
Identification of periodic autoregressive moving

average models and their application to the modeling

of river flows

Yonas Gebeyehu Tesfaye

Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Nevada, USA

Mark M. Meerschaert

Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand

Paul L. Anderson

Department of Mathematics and Computer Science, Albion College, Albion, Michigan, USA

Received 28 October 2004; revised 19 September 2005; accepted 18 October 2005; published 31 January 2006.

[1] The generation of synthetic river flow samples that can reproduce the essential
statistical features of historical river flows is useful for the planning, design, and operation
of water resource systems. Most river flow series are periodically stationary; that is, their
mean and covariance functions are periodic with respect to time. This article develops
model identification and simulation techniques based on a periodic autoregressive moving
average (PARMA) model to capture the seasonal variations in river flow statistics.
The innovations algorithm is used to obtain parameter estimates. An application to
monthly flow data for the Fraser River in British Columbia is included. A careful
statistical analysis of the PARMA model residuals, including a truncated Pareto model for
the extreme tails, produces a realistic simulation of these river flows.
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1. Introduction

[2] Time series analysis and modeling is an important
tool in hydrology and water resources. It is used for building
mathematical models to generate synthetic hydrologic
records, to determine the likelihood of extreme events, to
forecast hydrologic events, to detect trends and shifts in
hydrologic records, and to interpolate missing data and
extend records. The research reported in this article relates
more directly to river flow data generation. Generation of
synthetic river flow series may be useful for determining the
dimensions of hydraulic works, for risk assessment in urban
water supply and irrigation, for optimal operation of reser-
voir systems, for determining the risk of failure of depend-
able capacities of hydroelectric systems, for planning
capacity expansion of water supply systems, and others
[see Salas, 1993].
[3] The statistical characteristics of hydrologic series are

important deciding factors in the selection of the type of
model. For example, in most cases known in nature, river
flows have significant periodic behavior in the mean,
standard deviation and skewness. In addition to these
periodicities, they show a time correlation structure which
may be either constant or periodic. Such serial dependence
or autocorrelation in river flow series usually arises from the
effect of storage, such as surface, soil, and ground storages,
which cause the water to remain in the system through

subsequent time periods. The common procedure in mod-
eling such periodic river flow series is first to standardize or
filter the series and then fit an appropriate stationary
stochastic model to the reduced series [Salas et al., 1980;
Thompstone et al., 1985; Vecchia, 1985a, 1985b; Salas,
1993; Chen and Rao, 2002]. However, standardizing or
filtering most river flow series may not yield stationary
residuals due to periodic autocorrelations. In these cases, the
resulting model is misspecified [Tiao and Grupe, 1980].
Periodic models can therefore be employed to remove the
periodic correlation structure. An important class of periodic
models useful in such situations consists of periodic autor-
egressive moving average (PARMA) models, which are
extensions of commonly used ARMA models that allow
periodic parameters. PARMA models explicitly represent
the seasonal fluctuations in mean flow, flow standard
deviation, and flow autocorrelation, resulting in a more
realistic time series model that leads to more reliable
simulations of natural river flows.
[4] There have been many discussions about periodic

time series models [Jones and Brelsford, 1967; Pagano,
1978; Troutman, 1979; Tjøstheim and Paulsen, 1982; Salas
et al., 1981, 1982, 1985; Vecchia, 1985a, 1985b; Vecchia
and Ballerini, 1991; Salas and Obeysekera, 1992; Anderson
and Vecchia, 1993; Ula, 1990, 1993; Ula and Smadi, 1997,
2003; Adams and Goodwin, 1995; Anderson and
Meerschaert, 1997, 1998; Lund and Basawa, 1999, 2000;
Shao and Lund, 2004]. Time series analysis of data sequen-
ces usually involves three main steps: model identification,
parameter estimation and diagnostic checking. Parameter
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estimation for PARMA models is more difficult than for
stationary ARMA models because of the higher number of
parameters to be estimated. Anderson et al. [1999] devel-
oped the innovations algorithm for parameter estimation of
an infinite moving average representation of PARMA
models. Anderson and Meerschaert [2005] also provided
an asymptotic distribution for these estimates. These
results can be used for the identification of PARMA
models for periodic processes but heretofore have not
been put to such a task. Model identification and simu-
lation for river flows with periodic autocorrelations is the
main thrust of this article. Hence, in order to create
realistic synthetic river flows, one more important step
is necessary. The model residuals approximate the funda-
mental noise sequence from which the PARMA process is
built. Therefore it is necessary to estimate the statistical
distribution of these random variables, in order to accu-
rately simulate them. Failure to perform this step will
lead to distorted simulation results, particularly in terms
of extreme values that are important in the analysis of
floods and droughts.
[5] This article has two objectives. The first is to dem-

onstrate the effectiveness of the technique by using simu-
lated data from different PARMA models, and the other is to
describe an application with monthly flow data for the
Fraser River at Hope, British Columbia.

