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[1] A one-dimensional, fractional order, advection-dispersion equation accurately models
the movement of the core of the tritium plume at the highly heterogeneous MADE site.
An a priori estimate of the parameters in that equation, including the order of the
fractional dispersion derivative, was based on the assumption that the observed power
law (heavy) tail of the hydraulic conductivity (K ) field would create a similarly
distributed velocity field. Monte Carlo simulations were performed to test this hypothesis.
Results from the Monte Carlo analysis show that heavy tailed K fields do give rise to
heavy tailed velocity fields; however, the exponent of the power law (the tail parameter)
describing these two distributions is not necessarily the same. The tail parameter that
characterizes a velocity distribution is not solely dependent on the tail parameter that
characterizes the K distribution. The K field must also have long-range dependence so
that water may flow through relatively continuous high-K channels. INDEX TERMS: 1829
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1. Introduction

[2] A fractional order advection-dispersion equation
(ADE) describing the transport of solutes in a porous
medium has been applied to several tracer tests [Benson,
1998; Benson et al., 2000, 2001; Meerschaert et al., 2001].
In this model, differential advection is described by a
dispersion derivative of fractional order 0 < a � 2. The
one-dimensional (1-D) form of the fractional ADE is
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where C is concentration, t is time, V is the mean drift
velocity, x is the spatial domain, D > 0 is the dispersion
coefficient, and the relative weight of the positive
constants p and q, with p + q = 1, describes the skewness.
Schumer et al. [2001] argue that skewness should be
maximal, so that either p or q will be zero. For the MADE
site plumes, Benson et al. [2001] use an equation with p =
1 and q = 0, leaving a single dispersion term. Baeumer et
al. [2001] argue that the entire advection-dispersion
operator should be of fractional order. For light-tailed
(finite variance) random motions like the Gaussian or log
normal, a= 2 and the classical ADE is recovered. The
classical ADE predicts a Gaussian plume with a Fickian

growth rate of the centered second moment (or variance)
that is proportional to time. To match field data, the
Gaussian model requires a dispersion coefficient that
grows with scale [Pickens and Grisak, 1981; Dagan,
1988; Neuman and Zhang, 1990; Rajaram and Gelhar,
1995]. For heavy tailed (infinite variance) random motions,
a < 2, and the measured plume variance grows more
rapidly (with t2/a) [Benson et al., 2001]. Because of the
fractional order dispersion derivative, equation (1) predicts
super-Fickian growth with a constant dispersion coeffi-
cient. In addition, when p 6¼ q, the plume is skewed, a
feature Gaussian models do not allow.
[3] Equation (1) is the governing equation of Lévy

motion, which is similar to Brownian motion except that
incremental motions are heavy tailed (defined in detail
below). In order to use equation (1) without prior observa-
tion of tracer movement, the parameters must be estimated
based on aquifer properties. First, the aquifer hydraulic
conductivity (K ) field must be heavy tailed with infinite
correlation length. Given this situation, one might assume:
(1) that the velocity field has a similar distribution. From a
heavy-tailed velocity field, one might further assume that:
(2) particle "jumps" in small amounts of time are also heavy
tailed with similar distribution. These two assumptions
allow simple estimation of all parameters in equation (1)
[Benson et al., 2001].
[4] The focus of the present research is to test the first

assumption and to discern a relationship between the tail
parameters that describe the K and velocity distributions
and the possible fractional order of the dispersion deriva-
tive. Neuman [1995] made analytic arguments that the
velocity distribution should be Gaussian within a finite-
variance K field with infinite correlation lengths. We are
not aware of analytic methods for heavy-tailed K fields, so
we take a numerical approach. Large-scale flow simulations
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in a generic hydrogeologic system with K statistics similar
to the MADE site were completed. Due to the variability in
K from simulation to simulation, a Monte-Carlo analysis
was performed to obtain an ensemble average of many
simulations.

