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BROWNIAN SUBORDINATORS
AND FRACTIONAL CAUCHY PROBLEMS

BORIS BAEUMER, MARK M. MEERSCHAERT, AND ERKAN NANE

Abstract. A Brownian time process is a Markov process subordinated to
the absolute value of an independent one-dimensional Brownian motion. Its
transition densities solve an initial value problem involving the square of the
generator of the original Markov process. An apparently unrelated class of
processes, emerging as the scaling limits of continuous time random walks, in-
volves subordination to the inverse or hitting time process of a classical stable
subordinator. The resulting densities solve fractional Cauchy problems, an ex-
tension that involves fractional derivatives in time. In this paper, we will show
a close and unexpected connection between these two classes of processes and,
consequently, an equivalence between these two families of partial differential
equations.

1. Introduction

The goal of this paper is to establish a connection between two seemingly dis-
parate classes of subordinated stochastic processes and their governing equations.
The first class of processes uses Brownian motion as a subordinator [1, 2, 18, 19,
20, 21]. The second class uses the inverse or hitting time process of a nondecreasing
stable Lévy process as a subordinator [38, 39, 40, 12, 41]. One application of the
Brownian subordinator involves scaling limits of transverse diffusion in a crack [21].
Inverse Lévy subordinators occur in scaling limits of continuous time random walks
used to model anomalous diffusion in physics [43, 44, 61], finance [27, 42, 57], and
hydrology [13, 15, 59]. Neither class of processes is Markovian. However, their tran-
sition densities satisfy certain abstract differential equations that characterize the
evolution of the process. Given a Markov process whose transition densities solve
a Cauchy problem, a Brownian subordinator yields another process whose one-
dimensional distributions solve a related initial value problem involving the square
of the generator of the Markov semigroup. Subordinating the same Markov process
to an inverse stable Lévy process leads to a fractional Cauchy problem, where the
integer time derivative is replaced by a fractional derivative whose order equals the
stable index. Both situations lead to anomalous subdiffusion, where probability
mass spreads slower than the classical t1/2 rate seen in Brownian motion. In this
paper we will show that, when the order of the fractional derivative equals 1/2, the
two governing equations have the same unique solution, and hence the two processes

Received by the editors June 26, 2007 and, in revised form, November 13, 2007.
2000 Mathematics Subject Classification. Primary 60J65, 60J60, 26A33.
Key words and phrases. Fractional diffusion, Lévy process, Cauchy problem, iterated Brownian

motion, Brownian subordinator, Caputo derivative.
The second author was partially supported by NSF grant DMS-0417869.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

3915



3916 BORIS BAEUMER, MARK M. MEERSCHAERT, AND ERKAN NANE

have the same one-dimensional distributions. Similar observations apply for other
values of the fractional time derivative, and there are connections to subordination
by a symmetric stable process. In applications to physics, the principal appeal of
both classes is that the subordinators have a pleasant scaling property that can be
inherited by the subordinated processes.

A Lévy process B(t) has stationary, independent increments and t �→ B(t) is
continuous in probability; see, for example, Bertoin [16] or Sato [56]. Classical
Brownian motion in R

d is the special case where B(t) has a mean zero normal
distribution. In this case, the probability distribution p(t, x) of x = B(t) solves
the diffusion equation ∂p/∂t = D ∆p for some D > 0, where ∆ =

∑
i ∂2/∂x2

i .
The random walk model of particle motion, where particles undergo independent
identically distributed jumps at regularly spaced intervals in time, converges to
Brownian motion as both the spatial and time scales increase to infinity. This
close connection between Brownian motion and the diffusion equation is due to
Bachelier [5] and Einstein [24]. Sokolov and Klafter [63] discuss modern extensions
to include heavy tailed particle jumps and random waiting times, leading to frac-
tional diffusion equations, the simplest of which is ∂βp/∂tβ = −D (−∆)α/2p. The
fractional Laplacian reflects heavy tailed particle jumps, where the probability of a
jump magnitude exceeding some large r > 0 diminishes like r−α, and the fractional
time derivative codes heavy tailed waiting times, where the probability of waiting
longer than t falls off like t−β. Heavy tails in space lead to superdiffusion, where a
plume of particles spreads faster than the classical t1/2 rate associated with Brown-
ian motion. Heavy tails in time lead to subdiffusion, since long waiting times retard
particle motion. See Metzler and Klafter [43, 44] for a recent survey.

A completely different model of particle motion emerges from the theory of
random walks in random media, pioneered by Sinai [62]. These models lead to
interesting localization phenomena [25, 53] not seen in the case of random waiting
times [17]. A closely related problem is diffusion on fractals [7, 8, 9]. One particular
application, diffusion in a crack, was led Burdzy and Khoshnevisan [21] to consider
Brownian subordinators. In particular, a two-sided Brownian motion subordinated
to an independent Brownian subordinator yields the scaling limit of transverse
diffusion in a crack. Essentially, the crack is modeled using the sample path of the
outer process, and the inner process or subordinator codes the subdiffusive effect of
restricted motion in the crack. Given this history, it would be difficult to imagine
that these two classes of non-Markovian processes exhibit any close connections.
However, we will show that they are very closely related.

