to a complete numerical solution in Zhang et al. [2007]. Agreement between equation (A2) and
the numerical solution is very good, indicating that equation (A2) is a good approximation for continuous
injection BTCs.

Appendix B: Optimal Weights for CBTCs

Assume we have n statistically independent particles representing the tracer plume. The time-dependent
location of the k-th particle is given by the random variable XðkÞt , which is distributed according to the densi-
ty fh x; tð Þ. The vector h specifies the model parameters, and the CDF, as in equation (A2), is
Fh x; tð Þ5

Ð x
21 fhðx0; tÞ dx0. We construct an estimator of Fh x; tð Þ via the empirical cumulative distribution func-

tion [van der Vaart, 1998, chapter 19]:

F̂ h x; tð Þ5 1
n

Xn

k51

I XðkÞt � x
� �

; (B1)

where IðX � xÞ is the indicator function defined such that IðX � xÞ51 if X � x and zero otherwise. Sup-
pressing the time dependence, the expected value of equation (B1) is

E F̂ hðxÞ
� �

5
1
n

Xn

k51

ð1
21

I x0 � xð Þfhðx0Þ dx0

5
1
n

Xn

k51

Fh xð Þ

5Fh xð Þ;

(B2)

indicating that the empirical CDF is an unbiased estimator. Calculating moments using the standard argu-
ment for Kolmogorov-Smirnov statistics [van der Vaart, 1998, chapter 19] yields

E F̂ hðxÞF̂ hðyÞ
� �

5
1
n

Fh minðx; yÞð Þ1 n21
n

FhðxÞFhðyÞ: (B3)

Use equation (B2) along with the identities Var½X�5E½X2�2ðE½X�Þ2 and Cov½X; Y�5E½XY�2E½X�E½Y�, yielding

Var F̂ hðxÞ
� �

5
1
n

FhðxÞ 12FhðxÞð Þ (B4a)

and

Cov F̂ hðxÞ; F̂ hðyÞ
� �

5
1
n

Fh minðx; yÞð Þ2FhðxÞFhðyÞ½ �: (B4b)

For n particles, we have

Var
ffiffiffi
n
p

F̂ hðxÞ
� �

5FhðxÞ 12FhðxÞð Þ: (B5)

Unlike the PDF estimator in Chakraborty et al. [2009], the covariance does not approach zero, implying that
measurements of the CDF are correlated. Numerical evaluation of the covariance showed that the correla-
tion was small, so weighted nonlinear least squares was chosen over generalized least squares, which mini-
mizes the functional QðhÞ5 C2FhðxÞ½ �T R21

h C2FhðxÞ½ �. Under this small correlation assumption, equation (B5)
implies that the variance of the CDF is proportional to Cið12CiÞ. Since the CBTC solutions for all models
under consideration are either complementary CDFs or subordinated CDFs, we conclude that the CBTC has
a variance proportional to Cið12CiÞ, yielding equation (2).

Water Resources Research 10.1002/2016WR019748

KELLY ET AL. FRACFIT PARAMETER ESTIMATION 2566



References
Aubeneau, A., B. Hanrahan, D. Bolster, and J. Tank (2014), Substrate size and heterogeneity control anomalous transport in small streams,

Geophys. Res. Lett., 41, 8335–8341, doi:10.1002/2014GL061838.
Baeumer, B., M. M. Meerschaert, and E. Nane (2009), Space–time duality for fractional diffusion, J. Appl. Probab., 46(4), 1100–1115.
Becker, M. W., and A. M. Shapiro (2000), Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing, Water

Resour. Res., 36(7), 1677–1686.
Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000), The fractional-order governing equation of L�evy motion, Water Resour. Res.,

36(6), 1413–1423.
Benson, D. M., R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft (2001), Fractional dispersion, L�evy motion, and the MADE tracer tests,

Transp. Porous Media, 42, 211–240.
Berkowitz, B., and H. Scher (1997), Anomalous transport in random fracture networks, Phys. Rev. Lett., 79, 4038.
Berkowitz, B., A. Cortis, M. Dentz, and H. Scher (2006), Modeling non-Fickian transport in geological formations as a continuous time ran-

dom walk, Rev. Geophys., 44(2), RG2003, doi:10.1029/2005RG000178.
Boano, F., A. Packman, A. Cortis, R. Revelli, and L. Ridolfi (2007), A continuous time random walk approach to the stream transport of sol-

utes, Water Resour. Res., 43, W10425, doi:10.1029/2007WR006062.
Briggs, M. A., M. N. Gooseff, C. D. Arp, and M. A. Baker (2009), A method for estimating surface transient storage parameters for streams

with concurrent hyporheic storage, Water Resour. Res., 45, W00D27, doi:10.1029/2008WR006959.
Chakraborty, P., M. M. Meerschaert, and C. Y. Lim (2009), Parameter estimation for fractional transport: A particle-tracking approach, Water