2. Mathematical Formulation of PARMA Model

[6] A stochastic process ~X t is periodically stationary if

its mean mt = E~X t and covariance function gt(h) =

Cov(~X t, ~X t+h) for h = 0, ±1, ±2, . . . are periodic
functions of time t with the same period S (that is, for
some integer S, for i = 0, 1, . . ., S � 1, and for all
integers k and h, mi = mi+kS and gi(h) = gi+kS(h)).
[7] The periodic ARMA process ~X t with period S

(denoted by PARMAS(p, q)) has representation

Xt �
Xp
j¼1

ft jð ÞXt�j ¼ et �
Xq
j¼1

qt jð Þet�j ð1Þ

where Xt = ~X t � mt and {et} is a sequence of random
variables with mean zero and scale st such that {dt = st

�1et}
is independent and identically distributed (iid). The notation
in (1) is consistent with that of Box and Jenkins [1976].
The autoregressive parameters ft(j), the moving average

parameters qt(j), and the residual standard deviations st are
all periodic functions of t with the same period S � 1. The
standard deviations st of the noise process {et} are assumed
to be strictly positive. We also assume that (1) the model
admits a causal representation

Xt ¼
X1
j¼0

yt jð Þet�j ð2Þ

where yt(0) = 1 and
P1

j¼0jyt(j)j < 1 for all t. Note that
yt(j) = yt+kS (j) for all j and (2) the model also satisfies
an invertibility condition

et ¼
X1
j¼0

pt jð ÞXt�j ð3Þ

where pt(0) = 1 and
P1

j¼0jpt(j)j < 1 for all t. Again,
pt(j) = pt+kS(j) for all j.

3. Identification and Estimation for PARMA
Models

[8] In this section we document the essential results and
ideas regarding the identification and parameter estimation
for PARMA models. A narrative is included prior to each
result allowing the reader to gain insight into the method-
ology. We include references that furnish the detailed
proofs. Given Ny years of data, consisting of N = NyS data
points, define the sample mean

m̂i ¼ N�1
y

XNy�1

k¼0

~XkSþi ð4Þ

Table 1. Moving Average Parameter Estimates and p Values After k = 15 Iterations of the Innovations Algorithm Applied to Ny =

500 Years of Simulated PARMA4(1,1) Data
a

Lag ‘ ŷ0(‘) p for ŷ0(‘) ŷ1(‘) p for ŷ1(‘) ŷ2(‘) p for ŷ2(‘) ŷ3(‘) p for ŷ3(‘)

1 �0.606 0.00 1.231 0.00 1.710 0.00 0.617 0.00
2 �0.620 0.00 �0.360 0.00 1.047 0.00 0.387 0.00
3 �0.329 0.00 �0.250 0.20 �0.346 0.00 0.329 0.00
4 �0.322 0.00 �0.037 0.48 �0.120 0.69 �0.009 0.87
5 0.041 0.40 �0.055 0.62 0.058 0.47 0.087 0.52
6 �0.004 0.98 0.136 0.08 0.128 0.46 0.001 0.98
7 0.017 0.61 0.148 0.45 0.187 0.11 0.086 0.27
8 �0.024 0.74 0.042 0.42 0.199 0.50 �0.003 0.95
9 �0.017 0.71 �0.006 0.96 0.049 0.55 0.034 0.80

aNote that the parameter estimates continue past lag 9.

