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Abstract: The inverse stable subordinator is the first passage time of a standard
stable subordinator with index 0 < β < 1. The probability density of the inverse
stable subordinator can be used to solve time-fractional Cauchy problems, where
the usual first derivative in time is replaced by a Caputo fractional derivative of or-
der β. If the Cauchyproblemgoverns aMarkov process, then the fractional Cauchy
problemgoverns a time-changedprocess, where the timeparameter is replaced by
the inverse stable subordinator. Applications include delayed Brownian motion,
and the fractional Poisson process.
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1 Introduction
Zaslavsky [52] introduced the time-fractional differential equation

∂βt m(x, t) = D∂2xm(x, t) (1)

with 0 < β < 1 as a model for Hamiltonian chaos, see also Nigmatullin [40]. Za-
slavsky called the stochastic process governed by this equation a “fractal Brow-
nian motion.” Meerschaert and Scheffler [33] showed that equation (1) governs a
time-changed Brownian motion B(Et)where B(t) is a Brownian motion, and Et is
an independent inverse stable subordinator of index β. A typical plot of this “de-
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Fig. 1: Typical sample path of delayed Brownian motion Xt = B(Et) with D = 0.5 and β = 0.8,
from [31].

layed Brownian motion” is shown in Figure 1. The effect of the time change is to
introduce delays in the particle motion.

Equation (1) is an example of a fractional Cauchy problem, where the usual
first derivative in time is replaced by a Caputo fractional derivative

∂βt f(t) = 1
Γ(1 − β)

t∫
0

f 󸀠(s) ds(t − s)β (2)

for some 0 < β < 1. Baeumer and Meerschaert [5] showed that the solution to
a fractional Cauchy problem can be written in terms of the probability density
function (pdf) of the inverse stable subordinator Et. First note that

p(x, t) = 1√4πDt e−x2/(4Dt)
solves the traditional diffusion equation

∂tp(x, t) = D∂2xp(x, t), (3)

a special case of (1) with β = 1. Then [5, Theorem 3.1] shows that the solution to
the time-fractional diffusion equation (1) is given by

m(x, t) = ∞∫
0

p(x, u)h(u, t) du, (4)
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Fig. 2: Solution (4) to the time-fractional diffusion equation (1) at times t = 0.1 (solid line),
t = 0.3 (dotted line), and t = 0.8 (dashed line) with β = 0.75 and D = 1.0.

where h(u, t) is the pdf of the inverse stable subordinator Et. Since the Brownian
motion B(u) has pdf p(x, u), and the independent inverse stable subordinator u =
Et has pdf h(u, t), a simple conditioning argument shows that (4) is also the pdf
of the time-changed process x = B(Et). Figure 2 plots the solution to (1) to show
the behavior over time. Note the sharper peak and heavier tails, compared to a
bell-shaped normal pdf. Since the solutions spread at the rate tβ/2, slower than
the usual t1/2 spreading for a classical diffusion, (1) models subdiffusion.

2 The inverse stable subordinator
A subordinator Dt is a nondecreasing Lévy process. A Lévy process is a stochastic
process with stationary, independent increments [4, 45]. The distribution of Dt is
strictly stable if Dct ≃ c1/βDt (same distribution) for some 0 < β < 1. The pdf
g(x, t) of the stable subordinator Dt cannot generally be written in closed form,
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but computer codes to compute g(x, t) are widely available [36, Chapter 5]. Due
to the distributional scaling relation, one can also write g(x, t) = t−1/βg(xt−1/β , 1).
The inverse stable subordinator

Et = inf{u : D(u) > t} (5)

is the first passage time of the stable subordinator above the level t ≥ 0. Properties
of the inverse stable subordinator are detailed in [33, Section 3] and Meerschaert
and Straka [37]. An explicit formula for the moments of Et was given by Piryatin-
ska, Saichev and Woyczynski [41]. It follows from the definition (5) that

ℙ[Et ≤ u] = ℙ[Du ≥ t] = ∞∫
t

g(w, u) dw, (6)

hence the inverse stable subordinator has pdf

h(u, t) = d
duℙ[Et ≤ u] = d

du
[[1 −

t∫
0

g(w, u) dw]] . (7)

Nowa simple calculation [33, Corollary 3.1] shows that the pdf of the inverse stable
subordinator Et is

h(x, t) = t
β x
−1−1/βg(tx−1/β , 1) (8)

for all x > 0 and t > 0. This formula together with (4)was used to plot Figure 2. Fig-
ure 3 plots a typical inverse stable density h(x, t). The density is supported on the
positive half-line, and is discontinuous at the origin. Using asymptotic properties
of stable densities, it is not hard to show (e.g., see [37, Section 4]) that

h(0+, t) = lim
x↓0

h(x, t) = t−β
Γ(1 − β) (9)

for all t > 0.
The Laplace transform (LT) of g(x, t) is (e.g., see [36, Proposition 3.10 and p.