Resour. Res., 45, W10415, doi:10.1029/2008WR007577.
Conn, A. R., N. I. M. Gould, and Ph. L. Toint (1991), A globally convergent augmented Lagrangian algorithm for optimization with general

constraints and simple bounds, SIAM J. Numer. Anal., 28(2), 545–572.
Cortis, A., and B. Berkowitz (2004), Anomalous transport in ‘‘classical’’ soil and sand columns, Soil Sci. Soc. Am. J., 68, 1539–1548.
Cortis, A., and B. Berkowitz (2005), Computing anomalous contaminant transport in porous media: The CTRW MATLAB toolbox, Ground

Water, 43(6), 947–950.
Danckwerts, P. (1953), Continuous flow systems: Distribution of residence times, Chem. Eng. Sci., 2(1), 1–13.
Deng, Z., L. Bengtsson, and V. P. Singh (2006), Parameter estimation for fractional dispersion model for rivers, Environ. Fluid Mech., 6(5), 451–475.
Deng, Z.-Q., V. P. Singh, and L. Bengtsson (2004), Numerical solution of fractional advection-dispersion equation, J. Hydraul. Eng., 130(5), 422–431.
Dietrich, L., D. McInnis, D. Bolster, and P. Maurice (2013), Effect of polydispersity on natural organic matter transport, Water Res., 47, 2231–2240.
Haggerty, R. (2009), STAMMT-L 3.0. A Solute Transport Code for Multirate Mass Transfer and Reaction Along Flowlines, Sandia Natl. Lab.,

Albuquerque, N. M.
Haggerty, R., and S. M. Gorelick (1995), Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale

heterogeneity, Water Resour. Res., 31(10), 2383–2400.
Haggerty, R., S. M. Wondzell, and M. A. Johnson (2002), Power-law residence time distribution in the hyporheic zone of a 2nd-order

mountain stream, Geophys. Res. Lett., 29(13), doi:10.1029/2002GL014743.
Klages, R., G. Radons, and I. M. Sokolov (2008), Anomalous Transport: Foundations and Applications, Wiley-VCH Verl., Weinheim, Germany.
LeBorgne, T., and P. Gouze (2008), Non-Fickian dispersion in porous media: 2. Model validation from measurements at different scales,

Water Resour. Res., 44, W06427, doi:10.1029/2007WR006279.
LeBorgne, T., M. Dentz, and J. Carrera (2008), Lagrangian statistical model for transport in highly heterogeneous velocity fields, Phys. Rev.

Lett., 101, 090601.
Liu, F., V. V. Anh, I. Turner, and P. Zhuang (2003), Time fractional advection-dispersion equation, J. Appl. Math. Comput., 13(1), 233–245.
Maryshev, B., A. Cartalade, C. Latrille, and M.-C. N�eel (2016), Identifying space-dependent coefficients and the order of fractionality in frac-

tional advection diffusion equation, Transp. Porous Media, 116(1), 53–71.
McInnis, D. P., D. Bolster, and P. A. Maurice (2014), Natural organic matter transport modeling with a continuous time random walk

approach, Environ. Eng. Sci., 31(2), 98–106.
McInnis, D. P., D. Bolster, and P. A. Maurice (2015), Mobility of dissolved organic matter from the Suwannee River (Georgia, USA) in sand-

packed columns, Environ. Eng. Sci., 32(1), 4–13.
Meerschaert, M. M., Y. Zhang, and B. Baeumer (2008), Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35,

L17403, doi:10.1029/2008GL034899.
Metzler, R., and J. Klafter (2004), The restaurant at the end of the random walk: Recent developments in the description of anomalous

transport by fractional dynamics, J. Phys. A Math. Gen., 37(31), R161.
Meyer, D. W., and H. A. Tchelepi (2010), Particle-based transport model with Markovian velocity processes for tracer dispersion in highly

heterogeneous porous media, Water Resour. Res., 46, W11552, doi:10.1029/2009WR008925.
Neuman, S. P., and D. M. Tartakovsky (2009), Perspective on theories of non-Fickian transport in heterogeneous media, Adv. Water Resour.,