2. Background

Let B(t) be a Brownian motion on R
d and Yt another independent one-dimen-

sional Brownian motion. Allouba and Zheng [1, 2] introduce a process they call
Brownian time Brownian motion (BTBM) defined as Zt = B(|Yt|). A related
process called iterated Brownian motion process (IBM) was first considered by
Burdzy [18]. Take B1(t), B2(t) to be independent Brownian motions on R

d, and
Yt as before. Define a two-sided Brownian motion by B(t) = B1(t) for t ≥ 0
and B2(−t) for t < 0. Then the IBM process is defined by Zt = B(Yt). Various
extensions of the BTBM or IBM have been considered, including a general Markov
outer process [1, 2] and a symmetric stable subordinator studied by Nane [47, 48].
Similarly, the excursion-based Brownian-time process is defined by breaking up
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the path of |Y (t)| into excursion intervals (i.e., maximal intervals of time on which
|Y (t)| > 0) and, on each such interval, choosing an independent copy of the Markov
process from a finite or an infinite collection. A simple conditioning argument shows
that all these Brownian time processes have the same transition density functions,
and hence the same one-dimensional distributions [2]. A similar remark holds for
symmetric stable subordinators. That these processes are non-Markovian can be
seen by noting that the transition densities do not solve the Kolmogorov equations.

Allouba and Zheng [2] and DeBlassie [23] show that for iterated Brownian motion
(IBM) Zt = B(Yt) the function

u(t, x) = Ex[f(Zt)] := E[f(Zt)|Z0 = x]

solves the initial value problem

(2.1)
∂

∂t
u(t, x) =

∆f(x)√
πt

+ ∆2u(t, x); u(0, x) = f(x)

for t > 0 and x ∈ R
d. The non-Markovian property of IBM is reflected in the

appearance of the time-variable initial term in the PDE.
For a Markov process X, the family of linear operators T (t)f(x) = Ex[f(X(t))] =

E[f(X(t))|X(0) = x] forms a bounded continuous semigroup on the Banach space
L1(Rd), and the generator Lxf(x) = limh↓0 h−1(T (h)f(x) − f(x)) is defined on a
dense subset of that space; see, for example, [4, 28]. Then u(t, x) = T (t)f(x) solves
the Cauchy problem

(2.2)
∂

∂t
u(t, x) = Lxf(x); u(0, x) = f(x)

for t > 0 and x ∈ R
d. Allouba and Zheng [2] show that if we replace the outer

process B(t) with a continuous Markov process X(t), the equation (2.1) holds,
except that we replace the Laplacian in the PDE (2.1) with the generator Lx of
the continuous semigroup associated with this Markov process. That is, u(t, x) =
Ex[f(Zt)] solves the initial value problem

(2.3)
∂

∂t
u(t, x) =

Lxf(x)√
πt

+ Lx
2u(t, x); u(0, x) = f(x)

for t > 0 and x ∈ R
d.

Remark 2.1. Iterated Brownian motion (IBM) has many properties analogous to
those of Brownian motion. The process Zt has stationary (but not independent)
increments, and is self-similar with index 1/4, meaning that Zct and c1/4Zt have the
same finite-dimensional distributions for every c > 0. Burdzy (1993) [18] showed
that IBM satisfies a Law of the iterated logarithm (LIL):

lim sup
t→∞

Zt

t1/4(log log(1/t))3/4
=

25/4

33/4
a.s.

A Chung-type LIL by was established by Khoshnevisan and Lewis [35] and Hu et
al. [30]. Khoshnevisan and Lewis [36] extended results of Burdzy [19] to develop
a stochastic calculus for IBM. Local times of IBM were studied by Burdzy and
Khosnevisan [20], Csáki et al. [22], Shi and Yor [60], Xiao [64], and Hu [29].
Bañuelos and DeBlassie [11] studied the distribution of the exit place for IBM in
cones. Nane studied the lifetime asymptotics of IBM on bounded and unbounded
domains [45, 46, 50], and generalized isoperimetric-type inequalities to IBM [49].
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Remark 2.2. Funaki [26] considered a different version of iterated Brownian motion
and studied the PDE connection of that process. Nane [47] established the PDE
connection of a related class of processes defined in a similar manner, replacing the
inner time process with a symmetric stable process.

Zaslavsky [65] introduced the fractional kinetic equation

(2.4)
∂β

∂tβ
u(t, x) = Lxu(t, x); u(0, x) = f(x)

for Hamiltonian chaos, where 0 < β < 1 and Lx is the generator of some continuous
Markov process X0(t) started at x = 0. Here ∂βg(t)/∂tβ is the Caputo fractional
derivative in time, which can be defined as the inverse Laplace transform of sβ g̃(s)−
sβ−1g(0), with g̃(s) =

∫ ∞
0

e−stg(t)dt the usual Laplace transform. Baeumer and
Meerschaert [10] and Meerschaert and Scheffler [40] show that the fractional Cauchy
problem (2.4) is related to a certain class of subordinated stochastic processes. Take
Dt to be the stable subordinator, a Lévy process with strictly increasing sample
paths such that E[e−sDt ] = e−tsβ

; see, for example, [16, 56]. Define the inverse or
hitting time or first passage time process

