
ARTICLE IN PRESS
0378-4371/$ - se

doi:10.1016/j.ph

$Partially su
�Correspond
E-mail addr
Physica A 367 (2006) 181–190

www.elsevier.com/locate/physa
Fractional vector calculus for fractional advection–dispersion$

Mark M. Meerschaerta,� , Jeff Mortensenb, Stephen W. Wheatcraftc

aDepartment of Mathematics & Statistics, University of Otago, Dunedin 9001, New Zealand
bDepartment of Mathematics and Statistics, University of Nevada, Reno, NV 89557, USA

cDepartment of Geological Sciences, University of Nevada, Reno, NV 89557, USA

Received 27 August 2005; received in revised form 3 November 2005

Available online 12 December 2005
Abstract

We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient,

divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to

provide a physical explanation for the fractional advection–dispersion equation for flow in heterogeneous porous media.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Fractional derivatives are almost as old as their more familiar integer-order counterparts [1–4]. Fractional
derivatives have recently been applied to many problems in physics [5–18], finance [15,19–22], and hydrology
[23–28]. Hilfer [29] collects a variety of applications to polymer physics, biophysics and thermodynamics.
Zaslavsky [30] reviews the relation between fractional models and chaotic dynamics. Metzler and Klafter
[31,32] survey the connections to random walks with heavy tail jumps and/or waiting times. Briefly, fractional
derivatives are used to model anomalous diffusion or dispersion, where a particle plume spreads at a rate
inconsistent with the classical model, and the plume may be asymmetric. Sokolov and Klafter [33] give a nice,
brief overview of anomalous diffusion in physics. When a fractional derivative replaces the second derivative
in the diffusion/dispersion equation, it leads to enhanced diffusion (also called super-diffusion). This super-
diffusion equates to a heavy tailed random walk model for particle jumps, where occasional large jumps
dominate the more common smaller jumps. A fractional time derivative leads to sub-diffusion, where a cloud
of particles spreads slower than the classical t1=2 rate. This is connected with a random walk model where the
random waiting time between particle jumps has a heavy probability tail, causing a small number of very long
sticking times to slow the diffusion.

In ground water, a plume of tracer particles carried along with the flow (advection) spreads out due to
velocity contrasts caused by the intervening porous medium (dispersion), see for example Bear [34]. The
e front matter r 2005 Elsevier B.V. All rights reserved.
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classical advection–dispersion equation qr=qt ¼ �vqr=qxþ cq2r=qx2 for the particle density r at location x at
time t is mathematically identical to the diffusion equation with drift, and furthermore, the same random walk
model underlies them both. The mean jump size determines the velocity v of the (advective) drift, and
deviations from the mean govern the spread, converging to a bell-shaped plume due to the Central Limit
Theorem. This connection between diffusion and random walks is due to Einstein [35]. Random waiting times
do not affect the eventual shape as long as the waiting times have a finite mean, they simply retard the average
velocity by an amount equal to the mean waiting time. This is a simple consequence of the Renewal Theorem
[36, Chapter XI]. Sokolov and Klafter [37] discuss Einstein’s result and its limitations. When particle jumps Y

have a heavy tail PðjY j4rÞ � r�a with 0oao2, the central limit theorem fails because the variance of the
particle jumps is infinite. In this case, an extended central limit theorem due to Lévy [38] applies to show that
the resulting plume follows a stable density curve, the solution to a fractional diffusion/dispersion equation
qr=qt ¼ �vqr=qxþ cqar=qxa, see for example [8,11,39]. This plume has skewness and a power-law leading
edge. In the continuous time random walk (CTRW) model, a random waiting time T precedes each particle
jump. For heavy tailed waiting times PðT4tÞ � t�b with 0obo1, the mean waiting time is infinite, so the
renewal theorem does not apply. The resulting sub-diffusion equation qbr=qtb ¼ �vqr=qxþ cq2r=qx2

describes a plume that spreads away from its center of mass at the rate tb=2, slower than classical diffusion
[14,17,40]. The sub-diffusive stochastic model involves subordination, replacing the time variable t by an
inverse stable Lévy process EðtÞ that grows more slowly [11,41].