2. Stable Distributions and Heavy Tails

[5] Stable distributions are solutions to the fractional ADE
for an instantaneous injection of solute, i.e., the Green
function. The properties of the stable distributions are most
easily investigated in terms of their characteristic function
j(k), which is the Fourier transform of the probability
density function, i.e., j(k) =

R
�1
1 exp(ikx) f (x)dx. The char-

acteristic function of a symmetric stable distribution with no
shift (zero mean for a > 1) is, j(k) = exp(�jkjasa)where the
parameter s describes the spread of the data or plume, and
the characteristic exponent a defines the scaling properties
and tail thickness of the distributions. Smaller values of a
result in heavier tails. When a < 2, the distribution has
infinite variance and when a � 1, it has an undefined mean
as well. The a-stable densities are characterized by their
‘‘heavy’’ tails since, for a < 2, one or both of the tails of the
density are asymptotically power laws and plot as straight
lines with slope �1-a on a log-log plot [see, e.g., Benson et
al., 2001].
[6] We loosely define a ‘‘heavy tailed’’ distribution as

one in which either the left or right tail follows this power
law relationship. For large values, the heavy tailed random
variable Y approximately has the probability P(jYj 
 y) �
Wy�a, where P(�) denotes probability and W is a positive
constant. For heavy tailed distributions, the exponent of the
power law (a) is termed the tail parameter. Lévy’s [1937]
extended central limit theorem dictates that for a < 2, these
heavy tailed random numbers are in the domain of attraction
of (i.e., properly normalized sums converge to) a stable
distribution with infinite variance, while for a 
 2 they are
in the domain of attraction of a normal distribution [see
Feller, 1971]. It is this convergence property that allows us
to examine a generic heavy tailed K distribution.

3. MADE Site

[7] The Macrodispersion Experiments (MADE) were
conducted at the Columbus Air Force Base in northeastern
Mississippi in a highly heterogeneous aquifer. A tail param-
eter estimator developed by Meerschaert and Scheffler
[1998] was used to estimate the tail thickness of the vertical
increments of the K data collected at the site. The flowmeter
measurements were collected on approximately 15 cm
intervals [Rehfeldt et al., 1992; Boggs et al., 1993]. The
increments (�K ) data yielded a tail parameter of a = 1.1
[Benson et al., 2001].
[8] Benson et al. [2001] then assumed that the fluctua-

tions in the regional gradient were small compared to the
fluctuations in K, and that the two were relatively uncorre-
lated, so that the velocity (v) increments would be constant
multiples of the K increments. This enabled simple a priori
estimation of both a and D in equation (1). They argued
that this assumption should be best when K fluctuations
were very large; however, the validity of this assumption is
untested. Figure 1 shows the longitudinal distribution of
tritium mass during the MADE-2 tests along the central

‘‘core’’ of the plume for MADE-2 snapshots 3 and 4. The
core was obtained by taking the maximum tritium concen-
tration for a given set of samplers some distance from the
injection point along the direction of mean trajectory. Also
plotted are the a-stable solutions to the fractional ADE (1)
and the Gaussian solutions to the traditional ADE. All
parameters in equation (1) were estimated a priori using the
statistics of the K field and the assumption that the v
distribution is similar to that of the K field. The value of
the dispersion coefficient is a constant in the fractional
ADE for all time periods. The traditional ADE was
modeled with a "best fit" dispersion coefficient for each
time period, in the same manner as Adams and Gelhar
[1992]. The fractional ADE is able to model the peak
concentration and the highly skewed movement of the core
of the plume. Because the stable solutions have heavy tails,
the data were also plotted using semilog and log-log axes
(Figures 1b and 1c). For brevity, only the last two snap-
shots are shown in the plots. The later time snapshots show
that the transport is dominated by heavy tailed (power law)
motions.
[9] The first conjecture used to estimate the parameter a

is that heavy-tailed K distributions, P(K 
 y) � Wy�a, give
rise to heavy-tailed velocity distributions with a similar tail
parameter. This assumes that fluctuations from the mean
hydraulic gradient divided by the porosity are negligible and
uncorrelated with the K fluctuations, so that Darcy’s law v =
�K(rh/n), where rh is the regional hydraulic gradient and
n is the porosity, is locally valid. This assumption, and the
substitution J = �rh, leads to the velocity distribution P(v

 y) � W(ny/J )�a with the same tail parameter as the K
distribution. The second conjecture is that heavy tailed
velocity distributions give rise to heavy tailed particle jumps
with a similar tail parameter. This assumes that the particles
have a well-defined mean duration of each motion (i.e., the
temporal correlation of particle velocity is small), and
allows the Markov property to be used in the derivation
of equation (1). The focus of this research was to test the
first conjecture; further particle tracking simulations can
check the second.