(2.5) Et = inf{x > 0 : D(x) > t}.
The subordinated process Zt = X0(Et) occurs as the scaling limit of a continuous
time random walk (also called a renewal reward process), in which iid random
jumps {Yi} are separated by iid positive waiting times {Ji} [40]. If the waiting
times satisfy P (Ji > t) = t−βL(t), where 0 < β < 1 and L(t) is slowly varying,
then they belong to the strict domain of attraction of a stable law with index β,
and their partial sum process St = J1 + · · · + J[t] converges after rescaling to the
process Dt, in the Skorokhod J1 topology on D(R+, R). The number of jumps by
time t > 0 is given by the inverse process Nt = max{n : Sn ≤ t}, and [40] shows
that a rescaled version of Nt converges to the hitting time process Et in the same
topology. Similarly, if the iid vector particle jumps {Yi} satisfy a multivariable
regular variation condition (or if they have a finite covariance matrix), then the
partial sum process V (t) = Y1 + · · · + Y[t] converges after linear operator rescaling
to the operator Lévy motion X0(t), in the Skorokhod J1 topology on D(R+, Rd);
see [40, Theorem 4.1]. An operator Lévy motion is a Lévy process such that X0(t)
has a centered operator stable distribution; see [37, Example 11.2.18]. This means
that X0(ct) and cEX0(t) are identically distributed for all c > 0, for some linear
operator E; see, for example, [34, 37]. The continuous time random walk V (St)
models the location of a particle at time t > 0. A continuous mapping argument,
under some mild technical conditions, yields convergence of the rescaled CTRW to
the subordinated process X0(Et) in the somewhat weaker M1 topology; see [40].
Given a Banach space and a bounded continuous semigroup T (t) on that space
with generator Lx, it is well known that p(t, x) = T (t)f(x) is the unique solution
to the abstract Cauchy problem

(2.6)
∂

∂t
p(t, x) = Lxp(t, x); p(0, x) = f(x)

for any f in the domain of Lx; see, for example, [4, 52]. Theorem 3.1 in [10] shows
that, in this setting, the formula

(2.7) u(t, x) =
∫ ∞

0

p((t/s)β, x)gβ(s) ds
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yields the unique strong solution to the fractional Cauchy problem (2.4). Here gβ(t)
is the smooth density of the stable subordinator such that the Laplace transform
g̃β(s) =

∫ ∞
0

e−stgβ(t) dt = e−sβ

. Choose x ∈ R
d and let X(t) = x+X0(t). It follows

from Theorem 5.1 in [40] that, in the special case where T (t)f(x) = Ex[f(X(t))]
is the semigroup on L1(Rd) associated with the operator Lévy motion X(t), the
same formula (2.7) also equals u(t, x) = Ex[f(Zt)], where Zt = X(Et) is the CTRW
scaling limit process. Hence the subordinated process Zt is the stochastic solution
to the fractional Cauchy problem (2.4) in this case.

In the case where X0(t) is a Lévy process started at zero and X(t) = x + X0(t)
for x ∈ R

d, the generator Lx of the semigroup T (t)f(x) = Ex[f(X(t))] is a pseudo-
differential operator [3, 31, 58] that can be explicitly computed by inverting the
Lévy representation. The Lévy process X0(t) has characteristic function

E[exp(ik · X0(t))] = exp(tψ(k))

with

ψ(k) = ik · a − 1
2
k · Qk +

∫
y �=0

(
eik·y − 1 − ik · y

1 + ||y||2

)
φ(dy),

where a ∈ R
d, Q is a nonnegative definite matrix, and φ is a σ-finite Borel measure

on R
d such that ∫

y �=0

min{1, ||y||2}φ(dy) < ∞;

see, for example, [37, Theorem 3.1.11] and [3, Theorem 1.2.14]. Let

f̂(k) =
∫

Rd

e−ik·xf(x) dx

denote the Fourier transform. Theorem 3.1 in [10] shows that Lxf(x) is the inverse
Fourier transform of ψ(k)f̂(k) for all f ∈ D(Lx), where

D(Lx) = {f ∈ L1(Rd) : ψ(k)f̂(k) = ĥ(k) ∃ h ∈ L1(Rd)},
and

Lxf(x) = a · ∇f(x) +
1
2
∇ · Q∇f(x)

+
∫

y �=0

(
f(x + y) − f(x) − ∇f(x) · y

1 + y2

)
φ(dy)

(2.8)

for all f ∈ W 2,1(Rd), the Sobolev space of L1-functions whose first and sec-
ond partial derivatives are all L1-functions. This includes the special case where
X0(t) is an operator Lévy motion. We can also write Lx = ψ(−i∇), where
∇ = (∂/∂x1, . . . , ∂/∂xd)′. For example, if X0(t) is spherically symmetric stable,
then ψ(k) = −D‖k‖α and Lx = −D(−∆)α/2, a fractional derivative in space, using
the correspondence kj → −i∂/∂xj for 1 ≤ j ≤ d. If X0 has independent stable
marginals, then one possible form is ψ(k) = D

∑
j(ikj)αj and Lx = D

∑
j ∂αj /∂xα

j

using Riemann-Liouville fractional derivatives in each variable. This form does not
coincide with the fractional Laplacian unless all αj = 2.

Remark 2.3. The literature on fractional calculus uses a different semigroup defi-
nition. For example, in [10] the semigroup associated with a Lévy process X0(t)
started at x = 0 is defined by

TFC(t)f(x) = E[f(x − X0(t))] =
∫

Rd

f(x − y)PX0(t)(dy).
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One physical interpretation of this formula, when f(x) is the probability density of a
random variable W , is that W represents the location of a randomly selected particle
at time t = 0, and TFC(t)f(x) is the probability density of the random particle
location W + X0(t) at time t > 0. In this paper we use the semigroup definition
from the Markov process literature, based on the process X(t) = x+X0(t), so that

T (t)f(x) = Ex[f(X(t))] =
∫

Rd

f(x + y)PX0(t)(dy).

Clearly this is just a matter of replacing X0 by −X0. The paper [10] also uses a
different definition f̂FC(k) =

∫
eik·xf(x) dx for the Fourier transform. Each of these

two changes implies a change of k to −k in the formula for the Fourier transform of
the semigroup, and hence the Fourier symbol ψ(k) is the same for both. However,
the interpretation of the Fourier symbol as a pseudo-differential operator changes.
In the notation of this paper the derivative ∇f(x) has Fourier transform (ik)f̂(k),
but in the notation of [10] the Fourier transform is (−ik)f̂(k). Hence the generator
Lx = ψ(i∇) in that paper, which explains why equation (2.8) differs from the
corresponding formula (8) in [10].