The classical diffusion equation (or heat equation) and its Gaussian solution existed long before Einstein
established a connection with random walks. Anomalous diffusion equations, on the other hand, were
originally developed from stochastic random walk models. A deterministic Eulerian derivation of the scalar
fractional advection–dispersion equation [27] illuminates the manner in which fractional derivatives code for
power-law velocity variations, and suggests a connection with heterogeneous/random media [42]. This paper
extends that approach to the vector equation. First, we develop the basic tools of fractional vector calculus
including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence
theorem and Stokes theorem. Then these basic tools are applied to provide an Eulerian derivation of the
fractional advection–dispersion equation for flow in heterogeneous porous media.
2. Fractional advection–dispersion equation

We begin by briefly recounting the classical derivation of the advection–dispersion equation (see, e.g., Ref.
[34]), to establish notation and focus the discussion. Let r ¼ rðx; tÞ represent particle mass density of a
contaminant in some fluid at a point x in d-dimensional space at time t. The classical dispersion equation is the
result of two separate equations. Let v denote the constant average velocity of contaminant particles (which
need not equal the fluid velocity). Fick’s Law states that the flux

V ¼ vr�Qrr (1)

is the vector rate at which mass is transported through a unit area DA. Here Q is a symmetric d � d matrix, or
2-tensor, called the dispersion tensor, which codes the ability of the contaminant to disperse through the
intervening porous medium. For the purposes of this discussion, it is interesting to note that the dispersion
matrix Q can be written in the form

Q ¼

Z
khk¼1

hh0MðdhÞ (2)

where h ¼ ðy1; . . . ; ydÞ
0 is a unit column vector and MðdhÞ is a positive finite measure on the set of unit vectors,

which we call the mixing measure. Here hh0 is the outer product, a d � d matrix, as opposed to the inner
product h � h ¼ h0h, which is a scalar. The ij entry of the matrix Q is then given by qij ¼

R
yiyjMðdhÞ, and then

the symmetry qij ¼ qji is apparent. The mixing measure MðdhÞ ¼ mðhÞdh codes the relative strength of the
dispersion in each radial direction. For a homogeneous medium, mðhÞ is constant, and the matrix Q ¼ cI a
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scalar multiple of the identity, where c ¼
R
y2i MðdhÞ. The advection–dispersion equation results from

combining Fick’s Law (1) with a continuity equation (conservation of mass)

qr
qt
¼ �divV (3)

where the divergence divV ¼ r � V is a scalar quantity representing the net outflow of mass concentration at
each point in space. Substituting (1) into (3) yields the advection–dispersion equation

qr
qt
¼ �v � rrþ r �Qrr (4)

that models the flow and spread of contaminant particles carried by a fluid through a porous medium. The
spreading of a contaminant plume in this model is due to mechanical dispersion, the velocity variations
imposed by the tortuosity of paths the particles must take to navigate around obstacles in the porous medium.

For any scalar field f ðxÞ define the Fourier transform f̂ ðkÞ ¼
R
e�ik�xf ðxÞdx and recall that the gradient

operator r has Fourier symbol ðikÞ, meaning that rf ðxÞ has Fourier transform ðikÞf̂ ðkÞ. The point source
solution to (4) is computed by taking Fourier transforms to obtain

dr̂
dt
¼ �v � ðikÞr̂þ ðikÞ �QðikÞr̂; r̂ðk; t ¼ 0Þ � 1 (5)

which leads to the Fourier solution

r̂ ¼ expð�v � ðikÞtþ ðikÞ �QðikÞtÞ (6)

that inverts to a multivariate Gaussian density with mean vt and covariance matrix 2Qt. The Gaussian or
normal density is consistent with the random walk model for dispersion, where the sum of a large number of
particle jumps converges to a normal limit in view of the central limit theorem of statistics. The dispersion
matrix Q controls the shape of the evolving plume, an ellipse whose principal axes are the eigenvectors of Q. A
simple scaling argument shows that the plume spreads away from its center of mass at the rate t1=2, consistent
with the fact that the variance of particle displacements grows linearly with time.