4. Monte Carlo Simulations

[10] Two batches of Monte Carlo simulations (100
simulations per batch) were conducted to determine
whether the velocity field has a power law tail and to
compare the tail parameters that describe the hydraulic
conductivity (aK) and velocity (av) fields. The first batch
was run with aK = 1.1 (characterizing a highly heteroge-
neous system) and the second batch with aK = 1.8
(characterizing a mildly heterogeneous system). The aK =
1.1 value was chosen to mimic the K field at the MADE
site [Benson et al., 2001]. The aK = 1.8 value was chosen
to test the same assumption, but on a system that is not so
heterogeneous. The two batches of simulations may also
indicate a relationship between the K and velocity field tail
parameters.

4.1. Heavy Tailed K Fields With Long-Range
Dependence

[11] The generation of the K fields described below is a
modified version of the p-field simulation approach
described by Goovaerts [1997] and Deutsch and Journel
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[1998]. With this method, a correlated random field is
generated based on a certain distribution function. The
values are ranked and replaced by similarly ranked values
drawn from a different distribution [Painter, 2001]. Since
the fractional ADE implies infinite velocity correlation
lengths [Benson, 1998], we created K fields with both the
long-range dependence (LRD) and a heavy tailed distribu-
tion. For a detailed description of various random processes
with long-range dependence and high variability, see Taqqu
[1987]. A fractional Brownian motion (fBm) algorithm
[Painter, 2001] was used to generate the LRD portion of
the K fields. A Hurst coefficient of H = 0.40 in agreement
with Molz and Liu’s [1997] study of the vertical variation of
K at the MADE site was used in the fBm algorithm.
Anisotropy was then introduced by specifying that the
correlation extended 10 times farther in the horizontal
versus vertical direction.

[12] In general agreement with the �K data from the
MADE site [Benson et al., 2001], we used the shifted Pareto
distribution function to define the underlying distribution of
the K fields:

F Kð Þ ¼ 1�W � K � sð Þ��; ð2Þ

where a > 0, W is the Pareto scale factor (W > 0), s is the
shift (s < 0), and K 
 0. A shift of s = �10�2 cm/s, resulting
in a scale factor of W = (�s)a = 10�2a (cm/s)a, was used in
the simulations. The shifted Pareto was chosen because the
numbers falling within the distribution are positive, heavy
tailed, in the domain of attraction of a stable, and fit the �K
data at the MADE site.
[13] The heavy tailed random numbers that defined the K

field were truncated at 300 cm/s. We chose this extremely

Figure 1. Plots of the MADE-2 normalized longitudinal tritium mass distribution from the final two
snapshots (3 and 4) along with analytic solutions of the classical ADE and the fractional ADE using (a)
linear axes, (b) semilog axes, and (c) log-log axes [after Benson et al., 2001].
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large value for K to maintain the power law for most of the
high-K tail. Our objective was to look for similarity in the K
and velocity distributions from a theoretical standpoint. It is
unknown how reasonable the cutoff is, since over 500,000
K values are generated in these simulations, and real
aquifers are never sampled in such detail.
[14] The final step in the p-field algorithm is to map the

Pareto-distributed random numbers into the fBm field, i.e.,
the highest numbers in the fBm are replaced by the highest
numbers generated using the shifted Pareto (2) and so on.
This maintains the spatial correlations built into the fBm
algorithm, but changes the underlying distribution from a
Gaussian to a heavy tailed distribution. Figure 2 shows a 1-
D realization of a fBm field and resulting LRD heavy tailed
K field generated. Although log(K ) is shown, it is important
to remember that the untransformed K values, not log(K),
are heavy-tailed. For a more detailed description of the
generation of the K fields, see Herrick [2001].

4.2. Flow Model

[15] A 3-D computational domain in the shape of a
rectangular box was used. The size of the box was 320 m
by 160 m by 10 m, in general agreement with the aquifer
studied at the MADE site [Boggs et al., 1993]. The model
domain was broken up into 512,000 total cells of size 2 m by
2 m by 0.25 m. Constant head values were maintained on the
up-stream and down-stream faces of the domain, with no-
flow conditions enforced on the remaining four lateral faces.
The constant head values induce an average head gradient of
0.005, also in general agreement with the MADE site. In
addition to the anisotropy established in the fBm algorithm,
anisotropy in the magnitude of K was introduced by setting
the ratio of vertical to horizontal K at 0.1.
[16] The numerical code MODFLOW [McDonald and

Harbaugh, 1988; Harbaugh and McDonald, 1996] was
used to compute the steady state groundwater flow equa-
tion. The logarithmic mean was used to calculate the inter-
block K [Goode and Appel, 1992]. Convergence of the
PCG2 solver [Hill, 1990] was checked by calculating the

local mass balance at steady state for each cell in the model
domain. Local mass balance errors of less than 0.5% were
found in all cells.