Any Markov process semigroup operator T (t)f(x) = Ex[f(X(t))] is a pseudo-
differential operator

T (t)f(x) = (2π)−d

∫
Rd

eik·xλt(x, k)f̂(k) dk

on the space of rapidly decreasing functions [33, Theorem 1.4]. Under some mild
conditions, if the domain D(Lx) of the generator of the extension of this semigroup
to the Banach space of bounded continuous functions contains all smooth functions
with compact support, then one can write

Lxf(x) = a(x) · ∇f(x) +
1
2
∇ · Q(x)∇f(x)

+
∫

y �=0

(
f(x + y) − f(x) − ∇f(x) · y

1 + y2

)
φ(dy, x),

(2.9)

where a(x) ∈ R
d, Q(x) is a nonnegative definite matrix, and φ(dy, x) is a σ-finite

Borel measure on R
d for each x ∈ R

d such that∫
y �=0

min{1, ||y||2}φ(dy, x) < ∞;

see [32]. In this case, the Fourier symbol

ψ(k, x) = ik · a(x) − 1
2
k · Q(x)k +

∫
y �=0

(
eik·y − 1 − ik · y

1 + ||y||2

)
φ(dy, x),

and Lxf(x) = ψ(−i∇, x)f(x) is the inverse Fourier transform of ψ(k, x)f̂(k).

Remark 2.4. A connection between time-fractional equations and Brownian time
was also noticed by Orsingher and Behgin [51], using a very different approach.
They show that the density functions of iterated Brownian motion solve the one-
dimensional time-fractional equation ∂1/2u/∂t1/2 = ∂2u/∂x2 by considering this
equation as the end-member of a class of fractional telegraph equations.



BROWNIAN SUBORDINATORS AND FRACTIONAL CAUCHY PROBLEMS 3921

3. Main results

The results of this section establish a connection between two seemingly dis-
tinct classes of subordinated stochastic processes. Markov processes are stochastic
solutions to the abstract Cauchy problem (2.6). Brownian subordinators yield sto-
chastic solutions to an initial value problem (2.3) involving the square of the Markov
generator. Inverse stable subordinators yield solutions to a fractional Cauchy prob-
lem (2.4) with the same Markov generator. In the case where the stable index
β = 1/2, our first results show that these two equations have the same solutions,
and hence, the subordinated processes have the same one-dimensional distributions.

Theorem 3.1. Let Lx be the generator of a continuous Markov semigroup T (t)f(x)
= Ex[f(Xt)], and take f ∈ D(Lx), the domain of the generator. Then, both the
initial value problem (2.3) and the fractional Cauchy problem (2.4) with β = 1/2
have the same solution given by

u(t, x) =
2√
4πt

∫ ∞

0

T (s)f(x) exp
(
−s2

4t

)
ds.(3.1)

Proof. Note that the Markov semigroup T (t)f(x) = Ex[f(Xt)] is a uniformly
bounded and strongly continuous semigroup on the Banach space L1(Rd). Then
Theorem 3.1 in Baeumer and Meerschaert [10] shows that the function u(t, x) de-
fined by (2.7) is the unique solution of the fractional Cauchy problem (2.4) for any
f ∈ D(Lx). In the case β = 1/2, we have [3, Example 1.3.19]

g1/2(x) =
1√

4πx3
exp

(
− 1

4x

)
,

and then a change of variables shows that

u(t, x) =
t

β

∫ ∞

0

p(s, x)gβ(
t

s1/β
)s−1/β−1ds =

∫ ∞

0

p(s, x)q(t, s)ds,(3.2)

where p(t, x) = T (t)f(x) and

q(t, s) = 2tg1/2(t/s2)s−3 =
2t

s3
√

4πt3/s6
exp

(
−s2

4t

)

=
2√
4πt

exp
(
−s2

4t

)(3.3)

is a probability density on s > 0 for all t > 0. Hence we have that (3.1) is the
unique solution to the fractional Cauchy problem (2.4).

Allouba and Zheng [2] show that the initial value problem (2.3) has the solution
u(t, x) = Ex[f(Zt)], where Zt = B(|Yt|) is the IBM process. It is not hard to
check that the function q(t, s) in (3.3) is the probability density of the Brownian
subordinator |Yt|. Then a simple conditioning argument shows that

(3.4) u(t, x) = Ex[f(Zt)] =
∫ ∞

0

q(t, s)p(s, x)ds,

where p(s, x) = T (s)f(x) = Ex[f(Xt)] is the unique solution to the initial value
problem (2.6). Hence both the fractional Cauchy problem (2.4) and the initial value
problem (2.3) have the same solution. �



3922 BORIS BAEUMER, MARK M. MEERSCHAERT, AND ERKAN NANE

Corollary 3.2. For f ∈ D(∆x), both the initial value problem

(3.5)
∂

∂t
u(t, x) =

∆xf(x)√
πt

+ ∆2
xu(t, x); u(0, x) = f(x)

and the fractional Cauchy problem

(3.6)
∂1/2

∂t1/2
u(t, x) = ∆xu(t, x); u(0, x) = f(x)

have the same solution given by (2.7), where

(3.7) p(t, x) = T (t)f(x) =
∫

Rd

f(x − y)(4πt)−d/2 exp
(
−‖y‖2

4t

)
dy.