The fractional advection–dispersion equation

qr
qt
¼ �v � rrðx; tÞ þ cDa

Mrðx; tÞ (7)

was introduced in [43] to model anomalous dispersion in ground water flow. The diffusivity constant c40 and
the fractional derivative operator Da

Mr is defined in terms of its Fourier transformZ
e�ik�xDa

Mrðx; tÞdx ¼

Z
khk¼1

ðik � hÞar̂ðk; tÞMðdhÞ (8)

where 1oap2 and MðdhÞ is the mixing measure, as in Eq. (2). If a ¼ 2, then Da
Mr ¼ r �Qrr where the

matrix Q is given by (2), and if ao2 the point source solution to (7) is a family of multi-variable stable
densities rðx; tÞ that spread away from their center of mass vt like t1=a, indicating a super-diffusion. If MðdhÞ is
uniform over all direction vectors, then the plume is spherically symmetric, and the fractional derivative
Da

M ¼ c1Da=2 a fractional power of the Laplacian operator [43,44], also called the Riesz fractional derivative,
see, for example, Samko et al. [4]. Inverting (8) reveals that

Da
Mrðx; tÞ ¼

Z
kyk¼1

Da
hrðx; tÞMðdhÞ

a mixture of fractional directional derivatives [45]. Here Da
hrðx; tÞ is the inverse Fourier transform of

ðik � hÞar̂ðk; tÞ, extending the familiar formula ðik � hÞr̂ðk; tÞ for the Fourier transform of the directional
derivative D1

hrðx; tÞ ¼ h � rrðx; tÞ. The fractional Laplacian is the only classically defined vector fractional
derivative. The operator Da

M extends the definition of the fractional Laplacian by allowing asymmetric mixing
measures. The physical meaning of the mixing measure will be discussed at the end of Section 4.
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3. Vector fractional calculus

A physical explanation for the fractional advection–dispersion equation requires the development of a
vector fractional calculus. We outline the essential ideas here. More detail will be given in Section 4, in the
context of applications to porous media flow. Our basic definition is the fractional integration operator

J
1�b
M ½�� ¼

Z
khk¼1

hD
b�1
h h0½��MðdhÞ (9)

for 0obp1, which has Fourier symbol

Ĵ
1�b
M ¼

Z
khk¼1

hðik � hÞb�1h0MðdhÞ. (10)

In the classical case b ¼ 1, this operator is simply the dispersion tensor (2). In the remaining case we have
b� 1o0, so the operator with Fourier symbol ðik � hÞb�1 is a fractional integral of order 1� b in the h

direction. Given a scalar field f ðxÞ we now define the fractional gradient

r
b
Mf ðxÞ ¼ J

1�b
M rf ðxÞ ¼

Z
khk¼1

hD
b�1
h h � rf ðxÞMðdhÞ

¼

Z
khk¼1

hD
b
hf ðxÞMðdhÞ ð11Þ

using the fact that D
b�1
h h � rf ðxÞ ¼ D

b�1
h D1

h f ðxÞ ¼ D
b
h f ðxÞ. The fractional divergence of a vector field V ¼

ðV1;V2;V 3Þ is defined as

divbMVðxÞ ¼ r � J1�b
M VðxÞ ¼

Z
khk¼1

r � hD
b�1
h h � VðxÞMðdhÞ

¼

Z
khk¼1

D
b
hVðxÞ � hMðdhÞ , ð12Þ

where again we have used r � h ¼ D1
h and D

b�1
h D1

h ¼ D
b
h . The fractional curl is

curlbMVðxÞ ¼ r � J
1�b
M VðxÞ ¼

Z
khk¼1

r � hD
b�1
h h � VðxÞMðdhÞ. (13)