32(5), 670–680.
Nolan, J. P. (1997), Numerical calculation of stable densities and distribution functions, Commun. Stat. Stochastic Models, 13(4), 759–774.
Phanikumar, M. S., I. Aslam, C. Shen, D. T. Long, and T. C. Voice (2007), Separating surface storage from hyporheic retention in natural

streams using wavelet decomposition of acoustic Doppler current profiles, Water Resour. Res., 43, W05406, doi:10.1029/2006WR005104.
Schmadel, N. M., et al. (2016), Stream solute tracer timescales changing with discharge and reach length confound process interpretation,

Water Resour. Res., 52, 3227–3245, doi:10.1002/2015WR018062.
Schumer, R., D. A. Benson, M. M. Meerschaert, and B. Baeumer (2003), Fractal mobile/immobile solute transport, Water Resour. Res., 39(10),

1296, doi:10.1029/2003WR002141.
Shen, C., and M. S. Phanikumar (2009), An efficient space-fractional dispersion approximation for stream solute transport modeling, Adv.

Water Resour., 32(10), 1482–1494.
van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge Univ. Press, Cambridge, U. K.
Veillette, M. (2012), STBL: Alpha stable distributions for MATLAB, Matlab Cent. File Exch. 10. [Available at https://www.mathworks.com/mat-

labcentral/fileexchange/37514-stbl–alpha-stable-distributions-for-matlab.]
Wang, L., and M. Cardenas (2014), Non-Fickian transport through two-dimensional rough fractures: Assessment and prediction, Water

Resour. Res., 50, 871–884, doi:10.1002/2013WR014459.
Zhang, X., M. Lv, J. W. Crawford, and I. M. Young (2007), The impact of boundary on the fractional advection–dispersion equation for solute

transport in soil: Defining the fractional dispersive flux with the Caputo derivatives, Adv. Water Resour., 30(5), 1205–1217.

Acknowledgments
Kelly was partially supported by ARO
MURI grant W911NF-15-1-0562 and
NSF grant EAR-1344280. Meerschaert
was partially supported by ARO MURI
grant W911NF-15-1-0562 and NSF
grants DMS-1462156 and EAR-
1344280. Bolster was partially
supported by NSF grants EAR-1351625
and EAR-1417264. Packman was
supported by NSF grant EAR-1344280
and ARO grant W911NF-15-1-0569.
John Nolan (Department of
Mathematics and Statistics, American
University, Washington, DC) graciously
provided the STABLE toolbox (www.
RobustAnalysis.com). We acknowledge
Noah Schmadel and Adam S. Ward
(Department of Environmental
Engineering, Indiana University) for
providing the Selke River data.
Financial support for the Selke
experiment was provided by The
Leverhulme Trust through the project
‘‘Where rivers, groundwater and
disciplines meet: A hyporheic research
network.’’ Insightful comments by
Yong Zhang, Department of
Geological Sciences, University of
Alabama, are also acknowledged. The
Selke River data are available from
Adam S. Ward (adamward@indiana.
edu). The NOM data are available from
Bolster (bolster@nd.edu).

Water Resources Research 10.1002/2016WR019748

KELLY ET AL. FRACFIT PARAMETER ESTIMATION 2567

http://dx.doi.org/10.1002/2014GL061838
http://dx.doi.org/10.1029/2005RG000178
http://dx.doi.org/10.1029/2007WR006062
http://dx.doi.org/10.1029/2008WR006959
http://dx.doi.org/10.1029/2008WR007577
http://dx.doi.org/10.1029/2002GL014743
http://dx.doi.org/10.1029/2007WR006279
http://dx.doi.org/10.1029/2008GL034899
http://dx.doi.org/10.1029/2009WR008925
http://dx.doi.org/10.1029/2006WR005104
http://dx.doi.org/10.1002/2015WR018062
http://dx.doi.org/10.1029/2003WR002141
http://www.RobustAnalysis.com
http://www.RobustAnalysis.com
http://dx.doi.org/10.1002/2013WR014459
http://www.RobustAnalysis.com
http://www.RobustAnalysis.com

	l
	l
	l
	l