Proof. Apply Theorem 3.1 and note that (3.7) is the density of the Brownian motion
Markov process with generator ∆x. �

Suppose that X(t) is an operator Lévy motion, Et = inf{x > 0 : Dx > t} is the
inverse or hitting time process of the stable subordinator Dt with E[e−sDt ] = e−tsβ

,
and Zt = X(Et). Let Lx be the generator of the semigroup T (t)f(x) = Ex[f(X(t))],
a pseudo-differential operator defined by (2.8). It follows from Theorem 5.1 in [40]
that, for any initial condition f ∈ D(Lx), the function u(t, x) = Ex[f(Zt)] solves
the fractional Cauchy problem (2.4). Hence we call the non-Markovian process Zt

the stochastic solution to this abstract partial differential equation. The following
theorem extends this result to a broader class of driving processes.

Theorem 3.3. For any continuous Markov semigroup X(t) with generator Lx,
let Et = inf{x > 0 : Dx > t} be the inverse or hitting time process of the stable
subordinator Dt, independent of X, with E[e−sDt ] = e−tsβ

for some 0 < β < 1,
and take Zt = X(Et). Then for any initial condition f ∈ D(Lx), the function
u(t, x) = Ex[f(Zt)] solves the fractional Cauchy problem (2.4).

Proof. The proof is very similar to Theorem 3.1 above. Theorem 3.1 in [10] shows
that the function u(t, x) defined by (2.7) is the (unique) solution of the fractional
Cauchy problem (2.4) for any f ∈ D(Lx). A change of variables shows that (3.2)
holds, where gβ is the density of the random variable D1. Corollary 3.1 in [40] shows
that the function q(t, s) = tβ−1gβ(s−1/βt)s−1/β−1 is the density of the hitting time
Et, and then the result follows by a simple conditioning argument. �

Corollary 3.4. For any continuous Markov process X(t), both the Brownian-time
subordinated process X(|Yt|) and the process X(Et) subordinated to the inverse 1/2-
stable subordinator have the same one-dimensional distributions. Hence they are
both stochastic solutions to the fractional Cauchy problem (2.4), or, equivalently, to
the higher order initial value problem (2.3).

Proof. In the proof of Theorem 3.1 we noted that the function q(t, s) in (3.3) is the
probability density of the Brownian subordinator s = |Yt|, where Yt is a standard
Brownian motion. The proof of Theorem 3.3 shows that this function is also the
probability density of the inverse 1/2-stable subordinator s = Et. The result follows
from a simple conditioning argument. �
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Remark 3.5. The proof of Theorem 3.1 relies on Theorem 0.1 in Allouba and Zheng
[2], but the proof of Theorem 0.1 in that paper may not be completely rigorous.
The essential argument, using integration by parts twice, is that

∂

∂t
u(t, x) =

∫ ∞

0

T (s)f(x)
∂

∂t
q(t, s)ds

=
∫ ∞

0

T (s)f(x)
∂2

∂s2
q(t, s)ds

= q(t, s)
∂

∂s
[T (s)f(x)]

∣∣∣∣
s=0

+
∫ ∞

0

∂2

∂s2
[T (s)f(x)] q(t, s)ds

= q(t, 0)Lx[T (0)f(x)] +
∫ ∞

0

L2
x [T (s)f(x)] q(t, s)ds

=
1√
πt

Lxf(x) + L2
x

∫ ∞

0

T (s)f(x) q(t, s)ds,

which shows that (3.4) solves the higher order initial value problem (2.3). In a later
paper [1], Allouba points out that the last step, where the operator Lx is passed
outside the integral, is not obvious and adds this as a technical condition, which is
then verified in the special case Lx = ∆x, the Laplacian operator.

The next result is a restatement of Theorem 3.1 for Lévy semigroups. The proof
does not use Theorem 0.1 in Allouba and Zheng [2], rather it relies on a Laplace-
Fourier transform argument. We will use the following notation for the Laplace,
Fourier, and Fourier-Laplace transforms (respectively):

ũ(s, x) =
∫ ∞

0

e−stu(t, x)dt,

û(t, k) =
∫

Rd

eik·xu(t, x)dx,

ū(s, k) =
∫

Rd

eik·x
∫ ∞

0

e−stu(t, x)dtdx.

Theorem 3.6. Suppose that X(t) = x+X0(t), where X0(t) is a Lévy process start-
ing at zero. If Lx is the generator (2.8) of the semigroup T (t)f(x) = Ex[(f(Xt))]
on L1(Rd), then, for any f ∈ D(Lx), both the initial value problem (2.3) and the
fractional Cauchy problem (2.4) with β = 1/2 have the same unique solution given
by (3.1).

Proof. Take Fourier transforms on both sides of (2.3) to get

(3.8)
∂û(t, k)

∂t
=

1√
πt

ψ(k)f̂(k) + ψ(k)2û(t, k),

using the fact that ψ(k)f̂(k) is the Fourier transform of Lxf(x). Then take Laplace
transforms on both sides to get

sū(s, k) − û(t = 0, k) = s−1/2ψ(k)f̂(k) + ψ(k)2ū(s, k),

using the well-known Laplace transform formula∫ ∞

0

t−β

Γ(1 − β)
e−stdt = sβ−1
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for β < 1. Since û(t = 0, k) = f̂(k), collecting like terms yields

(3.9) ū(s, k) =
(1 + s−1/2ψ(k))f̂(k)

s − ψ(k)2

for s > 0 sufficiently large.
On the other hand, taking Fourier transforms on both sides of (2.4) with β = 1/2

gives

(3.10)
∂1/2û(t, k)

∂t1/2
= ψ(k)û(t, k).