5. Estimation of Tail Thickness

[17] The K values were generated with a known a;
however, we compared the a that describes the increments
of the data due to the question of stationarity of the K fields
that are based, in part, on a fBm. The tail parameter that
represents the increments of a data set is a good approx-
imation of the tail parameter that represents the actual
values for a nonstationary data set [Davis and Resnick,
1985]. Performing tail parameter estimates on both the K
and velocity data sets also ensures that any bias in a given
estimator is applied to both data sets. Thus, a direct
comparison can be made between aK and av.
[18] The generation of the K fields was set up so that

flow would predominantly be in the horizontal directions.
Because the K fields are isotropic in the horizontal direc-
tion, only one tail parameter estimate of the vertical incre-
ments of hydraulic conductivity (�K ) was needed. The
resulting velocity increments may not be isotropic, so we
examined the vertical increments of both the longitudinal
(�vL) and transverse (�vT) velocities. The longitudinal
direction of flow was assumed to be perpendicular to the
constant head boundary faces, whereas the transverse
direction of flow was assumed to be parallel to the constant
head boundary faces. This is a valid assumption when
averaging the entire model domain, but does not necessarily
represent longitudinal and transverse flows for any individ-
ual cell. A determination of the exact longitudinal and
transverse flows for each individual cell would be numeri-
cally intensive.
[19] There are numerous tail estimators, however, a

robust estimator that accurately estimates a for all data sets
does not exist. Three different numeric estimators and a
graphical estimator were employed in this study to examine
the K and velocity fields.

Figure 2. 1-D realization of an fBm field and resulting LRD heavy tailed K field (H = 0.4). For a direct
comparison, the log(K) field is displayed.
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[20] A log-log plot of the empirical distribution function
is often used to estimate a from a data set. This graphical
method was pioneered byMandelbrot [1963] in his work on
heavy tails, and will be called the Mandelbrot plot. If the
random data y follow a Pareto distribution F( y) = P(Y > y) =
Wya, then log F( y) = log C � alog y. By sorting the data in
descending order to obtain the order statistics Y1 
 Y2

. . .
 Yn, we have approximately that y = Yr when F( y) =
r/n. A Mandelbrot plot of log(Yr) versus log(r/n) should be
approximately linear with slope �a for heavy tailed data.
Simple linear regression can be used to estimate a from a
Mandelbrot plot, but this method can be affected by a few
extreme values and typically performs poorly [Benson et al.,
2001]. A semilog plot of the empirical distribution function
of the �vL and �vT for a single realization from both the
highly heterogeneous and mildly heterogeneous simulations
are displayed in Figures 3a and 3b. If the data were
exponentially distributed, they would plot as a straight line
in semilog space. The fact that the data are concave upward
for both realizations indicates that the velocity increments

are heavier tailed than an exponential distribution. Log-log
(Mandelbrot) plots of the same data are shown in Figures 4a
and 4b. Straight lines of known slopes are also plotted.
From the highly heterogeneous realization, visual inspection
indicates that the tail parameters describing �v fall some-
where between 1.1 and 1.6 depending upon what percentage
of the data is examined. Visual inspection from the mildly
heterogeneous realization indicates that the tail parameters
describing �v are slightly larger and between 1.8 and 2.0.
The magnitude of �v in the highly heterogeneous realiza-
tion is a bit larger than �v in the mildly heterogeneous
realization. This is expected since the probability of drawing
large K values is greater when aK is smaller. Mandelbrot
plots for both realizations examined also indicate that the
slopes defining �vL and �vT appear to be approximately
the same, indicating that a is the same in both directions.
Other cases considered exhibit the same pattern from both
batches of realizations.
[21] Perhaps the most widely used tail estimator is Hill’s