The fractional gradient has Fourier transformZ
khk¼1

hðik � hÞbf̂ ðkÞMðdhÞ, (14)

the fractional divergence has Fourier transformZ
khk¼1

ðik � hÞbV̂ðkÞ � hMðdhÞ, (15)

and the fractional curl has Fourier transformZ
khk¼1

ðik� hÞðik � hÞb�1V̂ðkÞ � hMðdhÞ. (16)

4. Derivation of the fractional ADE

A physical derivation of the scalar fractional advection–dispersion equation was developed in [27]. It
combined a classical mass balance and drift with a fractional dispersive flux. Following the same outline in d

dimensions, we define a fractional Fick’s law

V ¼ vr� cr
b
Mr (17)
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for b ¼ a� 1 and 1oap2, which combines with the classical conservation of mass equation (3) to give

qr
qt
¼ �r � ðvr� cr

b
MrÞ ¼ �r � vrþ cr � r

b
Mr. (18)

Since r � rb
Mr ¼ Da

Mr, which can easily be checked by writing down the corresponding Fourier transforms,
Eq. (18) is the same as the fractional ADE in (7). The total flux V in (17) is the sum of the advective flux
V1 ¼ vr and the dispersive flux V2 ¼ �cr

b
Mr.

The physical meaning of the fractional dispersive flux is revealed by decomposing the fractional gradient
into its radial components. The fractional gradient is a weighted sum of the fractional directional derivatives
D

b
hr of the contaminant particle density in each direction, laid out along those directions. If the mixing

measure M is a point mass at each coordinate vector ei, then Db
e1
r ¼ qbr=qx

b
i for i ¼ 1; . . . ; d, and then we get

a simplified form of the fractional gradient in explicit coordinate form

r
b
Mr ¼

qbr

qx
b
1

e1 þ � � � þ
qbr

qx
b
d

ed (19)

that reduces to the usual gradient when b ¼ 1. The fractional derivative [4,46]

dbgðtÞ

dtb
¼ lim

h!0
h�b

X1
j¼0

wbð jÞgðt� jhÞ (20)

employs a discrete convolution with weights wbð0Þ ¼ 1, wbð1Þ ¼ �b, wbð2Þ ¼ bðb� 1Þ=2! and generally

wað jÞ ¼ ð�1Þ
j b

j

� �
¼

Gð j � bÞ
Gð�bÞGð j þ 1Þ

.

When b is a positive integer this reduces to the usual one-sided finite difference formula. When 0obo1 we
have wbð jÞo0 for j ¼ 1; 2; 3; . . . and wbð0Þ þ wbð1Þ þ wbð2Þ � � � ¼ 0, the latter resulting from the classical
binomial formula

ð1þ zÞb ¼
X1
j¼0

b
j

� �
z j (21)

for any complex jzjp1 and any b40, take z ¼ �1 in (21).
Subdivide the domain into a grid of mesh h so that the grid points are the corners of d-dimensional

rectangles of length h. Use (20) to write

qbr

qx
b
i

� h�b
X1
j¼0

wbð jÞrðx1; . . . ;xi � jh; . . . ; xdÞ. (22)

This formula represents a weighted average of the particle densities at rectangles located at grid points
extending in the negative ith coordinate direction. Then the fractional flux in this case

V2 � �ch�b
Xd

i¼1

X1
j¼0

wbð jÞrðx� jheiÞei

takes a proportion cwbð jÞ of the particles in the rectangle at grid point x� jhei and moves them into the
rectangle at grid point x, while it moves a proportion c of the particles at grid point x out (recall that
wbð0Þ ¼ �1) into other rectangles in the positive ith coordinate direction. Since

P
jwbð jÞ ¼ 0 this

redistribution is mass-preserving. Since the weights wbð jÞ fall off like j�b�1 (see, e.g., Ref. [46]), the fractional
flux represents the result of a velocity distribution that falls off like a power-law, which is characteristic of
heterogeneous porous media. The fractional model recognizes that microscopic particle velocities cannot be
resolved to a single number or vector at any scale, because in a fractal porous medium there will be a wide
power-law distribution of particle velocities observed at every scale.
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The general form of the fractional dispersive flux