Take Laplace transforms on both sides, using the fact that sβ g̃(s)− sβ−1g(0) is the
Laplace transform of the Caputo fractional derivative ∂βg(t)/∂tβ, to get

s1/2ū(s, k) − s−1/2f̂(k) = ψ(k)ū(s, k)

and collect terms to obtain

ū(s, k) =
s−1/2f̂(k)

s1/2 − ψ(k)

=
s−1/2f̂(k)

s1/2 − ψ(k)
· s1/2 + ψ(k)
s1/2 + ψ(k)

=
(1 + s−1/2ψ(k))f̂(k)

s − ψ(k)2
,

(3.11)

which agrees with (3.9). For any fixed k ∈ R
d, the two formulae are well-defined

and equal for all s > 0 sufficiently large.
Theorem 3.1 in Baeumer and Meerschaert [10] implies that the function u(t, x)

defined by (2.7) solves the fractional Cauchy problem (2.4) in L1(Rd) for any f ∈
D(Lx). Take Fourier transforms in (2.7) and apply the Fubini theorem to get

(3.12) û(t, k) =
∫ ∞

0

f̂(k) exp((t/s)1/2ψ(k))g1/2(s) ds.

Note that exp((t/s)1/2ψ(k)) is bounded since ψ(k) is negative definite, and then a
simple dominated convergence argument shows that û(t, k) is continuous in t > 0
for any k ∈ R

d. Hence the uniqueness theorem for Laplace transforms [4, Theorem
1.7.3] shows that, for each k ∈ R

d, (3.12) is the unique continuous function whose
Laplace transform is given by either (3.9) or (3.11). Since x �→ u(t, x) is an element
of L1(Rd) for every t > 0, and since two elements of L1(Rd) with the same Fourier
transform are equal dx-almost everywhere, (3.1) is the unique element of L1(Rd)
whose Fourier transform equals (3.12).

Now if u(t, x) is any solution to (2.3), then it has a Fourier-Laplace transform
ū(s, k) given by (3.9) or equivalently by (3.11). Since û(t, k) solves (3.8), it is
differentiable in t > 0 and hence continuous. Then the above argument shows
that this solution is equal to (2.7) dx-almost everywhere for every t > 0. Hence
(2.7) solves both the higher order Cauchy problem (2.3), and the fractional Cauchy
problem (2.4) with β = 1/2, for any f ∈ D(Lx), and it is the unique solution as an
element of L1(Rd), i.e., it is unique a.e.-dx for every t > 0. The proof of Theorem
3.1 shows that (2.7) reduces to (3.1) in this case. �
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Remark 3.7. Uniqueness to (2.4) was shown by Bajlekova in [6, Corollary 3.2];
Allouba and Zheng [2] did not discuss uniqueness of solutions.

Remark 3.8. It is reasonable to conjecture that Theorem 3.6 can be extended to a
sub-class of Markov processes X(t) whose generators are pseudo-differential opera-
tors with negative definite symbols ψ(k, x). One technical difficulty is that ψ(k, x)n

is usually not the Fourier symbol of a semigroup generator for integers n > 1.

The Fourier-Laplace transform method can be extended to establish connections
between other fractional Cauchy problems and their corresponding higher order
initial value problems. The next result gives one such correspondence.

Theorem 3.9. Suppose that X(t) = x+X0(t), where X0(t) is a Lévy process start-
ing at zero. If Lx is the generator (2.8) of the semigroup T (t)f(x) = Ex[(f(Xt))],
then for any f ∈ D(Lx), both the initial value problem

∂u(t, x)
∂t

=
t−2/3

Γ(1/3)
Lxf(x) +

t−1/3

Γ(2/3)
L2

xf(x) + L3
xu(t, x); u(0, x) = f(x)(3.13)

and the fractional Cauchy problem (2.4) with β = 1/3 have the same unique solution
given by (2.7), where g1/3(t) is the probability density of the 1/3-stable subordinator,
so that

∫ ∞
0

e−stg1/3(t) dt = e−s1/3
for all s > 0.

Proof. The proof is very similar to Theorem 3.6. Take Fourier transforms on both
sides of (3.13) to get

∂û(t, k)
∂t

=
t−2/3

Γ(1/3)
ψ(k)f̂(k) +

t−1/3

Γ(2/3)
ψ(k)2f̂(k) + ψ(k)3û(t, k).

Then take Laplace transforms on both sides to get

sū(s, k) − f̂(k) = s−1/3ψ(k)f̂(k) + s−2/3ψ(k)2f̂(k) + ψ(k)3ū(s, k)

and collect terms to obtain

(3.14) ū(s, k) =
(1 + s−1/3ψ(k) + s−2/3ψ(k)2)f̂(k)

s − ψ(k)3

for s > 0 sufficiently large.
On the other hand, taking Fourier transforms on both sides of (2.4) with β = 1/3

gives
∂β

∂tβ
û(t, k) = ψ(k)û(t, k),

and then taking Laplace transforms yields

s1/3ū(s, k) − s−2/3f̂(k) = ψ(k)ū(s, k).