Table 2. Model Parameters and Estimates for Simulated

PARMA4(1,1) Data

Parameter Season 0 Season 1 Season 2 Season 3

q 0.25 0.65 0.90 0.35
q̂ 0.400 0.636 0.859 0.391
f �0.90 0.50 0.80 0.25
f̂ �1.005 0.595 0.850 0.226
s 0.90 1.90 0.50 1.20
ŝ 0.832 1.771 0.482 1.215
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the sample autocovariance

ĝi ‘ð Þ ¼ N�1
y

XNy�1�m

j¼0

X jSþiX jSþiþ‘ ð5Þ

and the sample autocorrelation

r̂i ‘ð Þ ¼ ĝi ‘ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝi 0ð Þĝiþ‘ 0ð Þ

p ð6Þ

where Xt = ~Xt � m̂t, m = [(i + ‘)/S] and [ 	 ] is the greatest
integer function. The innovations algorithm developed by
Anderson et al. [1999] gives us a practical method for
estimating the parameters in our PARMA model. Since the
parameters are seasonally dependent, there is a notational
difference between the innovations algorithm for PARMA
processes and that for ARMA processes [cf. Brockwell and
Davis, 1991]. We introduce this difference through the
‘‘season,’’ i. For monthly data we have S = 12 seasons and
our convention is to let i = 0 represent the first month, i = 1
represent the second, . . ., and i = S � 1 = 11 represent the
last.
[9] The idea of the innovations algorithm is to estimate

the moving average in (2) by a finite approximation
involving the k most recent observations. Let

X̂
ið Þ

iþk ¼ f ið Þ
k;1Xiþk�1 þ 	 	 	 þ f ið Þ

k;kXi; k � 1; ð7Þ

represent the best linear predictor of Xi+k based on the data
Xi, . . ., Xi+k�1, i.e., the one which minimizes the mean
squared error

vk;i ¼ E Xiþk � X̂
ið Þ

iþk

� �2
ð8Þ

by choice of the coefficients fk,1
(i) , . . ., fk,k

(i) . We can rewrite
(7) as

X̂
ið Þ

iþk ¼
Xk
j¼1

q ið Þ
k;j Xiþk�j � X̂

ið Þ
iþk�j

� �
ð9Þ

where Xi+k�j � X̂ i+k�j
(i) , j = 1, . . ., k are uncorrelated

elements, which estimate the noise sequence (also called the
‘‘innovations’’) ei+k�j in (2). Hence the parameters qk,j

(i)

estimate the moving average coefficients yi+k(j) in that
equation. Anderson et al. [1999] show that these coeffi-
cients (along with the corresponding mean squared errors)
can be recursively computed by the following variant of the
innovations algorithm:

v0;i ¼ gi 0ð Þ

q ið Þ
k;k�‘ ¼ v‘;i

� ��1
giþ‘ k � ‘ð Þ
	

�
X‘�1

j¼0
q ið Þ
‘;‘�jq

ið Þ
k;k�jvj;i

i
vk;i ¼ giþk 0ð Þ �

Xk�1

j¼0
q ið Þ
k;k�j

� �2
vj;i

ð10Þ

where (10) is solved in the order v0,i, q1,1
(i) , v1,i, q2,2

(i) , q2,1
(i) , v2,i,

q3,3
(i) , q3,2

(i) , q3,1
(i) , v3,i, . . . and so forth. As k increases to infinity,

these parameter estimates converge to the moving average
model parameters in equation (2) as follows:

q i�kh ið Þ
k;j ! yi jð Þ

vk; i�kh i ! s2i

ð11Þ

for all i, j where hti is the season corresponding to index t,
so that hjS + ii = i. If we replace the autocovariances in (10)
with the corresponding sample autocovariances (5), we
obtain the innovations estimates q̂k,l

(i) and v̂k,i based on the
time series data. Anderson et al. [1999] show that these
quantities converge (in probability) to give a consistent
estimate of the moving average model parameters from
data. Furthermore, Anderson and Meerschaert [2005] show
that

N 1=2
y q̂ i�kh ið Þ

k;j � yi jð Þ
� �

) N 0;
Xj�1

n¼0

s2i�n

s2i�j

y2
i nð Þ

 !
ð12Þ

as Ny ! 1 and k ! 1 for any fixed i = 0, 1, . . ., S � 1,
where ‘‘)’’ indicates convergence in distribution, and
N (m, v) is a normal random variable with mean m and
variance v. The main technical condition for the conver-

Figure 1. Average monthly flows (m3 s�1) for the Fraser
River at Hope, British Columbia, indicate a seasonal
pattern.