V2 ¼ �cr
b
Mrðx; tÞ ¼ �c

Z
khk¼1

hD
b
hrðx; tÞMðdhÞ (23)

accommodates particle flux in every radial direction. The term

D
b
hrðx; tÞ � h�b

X1
j¼0

wbð jÞrðx� jhh; tÞ

relates to the fractional flux in the h direction. The integral in (23) represents a weighted average of the
fractional flux terms in each radial direction, and the mixing measure MðdhÞ governs the relative strength of
the particle flux in different radial directions. In a homogeneous medium, the mixing measure is uniform to
reflect the same diffusive effect in every radial direction. In a heterogeneous medium, the mixing measure gives
greater weight to preferential pathways laid out in the direction of mean flow. In fractured rock, the mixing
measure places all the weight on a discrete set of fracture directions [28].

5. Alternative derivation of the fractional ADE

An alternative derivation of the fractional advection–dispersion equation relates to the moving coordinate
system xþ vt at the center of mass of the plume. In these coordinates, combine the dispersive flux equation
V ¼ �crr with a fractional conservation of mass equation

qr
qt
¼ �divbMV ¼ �rb

M � V (24)

with b ¼ a� 1 (note 0obp1) to obtain

qr
qt
¼ �divbM ð�crrÞ ¼ cDa

Mrðx; tÞ , (25)

where the last equality follows by comparing the corresponding Fourier transforms

�

Z
khk¼1

ðik � hÞbð�cðikÞr̂ðk; tÞÞ � hMðdhÞ ¼ c

Z
khk¼1

ðik � hÞbþ1r̂ðk; tÞMðdhÞ. (26)

The fractional advection–dispersion equation (7) can be recovered from (25) by subtracting an advective drift
term on the right-hand side, to adjust for the moving coordinate system.

The physical meaning of the fractional conservation of mass equation is revealed by decomposing the
fractional divergence into its radial components. Suppose that d ¼ 3 and write ðx1;x2;x3Þ

0
¼ ðx; y; zÞ0. Use (20)

to write in explicit coordinate form

qbV 1

qxb � Dx�b
X1
j¼0

wbð jÞV 1ðx� jDx; y; zÞ (27)

and similarly for the y and z terms. Recall that V1 represents the x component of the vector field V , the rate at
which mass density is transported through the area element DA ¼ DyDz. In the classical divergence the net
outflow of mass in the x direction

V1ðxþ Dx; y; zÞDA� V1ðx; y; zÞDA �
qV 1

qx
DxDyDz

is combined with similar y and z terms to give the rate divV dxdy dz at which mass is lost at the point ðx; y; zÞ.
In the fractional divergence, the anomalous dispersion of mass spreads over a wide range of velocities due to
the intervening porous medium. In (27) the j ¼ 0 term V 1ðx; y; zÞ represents the rate at which concentration at
the point ðx; y; zÞ is diminishing due to mass leaving the volume DxDyDz, and each remaining term
wbð jÞV 1ðx� jDx; y; zÞ in (27) represents the rate at which mass from a volume element j steps to the left is
leaping into (recall that wbð jÞo0 for j40) the volume element at location ðx; y; zÞ. The fact that

P
jwbð jÞ ¼ 0

ensures conservation of mass, just as in the integer case b ¼ 1.
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The general form of the fractional divergence (12) accommodates concentration flux in all directions. The
integrand

D
b
hVðxÞ � h � h�b

X1
j¼0

wbð jÞVðx� jhhÞ � h (28)

in (12) is a fractional mass balance in the h direction. The first term VðxÞ � h is the flux component in the h

direction at the point x, representing the rate at which mass density is transported through the area element
perpendicular to h, and the remaining terms Vðx� jhhÞ � h represent the rate at which mass from a volume
element j units away along the �h direction is leaping into the volume element at location x.