Collecting terms yields

ū(s, k) =
s−2/3f̂(k)

s1/3 − ψ(k)

=
s−2/3f̂(k)

s1/3 − ψ(k)
· s2/3 + s1/3ψ(k) + ψ(k)2

s2/3 + s1/3ψ(k) + ψ(k)2

=
(1 + s−1/3ψ(k) + s−2/3ψ(k)2)f̂(k)

s − ψ(k)3
,

(3.15)
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which agrees with (3.14). For any fixed k ∈ R
d, the two formulas are well-defined

and equal for all s > 0 sufficiently large. The remainder of the argument is identical
to Theorem 3.6. �

Corollary 3.10. Suppose that X(t) = x + X0(t), where X0(t) is a Lévy process
starting at zero, and let Et = inf{x > 0 : Dx > t} be the inverse or hitting
time process of the 1/3-stable subordinator Dt, independent of X, with E[e−sDt ] =
e−ts1/3

. If Lx is the generator (2.8) of the semigroup T (t)f(x) = Ex[(f(Xt))] and
Zt = X(Et), then for any initial condition f ∈ D(Lx), the function u(t, x) =
Ex[f(Zt)] solves the higher order initial value problem (3.13).

Proof. The corollary follows immediately from Theorem 3.9 together with Theorem
3.1 in [10]. �

Remark 3.11. An easy extension of the argument for Theorem 3.9 shows that, under
the same conditions, for any n = 2, 3, 4, . . . both the initial value problem

∂u(t, x)
∂t

=
n−1∑
j=1

t1−j/n

Γ(j/n)
Lj

xf(x) + Ln
xu(t, x); u(0, x) = f(x)(3.16)

and the fractional Cauchy problem (2.4) with β = 1/n have the same unique
solution given by (2.7) with β = 1/n. Hence the process Zt = X(Et) is also the
stochastic solution to this higher order initial value problem.

This paper has established a connection between processes subordinated to a
Brownian time subordinator and to an inverse Lévy stable subordinator. A similar
but weaker correspondence can also be established for stable time subordinators.
Let T (t)f(x) = Ex[f(X(t))] be the semigroup of a continuous Markov process X(t)
and let Lx be its generator. Take St a standard symmetric stable Lévy process
with index 0 < α < 2, so that E[eikS(t)] = e−t|k|α . Denote by p(t, x) the density of
S(t), and let Zt = X(|St|). Nane [47] shows that if α = l/m, where l and m are
relatively prime, then u(t, x) = Ex[f(Zt)] solves

(−1)l+1 ∂2m

∂t2m
u(t, x)=−2

l∑
i=1

∂2l−2i

∂x2l−2i
p(t, x)

∣∣∣∣
x=0

L2i−1
x f(x)−L2l

x u(t, x); u(0, x)=f(x)

for any bounded measurable function f in the domain of Lx, with Dγf bounded
and Hölder continuous for all multiindex γ such that |γ| = 2l.

Suppose that X(t) is a self-similar process with Hurst index H, so that X(ct) ∼
cHX(t) (equality in distribution). Then it is not hard to check that Zt = X(|St|)
is also self-similar with Zct ∼ cH/αZt. If 1 < α ≤ 2 and we take Et to be the
inverse or hitting time process for a stable subordinator with index β = 1/α, then
Ect ∼ cβEt, and it follows that the process X(Et) is self-similar with the same
index as X(|St|). Corollary 3.1 in [40] shows that Et has moments of all orders,
while the mean of |St|ρ diverges for ρ > α. Hence it seems that these two processes
are not equivalent.

Finally, we note that the equivalence established in this paper does not extend
to strict subdomains of R

d. Consider the Banach space X = L1(R+) and the
shift semigroup [T (t)f ] (x) := f(x + t) with generator Lxf = d

dxf and domain
D(Lx) = {f ∈ L1(R+) : f ′ ∈ L1(R+)}. In this case, solutions to the higher order
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initial value problem

(3.17)
∂

∂t
u(t, x) =

Lxf(x)√
πt

+ Lx
2u(t, x); u(0, x) = f(x); x ≥ 0

are not unique. To see this, note that if u1, u2 were any two solutions, then u =
u1 − u2 would solve

(3.18)
∂

∂t
u(t, x) = Lx

2u(t, x); u(0, x) = 0, x ≥ 0

and uniqueness would require that u ≡ 0 is the only solution to (3.18). However,

u(t, x) =
1√
4πt

exp
(
− (x + 1)2

4t

)

solves (3.18) as well, so that solutions to (3.17) are not unique. On the other
hand, solutions to the corresponding fractional Cauchy problem (2.4) with β =
1/2 are unique [6]. Hence the two forms are not equivalent on this domain. It
is an interesting open problem to find governing partial differential equations for
Brownian time processes on bounded subdomains. For a typical Markov process
with generator Lx on a bounded domain, one can solve the boundary value problem
u̇ = Lxu; u = f on the boundary, as the expectation of X(τ ) where τ is the hitting
time at the boundary. DeBlassie [23] shows that the analogous result does not hold
for iterated Brownian motion, and it is likely that a resolution of these problems
will require a novel approach.
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motion, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), no. 3, 349-359. MR1387394
(97k:60218)