Table 3. Sample Mean, Standard Deviation, and Autocorrelation

at Lag 1 and 2 of Average Monthly Flow Series for the Fraser

River Near Hope, British Columbia

Month m̂ ŝ r̂(1) r̂(2)

Oct 69763 19997 0.688 0.517
Nov 56000 17698 0.731 0.581
Dec 40352 12817 0.715 0.531
Jan 33135 9252 0.787 0.691
Feb 30861 8845 0.779 0.385
Mar 29709 8834 0.510 0.224
Apr 59293 20268 0.302 �0.294
May 171907 40200 0.272 �0.047
Jun 248728 45120 0.568 0.496
Jul 199118 42543 0.779 0.462
Aug 127157 28070 0.718 0.320
Sep 86552 20052 0.635 0.454
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gence (12) to hold is that the noise sequence et has a finite
fourth moment. In practical applications, Ny is the number
of years of data, k is the number of iterations of the
innovations algorithm (typically on the order of k = 10 or
15, see the discussion in section 4), and the convergence in
distribution is used to approximate the quantity on the left-
hand side of (12) by a normal random variable. Equation
(12) can be used to produce confidence intervals and
hypothesis tests for the moving average parameters in (2).
For example, an a-level test statistic rejects the null
hypothesis (H0: yi(u) = 0) in favor of the alternative (Ha:
yi(u) 6¼ 0, indicating that the model parameter is statistically
significantly different from zero) if jZj > za/2. The p value
for this test is

p ¼ P Zj j > zj jð Þ;

Z � N 0; 1ð Þ; z ¼
N1=2
y q̂ i�kh ið Þ

k;u

W
;W 2 ¼

Pu�1
n¼0 v̂k; i�k�nh i q̂ i�kh ið Þ

k;n

� �2
v̂k; i�k�uh i

:

ð13Þ

The innovations algorithm allows us to identify an
appropriate model for the periodic time series at hand,
and the p value formula gives us a way to determine which
coefficients in the identified PARMA model are statistically
significantly different from zero (those with a small p value,
say, p < 0.05). We illustrate the practical application of these
formulae in sections 4 and 5.

4. Simulation Study

[10] A detailed simulation study was conducted to inves-
tigate the practical utility of the innovations algorithm for
model identification in the presence of seasonally correlated
data. Data for several different PARMAS(p, q) models were
simulated. For each model, individual realizations of Ny =
50, 100, 300, and 500 years of data were simulated and the
innovations algorithm was used to obtain parameter esti-
mates for each realization. In each case, estimates were
obtained for k = 10, k = 15 and k = 20 iterations in order to
examine the convergence, and p values were computed
using (13) to identify those estimates that were statistically

significant (p < 0.05). Some general conclusions can be
drawn from this study. We found that 10 to 15 iterations of
the innovations algorithm are usually sufficient to obtain
reasonable estimates of the model parameters. We also
found that Ny = 50 years of monthly or quarterly data give
only rough estimates of the model parameters, while Ny =
100 years generally is enough to give good estimates. For
the data between 50 and 100 years, the estimates are less
accurate but generally adequate for practical applications. In
order to illustrate the general quality of those results, we
summarize here one particular case of a PARMA4(1,1)
model

XkSþi ¼ fiXkSþi�1 þ ekSþi þ qiekSþi�1 ð14Þ

where {dkS+i = si
�1ekS+i} is an iid sequence of normal

random variables with mean zero and standard deviation
one. The periodic notation XkS+i refers to the (mean zero)
simulated data for season i of year k. From the above
model, a single realization with Ny = 500 years of
quarterly data (sample size of N = NyS = 500 	 4 = 2000)
was generated.
[11] Table 1 shows the results after k = 15 iterations of the

innovations algorithm. For season 0 the first four lags are
statistically significant, for season 2 and 3 the first three lags
are significant, while for season 1 only the first two are

Table 4. Moving Average Parameter Estimates ŷi(‘) at Season i and Lag ‘ = 1, 2, . . ., 5 and p Values After k = 20 Iterations of the

Innovations Algorithm Applied to Average Monthly Flow Series for the Fraser River Near Hope, British Columbiaa

i ŷi(1) p for ŷi(1) ŷi(2) p for ŷi(2) ŷi(3) p for ŷi(3) ŷi(4) p for ŷi(4) ŷi(5) p for ŷi(5) ŷi(6) p for ŷi(6) ŷi(7) p for ŷi(7)