[1975] estimator, the conditional maximum likelihood esti-

Figure 3. Semilog plots of the empirical distribution function for �vL and �vT for a single realization
from the highly heterogeneous (a) and mildly heterogeneous (b) simulations.
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mation (MLE) for a Pareto distribution, based on the r
largest order statistics. When applying Hill’s estimator, one
should choose r as large as possible, but small enough so
that the largest order statistics lie within the portion of the
distributional tail where this approximation is valid. Hill’s
estimator can give misleading results when applied to stable
data [McCulloch, 1997]. It has a significant bias for 1.5 < a
< 2 and can yield estimates of a much greater than 2 when
the true a is less than 2 [Meerschaert and Scheffler, 1998].
Despite its drawbacks, Hill’s estimator was used in this
study because of its popularity in statistical analysis of
heavy tailed data sets.
[22] Aban and Meerschaert [2001] recently developed a

modification of Hill’s estimator. Hill’s estimator is scale-
invariant, in that a multiplicative factor in the data will not
affect the estimate. However, it is not shift-invariant, since an
additive factor will distort the estimates. The modified Hill’s
estimator, called shifted Hill’s estimator, is both shift and
scale invariant. Shifted Hill’s estimator is the conditional

MLE for a shifted Pareto distribution (2). As with Hill’s
estimator, one must choose a certain percentage r of the
distribution tail where the approximation is valid. Shifted
Hill’s estimator exhibits significantly more variability than
the traditional Hill’s estimator, due to the fact that we are
estimating an additional parameter, the shift. The advantage
to using shifted Hill’s estimator is that, given an optimal shift,
shifted Hill’s estimator is able to better estimate awhen 1.5 <
a < 2 [Aban and Meerschaert, 2001].
[23] Figure 5 shows Hill’s and shifted Hill’s estimators for

�vL as a function of the highest order statistics for three
realizations from the highly heterogeneous batch of simu-
lations. The three realizations represent approximately the
minimum, median, and maximum a estimation for the
longitudinal velocity increments. All three realizations are
stable over the range representing the largest 2% to 5% of the
data using shifted Hill’s estimator. The same three realiza-
tions are not as stable for Hill’s estimator indicating that the
data have a nonzero shift. The �vT for these realizations as

Figure 4. Log-log plots (Mandelbrot plots) of the empirical distribution functions for �vL and �vT
from the highly heterogeneous (a) and mildly heterogeneous (b) simulations examined in Figure 3. Also
plotted are dashed lines with known slope a.
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Figure 5. Hill’s (a) and shifted Hill’s (b) estimation of a as a function of the highest order statistics.

Table 1. Summary Statistics of a Using Meerschaert/Scheffler (M/S), Hill’s, and Shifted Hill’s (S-Hill’s) Estimators Based on 100

Realizations From the Highly Heterogeneous (aK = 1.1) and Mildly Heterogeneous (aK = 1.8) Simulationsa

Statistic

Highly Heterogeneous Field (aK = 1.1)

�K �vL �vT

M/S Hill’s S-Hill’s M/S Hill’s S-Hill’s M/S Hill’s S-Hill’s

Minimum 0.839 0.767 0.730 1.147 1.139 1.114 1.067 1.067 0.950
Lower quartile 0.870 0.842 0.900 1.311 1.427 1.590 1.226 1.303 1.413

Median 0.888 0.890 0.943 1.378 1.587 1.740 1.276 1.442 1.604
Upper quartile 0.898 0.923 0.976 1.440 1.773 1.934 1.345 1.588 1.822
Maximum 0.923 1.104 1.139 1.579 2.678 3.433 1.512 2.228 3.346

Statistic

Mildly Heterogeneous Field (aK = 1.8)

�K �vL �vT

M/S Hill’s S-Hill’s M/S Hill’s S-Hill’s M/S Hill’s S-Hill’s

Minimum 0.815 1.054 0.941 1.305 1.426 1.528 1.239 1.341 1.537
Lower quartile 1.017 1.185 1.328 1.497 1.881 2.176 1.412 1.782 2.094