The fractional conservation of mass formula (24) is a mass balance that recognizes the possibility of velocity
contrast at every scale. The fractional model recognizes that microscopic particle velocities cannot be resolved
to a single number or vector at any scale, because in a fractal porous medium there will be a wide power-law
distribution of particle velocities observed at every scale. This is why modern constructions often treat the
velocity parameter in the diffusion equation as a random quantity. The fractional model embodies the same
physical idea while avoiding the complexity of stochastic partial differential equations. Even in the classical
diffusion equation with drift qr=qt ¼ �v � rrþ r � Arr the velocity v is only an average drift. The Brownian
particle paths do not have a well-defined infinitesimal velocity, since these fractal paths have infinite total
length (unbounded variation) over any time interval.

6. Unified derivation of the fractional ADE

The first derivation of the fractional ADE given in this paper combines a fractional Fick’s Law for flux with
a classical mass balance. The second combines a fractional mass balance with a classical Fickian flux. There is
actually no disagreement between these two derivations, because they both reduce to a third derivation that
clarifies and unifies the first two. In this derivation we emphasize that, even in the classical ADE (4), there are
three operators in the dispersion term that are applied sequentially. First we take the gradient rr of the
concentration density, then we apply the dispersion tensor Q, and lastly we take the divergence of this
quantity. The fractional ADE simply replaces the dispersion tensor in the second step by the fractional
operator cJ

1�b
M introduced in (9) as the basic building block of the vector fractional calculus. We have already

noted that

Da
Mr ¼ divbM ðrrÞ ¼ r � J

1�b
M rr ¼ divðrb

MrÞ

and hence the first (fractional flux) derivation lumps the J
1�b
M term into the Fick’s Law while the second lumps

it into the conservation of mass equation. Ultimately, it does not make any difference which point of view we
choose, as all are equally valid. The fundamental idea is that fractional integration is applied to represent the
effect of power-law variations in the velocity field, leading to enhanced dispersion.

7. Theorems of vector fractional calculus

As another application of the fractional vector calculus, we develop and interpret a fractional divergence
theorem. Recall that the fractional divergence of a vector field VðxÞ was defined in (12) by
divbMVðxÞ ¼ r � J1�b

M VðxÞ, so that the fractional divergence is just the classical divergence of the fractionally
integrated vector field. Given a closed and bounded manifold O with boundary qO we can now apply the
classical divergence theorem to conclude thatZ

O
divbMVðxÞdV ¼

Z
O
r � J

1�b
M VðxÞdV ¼

Z
qO

J
1�b
M VðxÞ � ndS, (29)

where n is the unit outer normal vector. In more detailed form, using the definitions (9) and (12), the fractional
divergence theorem (29) becomesZ

O

Z
khk¼1

D
b
hðVðxÞ � hÞMðdhÞdV ¼

Z
qO

Z
khk¼1

ðD
b�1
h ðh � VðxÞÞÞðh � nÞMðdhÞdS. (30)
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If the vector field V ¼ rv is the advective flux, then the fractional divergence theorem equates the rate at which
mass leaves the region O with the mass flux through the boundary qO. The difference in the fractional case is
that the mass can jump with widely varying velocities from any point. The term D

b
hðVðxÞ � hÞ on the left-hand

side of (30) represents the fractional flux (of order b) in the h direction as in (28), the inner integral on the left
adds up the flux in each radial direction, and the outer integral is the accumulation of the net flux from every
point in the region. In the integral on the right, the term

D
b�1
h ðh � VðxÞÞ � h1�b

X1
j¼0

wb�1ð jÞVðx� jhhÞ � h (31)

represents a fractional integral (since b� 1o0) of the flux in the h direction. In this case all the Grünwald
weights wb�1ð jÞ are positive, and wb�1ð jÞ�j�b for j large. Hence the integrand adds up the mass flux through
the boundary at the point x in the unit outer normal direction depending on the values of V at all the points on
the ray x� th. The inner integral adds up the contributions from every direction h, and the outer integral is the
accumulation of the flux at every point on the boundary.