0 0.885 0.00 0.134 0.28 0.105 0.10 0.163 0.01 0.006 0.93 0.038 0.78 �0.044 0.92
1 0.625 0.00 0.625 0.00 0.085 0.46 0.140 0.02 0.077 0.17 �0.004 0.94 0.029 0.81
2 0.508 0.00 0.350 0.00 0.419 0.00 0.032 0.72 0.097 0.03 0.019 0.65 0.063 0.16
3 0.515 0.00 0.287 0.00 0.140 0.07 0.239 0.00 0.034 .60 0.030 0.37 0.043 0.16
4 0.791 0.00 0.165 0.10 0.295 0.00 0.112 0.12 0.160 0.03 0.045 0.43 0.010 0.75
5 0.567 0.00 0.757 0.00 0.057 0.61 0.250 0.00 0.062 0.40 0.139 0.06 0.044 0.45
6 1.076 0.01 0.711 0.11 0.856 0.01 0.415 0.13 0.241 0.17 0.112 0.52 0.277 0.11
7 0.522 0.03 0.684 0.41 0.988 0.28 1.095 0.09 0.350 0.51 0.198 0.56 0.325 0.33
8 0.451 0.00 �1.014 0.00 �0.062 0.66 �0.745 0.50 0.128 .87 �0.635 0.31 0.076 0.85
9 0.618 0.00 �0.041 0.77 �0.746 0.01 �1.083 0.26 �0.047 .97 0.514 0.50 �0.031 0.96
10 0.448 0.00 0.409 0.00 0.026 0.78 �0.241 0.20 �1.125 0.08 0.799 0.26 0.146 0.77
11 0.677 0.00 0.159 0.01 0.194 0.00 0.050 0.46 �0.190 0.17 �0.402 0.38 0.461 0.37

aNote that the parameter estimates continue past lag 7.

Table 5. Parameter Estimates for PARMA Model (18) of Average

Monthly Flow Series for the Fraser River Near Hope, British

Columbia

Month f̂ q̂ ŝ

Oct 0.198 0.687 11875.479
Nov 0.568 0.056 11598.254
Dec 0.560 �0.052 7311.452
Jan 0.565 �0.050 5940.845
Feb 0.321 0.470 4160.214
Mar 0.956 �0.389 4610.209
Apr 1.254 �0.178 15232.867
May 0.636 �0.114 31114.514
Jun �1.942 2.393 32824.370
Jul �0.092 0.710 29712.190
Aug 0.662 �0.213 15511.187
Sep 0.355 0.322 12077.991
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significant. Since parameter estimates do not generally cut
off to (statistically) zero at a certain lag, it is advantageous
to seek a parsimonious mixed moving average/autoregres-
sive model. To fit a mixed model (1) using the innovations
estimates, we substitute (2) into (1) and then equate the
coefficients of the noise et on both sides to determine the
parameters qt and ft. This requires that statistically signif-
icant values of yi(j) are available for each season i for lags
1 � ‘ � p + q. For p = q = 1 the resulting equation takes a
simplified form

X1
j¼0

yt jð Þet�j � ft

X1
j¼0

yt�1 jð Þet�1�j ¼ et þ qtet�1 ð15Þ

which leads to

ft ¼ yt 2ð Þ=yt�1 1ð Þ and qt ¼ yt 1ð Þ � ft ð16Þ

The actual values of the autoregressive parameters fi and
moving average parameters qi for season i along with the
estimated parameters obtained by substituting the innova-
tions estimates from Table 1 into (16) are displayed in

Table 2. Standardized residuals, dt, for this PARMA4(1,1)
model can be computed using the equation

ŝt d̂t ¼ Xt � f̂t þ q̂t
� �

Xt�1

þ
X1
j¼2

�1ð Þj f̂t�jþ1 þ q̂t�jþ1

� �
	 q̂t q̂t�1 . . . q̂t�jþ2Xt�j ð17Þ

which was obtained by solving (1) for the innovations and
substituting the estimated model parameters for their true
values. The PARMAS(1,1) model is the simplest mixed
model, and thus is preferred so long as diagnostic plots of
the residual autocorrelation (ACF) and/or partial autocorre-
lation (PACF) indicate no significant serial dependence. For
the simulation reported here, this was the case, and hence a
PARMA4(1,1) model was judged adequate. The ACF and
PACF plots were similar to those in section 5 (see Figure 2).