Median 1.069 1.267 1.423 1.556 2.098 2.451 1.489 1.937 2.428
Upper quartile 1.109 1.328 1.501 1.613 2.325 2.965 1.538 2.129 2.916
Maximum 1.227 1.697 1.923 1.750 3.094 5.719 1.684 2.910 5.473

aResults for Hill’s and shifted Hill’s estimators are for the top 5% of the data.
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well as realizations from the mildly heterogeneous batch of
simulations exhibit similar patterns in regards to stability.
[24] Meerschaert and Scheffler [1998] developed a

method for estimating the thickness of heavy tails based on
the asymptotics of sums. This robust estimator depends only
on a, and not on the exact form of the distribution. The
estimator even works for dependent data. Meerschaert and
Scheffler’s [1998] estimator, like the shifted Hill’s estimator,
performs quite well when a approaches 2. The primary

advantage of the Meerschaert and Scheffler estimator is that
it uses all of the data to estimate a, unlike Hill’s and shifted
Hill’s estimators that are based on a percentage of the largest
order statistics.
[25] Summary statistics of Meerschaert and Scheffler

(M/S), Hill’s, and shifted Hill’s estimators for 100 realiza-
tions from both the highly heterogeneous and mildly
heterogeneous simulations are presented in Table 1 and
Figures 6a and 6b. The primary result is that the tail

Figure 6. Box plot of a using M/S, Hill’s and shifted Hill’s estimators, based on 100 realizations from
the highly heterogeneous (a) and mildly heterogeneous (b) simulations. Results for Hill’s and Shifted
Hill’s estimators are for the largest 5% of the data. The box for each estimator represents the upper and
lower quartiles (Q3 and Q1) and the median (Q2). The fences on either side of the box are of length
1.5(Q3-Q1) and the asterisks represent outliers.
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parameters that describe the vertical velocity increments
are statistically significantly larger than the tail parameters
that describe the vertical K increments. The statistical
significance is shown by the nonoverlap of the box plots.
Another notable result is that a is significantly smaller for
�K than for the K distribution itself. We attribute this to
the vertical anticorrelation given to the K field by the fBm
with a Hurst coefficient of 0.4. The anticorrelation tends to
place small and large K values next to each other in the

vertical direction, leading to a higher propensity for large
increments.
[26] It is interesting to note that tail parameter estimations

for the mildly heterogeneous case are much more broadly
distributed than for the highly heterogeneous case. This is
probably due to the fact that tail parameter estimation
becomes more difficult as a approaches 2. The spread of
the sampling distribution for the three estimators is differ-
ent, however, they all predict the same trend. All estimators

Figure 7. A realization of the K field (a) and resulting velocity field (b) for (Sim 75). This realization
consistently gave small av values for all estimators.
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show that a is slightly smaller but not statistically different
in the transverse direction than the longitudinal direction.

6. Correlation of K and Velocity Fields

[27] We now turn our attention to the possible factors that
contribute to the increase in a for v versus K. The correlation
structure of the K fields was based on the LRD built into the

fBm algorithm. LRD simply means that the correlation
between K values decreases as a power law of the distance
between sample locations. This gives rise to infinite correla-
tion lengths [Taqqu, 1987]. In this section, the correlation
structure of two realizations from the highly heterogeneousK
field (aK = 1.1) is visually examined. The two realizations
chosen represent end-members of the spectrum for tail
parameter estimation, even though they were created with

Figure 8. A realization of the K field (a) and resulting velocity field (b) for (Sim 80). This realization
consistently gave large av values for all estimators.
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the sameK statistics. Hill’s estimator for the first realization
chosen (Sim 75) gave values of a for �vL of 1.14 and for
�vT of 1.07. Hill’s estimator for the second realization
chosen (Sim 80) gave values of a for �vL of 2.30 and for
�vT of 2.00.
[28] For visualization purposes a logarithmic transforma-

tion of the data was performed. Figure 7 shows the K and
total velocity magnitude fields for Sim 75. A plot of the
same data with only the largest values visible is also shown.
A path of high hydraulic conductivities runs from one
constant head boundary to the other. This allows a contin-
uous path of large velocities.
[29] Visualizations of Sim 80 are displayed in Figure 8.

Here, there are two separate regions in the model domain
where the hydraulic conductivities are large. The resulting
velocity field for this K field shows a much smaller
percentage of large velocities than for Sim 75. This can
be directly attributed to the discontinuous nature of the high
K regions for this realization.
[30] The cross-correlation between K and velocity mag-

nitude at zero lag for Sim 75 is shown in Figure 9a. A

regression analysis was performed on the log-transformed
K and velocity data. This transformation assumes, among
other things, that the two parameters are related by a
power law and that the residuals are log normally dis-
tributed. The regression analysis performed on Sim 75
appears to be valid with a power law relationship v =
0.0015K 0.77 and strong positive correlation coefficient r =
0.90 between the logs of the two parameters. The same
analysis was also performed on Sim 80 (Figure 9b). A
power law relationship v = 0.00015K 0.45 and weaker
correlation coefficient of r = 0.70 was determined. How-
ever, the assumptions of a constant error variance and
linearity inherent in a regression analysis are questionable
for Sim 80.