[37] M.M. Meerschaert and H.P. Scheffler (2001) Limit Distributions for Sums of Independent
Random Vectors: Heavy Tails in Theory and Practice. Wiley Interscience, New York.
MR1840531 (2002i:60047)

http://www.ams.org/mathscinet-getitem?mr=1948593
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=1278077
http://www.ams.org/mathscinet-getitem?mr=1278077
http://www.ams.org/mathscinet-getitem?mr=1278281
http://www.ams.org/mathscinet-getitem?mr=1278281
http://www.ams.org/mathscinet-getitem?mr=1459464
http://www.ams.org/mathscinet-getitem?mr=1459464
http://www.ams.org/mathscinet-getitem?mr=1627764
http://www.ams.org/mathscinet-getitem?mr=1627764
http://www.ams.org/mathscinet-getitem?mr=1400596
http://www.ams.org/mathscinet-getitem?mr=1400596
http://www.ams.org/mathscinet-getitem?mr=2071433
http://www.ams.org/mathscinet-getitem?mr=2071433
http://www.ams.org/mathscinet-getitem?mr=0077443
http://www.ams.org/mathscinet-getitem?mr=0077443
http://www.ams.org/mathscinet-getitem?mr=1905852
http://www.ams.org/mathscinet-getitem?mr=1905852
http://www.ams.org/mathscinet-getitem?mr=533542
http://www.ams.org/mathscinet-getitem?mr=533542
http://www.ams.org/mathscinet-getitem?mr=1882830
http://www.ams.org/mathscinet-getitem?mr=0089373
http://www.ams.org/mathscinet-getitem?mr=0089373
http://www.ams.org/mathscinet-getitem?mr=1684747
http://www.ams.org/mathscinet-getitem?mr=1684747
http://www.ams.org/mathscinet-getitem?mr=1325853
http://www.ams.org/mathscinet-getitem?mr=1325853
http://www.ams.org/mathscinet-getitem?mr=1409607
http://www.ams.org/mathscinet-getitem?mr=1409607
http://www.ams.org/mathscinet-getitem?mr=1608650
http://www.ams.org/mathscinet-getitem?mr=1608650
http://www.ams.org/mathscinet-getitem?mr=1833696
http://www.ams.org/mathscinet-getitem?mr=1833696
http://www.ams.org/mathscinet-getitem?mr=1243181
http://www.ams.org/mathscinet-getitem?mr=1243181
http://www.ams.org/mathscinet-getitem?mr=1722276
http://www.ams.org/mathscinet-getitem?mr=1722276
http://www.ams.org/mathscinet-getitem?mr=1387394
http://www.ams.org/mathscinet-getitem?mr=1387394
http://www.ams.org/mathscinet-getitem?mr=1840531
http://www.ams.org/mathscinet-getitem?mr=1840531


BROWNIAN SUBORDINATORS AND FRACTIONAL CAUCHY PROBLEMS 3929

[38] M.M. Meerschaert, D.A. Benson, H.P. Scheffler and B. Baeumer (2002) Stochastic solu-
tion of space-time fractional diffusion equations. Phys. Rev. E 65, 1103–1106. MR1917983
(2003d:60165)

[39] M.M. Meerschaert, D.A. Benson, H.P. Scheffler and P. Becker-Kern (2002) Governing equa-
tions and solutions of anomalous random walk limits. Phys. Rev. E 66, 102R-105R.

[40] M.M. Meerschaert and H.P. Scheffler (2004) Limit theorems for continuous time random
walks with infinite mean waiting times. J. Applied Probab. 41, no. 3, 623–638. MR2074812

(2005f:60105)
[41] M.M. Meerschaert and H.P. Scheffler (2006) Stochastic model for ultraslow diffusion. Stoch.

Proc. Appl., 116, no. 9, 1215–1235. MR2251542
[42] M.M. Meerschaert and E. Scalas (2006) Coupled continuous time random walks in finance.

Physica A, 370, 114–118. MR2263769 (2007e:91097)
[43] R. Metzler and J. Klafter (2000) The random walk’s guide to anomalous diffusion: A fractional

dynamics approach. Phys. Rep. 339, 1–77. MR1809268 (2001k:82082)
[44] R. Metzler and J. Klafter (2004) The restaurant at the end of the random walk: recent

developments in the description of anomalous transport by fractional dynamics. J. Physics
A 37, R161-R208. MR2090004

[45] E. Nane, Iterated Brownian motion in parabola-shaped domains, Potential Analysis, 24
(2006), 105-123. MR2217416

[46] E. Nane, Iterated Brownian motion in bounded domains in R
n, Stochastic Processes and

Their Applications 116 (2006), 905-916. MR2254664 (2007j:60133)
[47] E. Nane, Higher order PDE’s and iterated processes, Transactions of American Mathematical

Society 360 (2008), 2681–2692. MR2373329 (2008j:60202)
[48] E. Nane, Laws of the iterated logarithm for α-time Brownian motion, Electron. J. Probab.

11 (2006), no. 18, 434–459 (electronic). MR2223043 (2007c:60087)
[49] E. Nane, Isoperimetric-type inequalities for iterated Brownian motion in R

n, Statistics &
Probability Letters 78 (2008), 90–95. MR2381278 (2008k:60194)

[50] E. Nane, Lifetime asymptotics of iterated Brownian motion in R
n, Esaim Probab. Stat.,

March 2007, Vol. 11, pp. 147-160. MR2299652 (2008a:60207)
[51] E. Orsingher and L. Beghin (2004) Time-fractional telegraph equations and telegraph

processes with Brownian time. Prob. Theory Rel. Fields 128, 141–160. MR2027298
(2005a:60056)

[52] A. Pazy (1983) Semigroups of Linear Operators and Applications to Partial Differential equa-
tions. Applied Mathematical Sciences 44, Springer-Verlag, New York. MR710486 (85g:47061)

[53] T. Prosen and M. Znidaric (2001) Anomalous diffusion and dynamical localization in polyg-
onal billiards. Phys. Rev. Lett. 87, 114101–114104.

[54] W. Rudin (1973) Functional Analysis. 2nd Edition, McGraw-Hill, New York. MR0365062
(51:1315)

[55] G. Samorodnitsky and M. Taqqu, Stable non-Gaussian Random processes, Chapman and
Hall, New York (1994). MR1280932 (95f:60024)
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