5. Application to Modeling of Natural River
Flows

[12] Next we model a monthly river flow time series from
the Fraser River at Hope, British Columbia. The Fraser
River is the longest river in British Columbia, travelling
almost 1400 km and sustained by a drainage area covering
220,000 km2. It rises in the Rocky Mountains, at Yellow-
head Pass, near the British Columbia-Alta. line and flows
northwest through the Rocky Mountain Trench to Prince
George, thence south and west to the Strait of Georgia at
Vancouver. Its main tributaries are the Nechako, Quesnel,
Chilcotin, and Thompson rivers. See http://scitech.pyr.
ec.gc.ca/waterweb/ for maps and flow data downloads.
[13] The data are obtained from daily discharge measure-

ments, in cubic meter per second, averaged over each of the
respective months to obtain the monthly series. The series
contains 72 years of data from October 1912 to September
1984. In the following analysis, S = 0 corresponds to
October and S = 11 corresponds to September. Using the
‘‘water year’’ starting on 1 October is customary for
stationary ARMA modeling of river flows, because of low
correlation between Fall monthly flows. We adopt the same
notation for ease of comparison with those models, but in
our case any starting month is equally appropriate, since we
explicitly model the seasonal variations. A partial plot of the
original data, given Figure 1, shows the cyclic behavior of
the monthly flows. The sample mean, standard deviation
and autocorrelations at lag 1 and lag 2 are given in Table 3
(see also Figure 8). The nonstationarity of the series is
apparent since the mean, standard deviation and correlation
functions vary significantly from month to month. Remov-
ing the periodicity in mean and variance will not yield a
stationary series. Therefore a periodically stationary series
model is appropriate. After k = 20 iterations, the innovations
algorithm yields the innovations estimates and associated p
values found in Table 4.
[14] Since the ŷi weights do not generally cut off to

(statistically) zero at a certain lag, we choose a parsimoni-
ous mixed model that captures the periodic behavior as well
as the exponential decay evidenced in the autocorrelation
function. We find that a PARMA12(1,1) model

XkSþi � fiXkSþi�1 ¼ ekSþi þ qiekSþi�1 ð18Þ

Figure 2. (a) ACF for model residuals, showing the
bounds ±1.96/

ffiffiffiffi
N

p
, indicate no serial dependence. (b) PACF

for model residuals, showing the bounds ±1.96/
ffiffiffiffi
N

p
,

indicate no serial dependence.
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Figure 3. (a) Lognormal probability plot for model residuals, Fraser River at Hope, British Columbia.
(b) Histogram for model residuals, Fraser River at Hope, British Columbia.

6 of 11

W01419 TESFAYE ET AL.: IDENTIFICATION OF PARMA MODELS W01419



is sufficient in adequately capturing the series autocorrela-
tion structure. The physical basis of the river flow process
could also be helpful in choosing the appropriate model
[Salas et al., 1981; Salas and Obeysekera, 1992]. The
parameter estimates for this model, obtained using equa-
tions (16), are summarized in Table 5. Model residuals were
estimated using equation (17). Although the model is
periodically stationary, the residuals should be stationary,
so the standard 95% confidence limits (that is, 1.96/

ffiffiffiffi
N

p
)

still apply. Figure 2 shows the ACF and PACF of the model
residuals, respectively. Although a few values lie slightly
outside of the 95% confidence bands, there is no apparent
pattern, providing some evidence that the PARMA12(1,1)
model is adequate.
[15] One reason for carefully modeling the river flow

time series is to develop the ability to generate synthetic
river flows for further analysis. This requires a realistic
distributional model for the residuals that can be used to
simulate the noise sequence. After exploring a number of
possible distributions, we found that a three-parameter
lognormal fits the residuals fairly well. A histogram of the
residuals showing the best fitting lognormal density curve
(scale = 0.217, location = 1.656 and threshold = �5.363), as
well as the corresponding probability plot, are shown in
Figures 3a and 3b, respectively. On the probability plot,
points along the diagonal line (model percentiles equal data
percentiles) indicate a good fit. According to this lognormal
model, residuals follow the distribution of a random variable
R = �5.363 + e(1.656+0.217Z) where Z � N (0,1).
[16] The histogram in Figure 3b shows that the three

parameter lognormal gives an acceptable overall fit, but the
probability plot in Figure 3a reveals a lack of fit at both
tails. This is important for practical applications, since tail
behavior of the residuals (or the noise sequence) determines
the extreme values of the times series, which govern both
droughts and floods. None of the standard probability plots
we tried (normal, lognormal, Weibull, gamma, etc.) gave an
adequate fit at the tails. To check for a power law proba-
bility tail we constructed a Mandelbrot plot of each tail
(Figures 4 and 5) as described by Mandelbrot [1963] and
Anderson and Meerschaert [1998]. Suppose that X1, . . ., Xn