A fractional Stokes Theorem can also be obtained in a similar manner. Using the definition curlbMVðxÞ ¼
r � J

1�b
M VðxÞ from (13) the classical Stokes Theorem yields

Z
S

curlbMVðxÞ � ndA ¼

Z
S

r � J
1�b
M VðxÞ � ndA ¼

I
C

J
1�b
M VðxÞ � dr, (32)

where C is the simple closed curve that bounds the oriented surface S, and n is the unit outer normal vector. In
more detailed form, using the definitions (9) and (13), the fractional Stokes theorem (32) becomes

Z
khk¼1

Z
S

r � ðhD
b�1
h ðVðxÞ � hÞÞ � n dAMðdhÞ ¼

Z
khk¼1

I
C

ðD
b�1
h ðVðxÞ � hÞÞh � drMðdhÞ. (33)

Since the fractional Stokes theorem is merely the classical Stokes theorem applied to the fractionally
integrated field J

1�b
M VðxÞ, it has a similar interpretation. The term D

b�1
h ðVðxÞ � hÞ in the integral on the right-

hand side is the fractionally integrated flux (31) in the h direction, so the inner integral is the circulation of this
field, and the outer integral adds up the circulation from each h component. The term r � hD

b�1
h VðxÞ � h in the

integral on the left-hand side is the curl of the fractionally integrated flux (31) in the h direction, the inner
integral adds up the curl at every point on the surface, and the outer integral adds up the contributions for
each h.

Finally, since the fractional divergence and curl of a field VðxÞ are nothing more than the classical
divergence and curl of the fractionally integrated field J

1�b
M VðxÞ, all of the remaining basic results of vector

calculus have straightforward extensions. If curlbMVðxÞ ¼ 0 at every point we say that VðxÞ is fractionally
irrotational, and it follows that J

1�b
M VðxÞ ¼ rW ðxÞ for some scalar field W ðxÞ which can be called a fractional

scalar potential. If divbMVðxÞ ¼ 0 at every point we say that VðxÞ is fractionally solenoidal, and it follows that
J
1�b
M VðxÞ ¼ r � AðxÞ for some vector field AðxÞ which can be called a fractional vector potential.
8. Conclusions

A fractional vector calculus has been developed that extends the usual vector calculus by describing the
fractional derivative versions of the gradient, divergence, and curl. The fractional advection–dispersion
equation for flow and transport of contaminants in heterogeneous porous media has been derived from first
principles using the fractional vector calculus. A fractional version of Stokes theorem and the divergence
theorem have been laid out, the novel feature of the fractional versions being the nonlocal effect of power-law
velocity distributions at every scale in a fractal porous medium. Since scalar fractional derivative models are
now widely used in many areas of physics, it is likely that the constructions here will also find further
applications in other areas.
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[10] M.M. Meerschaert, D.A. Benson, B. Baeumer, Operator Lévy Motion and multiscaling anomalous diffusion, Phys. Rev. E 63 (2001)

1112–1117.

[11] M.M. Meerschaert, D.A. Benson, H.P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys.

Rev. E 65 (2002) 1103–1106.

[12] M.M. Meerschaert, D.A. Benson, H.P. Scheffler, P. Becker-Kern, Governing equations and solutions of anomalous random walk

limits, Phys. Rev. E 66 (2002) 102R–105R.

[13] A. Piryatinska, A.I. Saichev, W.A. Woyczynski, Models of anomalous diffusion: the subdiffusive case, Physica A 349 (2005) 375–420.

[14] A.I. Saichev, G.M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos 7 (1997) 753–764.

[15] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous time finance, Physica A 284 (2000) 376–384.

[16] B. West, M. Bologna, P. Grigolini, Physics of Fractal Operators, Springer, New York, 2003.

[17] G. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Chaotic advection, tracer dynamics and turbulent dispersion,

Physica D 76 (1994) 110–122.

[18] G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005.

[19] R. Gorenflo, F. Mainardi, E. Scalas, M. Raberto, Fractional calculus and continuous-time finance. III. The diffusion limit, Math.

Finance (Konstanz, 2000) 171–180, Trends Math., Birkhäuser, Basel, 2001.
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