7. Discussion and Conclusions

[31] The results for both sets of Monte Carlo simulations
show that heavy tailed K fields do give rise to heavy tailed
velocity fields. However, the velocity distributions have
statistically significantly larger tail parameters than the K

Figure 9. Scatterplot of the K versus total velocity for Sim 75 (a) and Sim 80 (b). The regression
analysis and data displayed are for every twentieth data value from the two data sets.
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distributions. This indicates that the hydraulic gradient is
not uniform and that a weak negative correlation exists
between the K fluctuations and the hydraulic gradient. If the
tail parameter is considered to be a measure of the hetero-
geneity of the system, i.e., smaller a ! heavier tail thick-
ness ! more heterogeneity [Painter and Patterson, 1994],
then our results indicate that heterogeneous K fields give
rise to less heterogeneous velocity fields.
[32] Flow modeling indicates that the local random var-

iables K and v can be related by a power law:

v ¼ CKm; ð3Þ

where the power m is dependent on the strength of the
point cross-correlation between the local K and velocity
magnitudes. This relationship could also be interpreted as
an effective nonlinear Darcy law with the constant C
representing some effective regional hydraulic gradient.
Substituting the power law K distribution with tail
parameter a into equation (3) gives rise to a velocity
distribution with probability P(v 
 y) = Dy�a/m. From the
two realizations examined, m < 1, indicating that the
power for the velocity distribution is larger than the power
for the K distribution.
[33] Continuous connected paths of large hydraulic con-

ductivities are necessary for heavy tailed K distributions to
give rise to heavy tailed velocity distributions with a similar
tail parameter. Two end-members illustrate this point: flow
perpendicular and parallel to perfectly layered soil. For flow
perpendicular to layering, conservation of mass dictates that
the flow is constant and the equivalent hydraulic conduc-
tivity is given by the harmonic mean. Since the velocity is
constant, the exponent m = 0 in equation (3). On the other
hand, for flow parallel to layering, the velocity in each layer
is v = �K(rh/n). With a constant rh/n, the velocities are a
constant multiple of the random K values. Therefore the
exponent m in equation (7) is unity, and the tail parameters
aK and av are equal.
[34] The K fields we created were heterogeneous in all

directions. If the K correlation decayed quickly, then flow
would have to cross heterogeneous units. However, if the
spatial correlation of the K fields is such that continuous
connected paths of large hydraulic conductivities exist from
one constant head boundary to another, then flow in parallel
is a more appropriate approximation. All random K fields
must lie somewhere between the end-members discussed
above, so the connectivity of high K layers is important in
estimating the exponent m in the effective Darcy’s law (3),
and the eventual order of the fractional derivative in
equation (1).
[35] This also has ramifications for conducting numerical

simulations when LRD is present. Many sites under study
do not have physically based no-flow and constant head
boundaries. The K field will largely direct water flow and
create flow in parallel. The effective no-flow and constant
head boundaries become aligned with the connected flow
paths themselves. However, when a numerical model of the
site is built, the boundaries are typically imposed without
regard to the alignment of the long-range, connected, high-
K fraction. Arbitrarily positioning the boundaries so that
flow is forced to go perpendicular to the prevailing layering
or connectivity may not accurately represent a real system.

In short, generation of a random K field with LRD may not
fully specify the flow field, since different realizations of the
same model can significantly change the velocity statistics,
particularly for the highest velocities.
[36] Additional work needs to be performed to investigate

the validity of a fractional ADE. A natural extension of the
work performed here would be to track particles through the
velocity fields examined in this study. An examination of
the temporal correlation, as well as the spatial moments as a
function of the mean travel distance would give another
estimate of the order of the fractional dispersion derivative.
The results would also test the second assumption stated
above: that heavy tailed velocity fields give rise to heavy
tailed particle jumps and a convergence to Lévy motion
modeled by a fractional ADE.
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was also partially supported by the G.B. Maxey Fellowship from the Desert
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