are iid Pareto with distribution function F(x) = Cx�a. Then

F(x) = P[X > x] = Cx�a and so ln F(x) = ln C � a ln x.
Sorting the data in decreasing order so thatX(1)�X(2)� 	 	 	 �
X(n) (order statistics) we should have approximately that
x = X(r) when F(x) = r/n. Then a plot of ln X(r) versus
ln(r/n) should be approximately linear with slope �a. In
Figures 4 and 5, the downward curve indicating that a
simple power law model for the tail (Pareto, GEV
Frechet, a stable) is not appropriate. However, the shape
of the plots is consistent with many examples of truncat-
ed Pareto distributions found in the geophysics literature
[see, e.g., Aban et al., 2006; Burroughs and Tebbens,
2001a, 2001b, 2002]. This distribution is appropriate
when a power law model is affected by an upper bound
on the observations.
[17] In hydrology it is commonly believed that there is an

upper bound on precipitation and therefore river flows [see,
e.g., Maidment, 1993]. A truncated Pareto random variable
X has distribution function

FX xð Þ ¼ P X � xð Þ ¼ 1� g=xð Þa

1� g=bð Þa ð19Þ

and density

fX xð Þ ¼ agax�a�1

1� g=bð Þa ð20Þ

with 0 < g � x � b < 1 and g < b. Aban et al. [2006]
develop maximum likelihood estimators (MLE) for the
parameters of the truncated Pareto distribution. When a
truncated Pareto is fit to the tail of the data, the parameters
are estimated by obtaining the conditional maximum
likelihood estimate based on the largest-order statistics,
representing only the portion of the tail where the truncated
Pareto model holds. When X(r) > X(r+1), the conditional
maximum likelihood estimator for the parameters of the
upper truncated Pareto in (19) based on the r + 1 largest-
order statistics is given by

b̂ ¼ X 1ð Þ ð21Þ

ĝ ¼ r1=âX rþ1ð Þ n� n� rð Þ X rþ1ð Þ=X 1ð Þ
� �âh i�1=â

ð22Þ

Figure 4. Log-log plot of upper residual tail and fitted
truncated Pareto distribution, Fraser River at Hope, British
Columbia.

Figure 5. Log-log plot of lower residual tail and fitted
truncated Pareto distribution, Fraser River at Hope, British
Columbia.
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Figure 6. Probability plot of simulated noise sequence using the mixed three parameter lognormal and
truncated Pareto distributions. Compare to Figure 3a.
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and â solves the equation

r

â
þ
r X rþ1ð Þ=X 1ð Þ
� �â

ln X rþ1ð Þ=X 1ð Þ
� �

1� X rþ1ð Þ=X 1ð Þ
� �â

�
Xr
i¼1

lnX ið Þ � lnX rþ1ð Þ
	 �

¼ 0 ð23Þ

[18] The probability plot in Figure 3a shows that a
lognormal distribution fits well except for the upper and
lower 5% of the residuals. Hence a truncated Pareto was
fitted to the upper 5% of the residuals, and another truncated
Pareto was fitted to the lower 5% of the residuals after a
change of sign. Using the computed values of �1.697 = the
5th percentile and 2.122 = the 95th percentile of the three
parameter lognormal distribution we fit to the body of the
residuals, we determined the cutoff for each fitted distribu-
tion. Next we determined that r = 39 residuals exceed the
95th percentile, and r = 34 residuals fall below the 5th
percentile. Then the MLE was used to estimate the param-
eters (b̂ = 5.336, ĝ = 0.072, â = 0.722) of the best fitting
truncated Pareto distribution, and the theoretical distribution
tail P(R > r) was plotted over the 39 largest positive
residuals in Figure 4. In Figure 5 we used the same method

to fit a truncated Pareto (b̂ = 2.961, ĝ = 0.291, â = 1.560) to
the 34 largest negative residuals, after a change of sign.
Both of the plots in Figures 4 and 5 indicate an adequate fit.
[19] A mixture distribution with lognormal body and

truncated Pareto tails was used to simulate the noise
sequence. The mixture has cumulative distribution function
(cdf)

P d � rð Þ ¼

F� rð Þ if r < �1:697

F0 rð Þ if �1:697 � r � 2:122

Fþ rð Þ if r > 2:122

8>>>><
>>>>:

ð24Þ

where F0 is the cdf of the lognormal, and F+, F� are
truncated Pareto cdfs of the positive and negative tails,
respectively. Recall that the cutoffs in (24) are the 5% and
95% quantiles of the lognormal distribution, which were
determined to be the range in which the lognormal provides
an adequate fit. The truncated Pareto distributions in (24)
were shifted (by s = 0.172 on the positive tail and s = 0.174
on the negative tail) to make the mixture cdf continuous.
Now the noise sequence could be simulated by the inverse
cumulative distribution function method d = F�1(U) where
U is a pseudorandom number uniformly distributed on the
unit interval (0,1). However, this is impractical in the
present case since the lognormal cdf is not analytically
invertible. Instead, we used the Box-Müller method to
generate standard normal random variates Z [see Gentle,
2003]. Then lognormal random variates were calculated
using d = �5.363 + exp(1.656 + 0.217Z). If R > 2.122, the
95th percentile of the lognormal, we generated another
uniform (0,1) random variate U and substituted d =
F+
�1(0.95 + 0.05U). If R < �1.697, the 5th percentile of

the lognormal, we substituted d = F�
�1(0.05U). This gives

simulated noise sequence d with the mixture distribution
(24).
[20] Figure 6 shows a probability plot for N = NyS

simulated noise sequence (for S = 12 months and Ny =
100 years) from the mixture distribution (24). Comparison
with Figure 3a shows that the simulated noise sequence is
statistically identical to the computed model residuals in
terms of distribution. Substituting the simulated noise
sequence into the model (18) generates Ny years of simu-
lated river flow. Figure 7 compares a typical synthetic flow,
obtained by this simulation procedure, to the original data
(Figure 7a). It is apparent that the two time series are
statistically similar. In performing this type of autoregres-
sive simulation, it is advantageous to simulate several extra
years of river flows and throw out the initial years (100
years in this case), since we did not simulate Xt for t < 0.
This ensures that the simulated series is periodically sta-
tionary. For an alternative approach, one could adapt
exercise 8.17 of Brockwell and Davis [1991] to the PARMA
model. Figure 8 shows the main statistical characteristics
(mean, standard deviation and autocorrelations) of a
typical synthetic river flow time series obtained by this
method, as well as the same statistical measures for the
observed time series. It is apparent that this procedure
closely reproduces the main statistical characteristics, indi-
cating that the modeling procedure is trustworthy for
generating synthetic river flows. Such synthetic river flows

Figure 7. (a) Plot of observed monthly river flows for the
Fraser River at Hope, British Columbia. (b) Plot of
simulated monthly river flows for the Fraser River at Hope,
British Columbia. Compare to Figure 7a.
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are useful for design of hydraulic structures, for optimal
operation of reservoir systems, for calculating the risk of
failure of water supply systems, etc. Another calibration test
(not performed during this analysis) would be to construct a
PARMA model for a subset of the data, and compare the
resulting simulated flow to the remainder of the time series.
This can be useful to illustrate the effects of parameter/
model uncertainty.

6. Conclusions

[21] Generation of synthetic river flow data is important
in planning, design and operation of water resources sys-
tems. PARMA models provides a powerful tool for
the modeling of periodic hydrologic series in general
and river flow series in particular. In this article, the
innovations algorithm estimation procedure, as well as
model identification using simulated data from different
Gaussian PARMAS(p, q) models, is discussed in detail. A
simulation study demonstrates that the innovations algorithm

is an efficient and reliable technique for parameter estimation
and model identification of PARMA models. In the case of a
mixed PARMA process, this model identification technique
can be supplemented by modeler experience. Our sample
application illustrates that the innovations algorithm is useful
for modeling river flow time series. For monthly average
river flow data for the Fraser River at Hope, British Colum-
bia, a first-order periodic autoregressive moving average
model is adequate to capture the essential features. A mixture
of three parameter lognormal body and truncated Pareto tails
fits the model residuals nicely. This mixture model is then
applied with satisfactory results to generate synthetic month-
ly river flow records. The methodology presented in this
article provides a useful tool for river flow modeling and
synthetic river flow data generation. The results allow
practitioners and planners to explore realistic decision-mak-
ing scenarios for a given water resource system.

[22] Acknowledgments. We wish to thank the Associate Editor and
two anonymous reviewers for comments and suggestions that led to

Figure 8. (a) Comparison of mean for simulated versus observed monthly river flow data for the Fraser
River at Hope, British Columbia. (b) Comparison of standard deviation for simulated versus observed
monthly river flow data for the Fraser River at Hope, British Columbia. (c) Comparison of
autocorrelation at lag 1 for simulated versus observed monthly river flow data for the Fraser River at
Hope, British Columbia. (d) Comparison of autocorrelation at lag 2 for simulated versus observed
monthly river flow data for the Fraser River at Hope, British Columbia.
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