114])

g̃(s, t) = ∞∫
0

e−sxg(x, t) dx = e−tcsβ (10)

andweassume c = 1 to get the standard stable subordinator. Using the fact that in-
tegration corresponds to multiplication of the Laplace transform by s−1, it follows
from (7) that the (standard) inverse stable subordinator pdf has Laplace transform

h̃(u, s) = − d
du [s−1 g̃(s, u)]

= − d
du [s−1e−usβ] = sβ−1e−usβ (11)
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Fig. 3: Inverse stable density h(x, t) with β = 0.6 and t = 1, from [37].

for all s > 0.
The processes t = Du and u = Et are inverses. The graph of the inverse sta-

ble subordinator u = Et is just the graph of the stable subordinator t = Du with
the axes swapped, i.e., a reflection through the diagonal line t = u. See Figures
4 and 5 for an illustration. Here the stable subordinator and its inverse were sim-
ulated using freely available codes [36, Chapter 5]. The stable subordinator is a
strictly increasing pure jump process. Therefore, the inverse stable subordinator
is continuous, and its graph has flat periods (resting times) that correspond to
the jumps in the stable subordinator. The lengths of those resting periods follow
a power law distribution, since they are the same as the jump distribution of the
stable subordinator: Jumps larger than any given cutoff ε > 0 follow a Pareto dis-
tribution, where the probability of a jump length exceeding x > ε is proportional
to x−β, e.g., see [36, Section 3.4]. Since the resting periods of the inverse stable
subordinator have the same distribution, they are not exponentially distributed,
and hence Et is not a Markov process.
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Fig. 4: A typical sample path of the stable subordinator t = Du with index β = 0.8.
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Fig. 5: The inverse stable subordinator u = Et with index β = 0.8, using the same sample path
as in Figure 4. The graphs are the same, with the axes swapped.
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3 Fractional Cauchy problems
The fractional diffusion equation (1) is an example of a fractional Cauchy problem.
A Cauchy problem is an abstract differential equation of the form

∂tp(x, t) = Lxp(x, t); p(x, 0) = p0(x) (12)

where Lx is some spatial operator. A Banach space is a Cauchy complete, normed
vector space. A familiar example is L1(ℝ), the space of real-valued functions of
one real variable, with the norm ‖f‖1 = ∫ |f(x)| dx. A semigroup is a family of linear
operators {Tt} on that space, with the property that T0 is the identity operator,
and Tt+s = TtTs. A C0 semigroup is bounded and continuous in the Banach space
norm. Then the generator

Lxf(x) = limt→0 Ttf(x) − T0f(x)t − 0 , (13)

where the limit is taken in the Banach space norm, is defined on a dense subset
of that space. The generator can contain ordinary derivatives as in (1), fractional
derivatives in space, variable coefficients, and boundary conditions.

The fractional Cauchy problem

∂βt m(x, t) = Lxm(x, t); m(x, 0) = p0(x) (14)

uses a Caputo fractional derivative (2) of order 0 < β < 1. The mathematical
study of fractional Cauchy problemswas initiated byKochubei [20, 21] and Schnei-
der and Wyss [46]. Later Baeumer and Meerschaert [5, Theorem 3.1] showed that
if p(x, t) solves the Cauchy problem (12), then (4) solves the corresponding frac-
tional Cauchy problem, where the function h(x, t) is given by the formula (8). A
few years after that, Meerschaert and Scheffler [33, Corollary 3.1] identified this
function as the pdf of the inverse β-stable subordinator. Hence if Lx is the gener-
ator of some Markov process B(t), it follows that the fractional Cauchy problem
(14) governs the non-Markovian process B(Et). As illustrated in Figure 1, the time-
fractional derivative models long resting times between motions of the original
Markov process.

In [26, Theorem 3.6] this idea is used to show that, under somemild technical
conditions, the fractional Cauchy problem (14) with

Lxf = d∑
i,j=1

∂ (aij(x)(∂f/∂xi ))
∂xj

(15)
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and aij(x) = aji(x) on a bounded domainwith zero Dirichlet boundary conditions
has a unique solution

m(x, t) = ∞∑
n=1

̄f (n)Eβ(−λntβ)ψn(x) (16)

where {ψn} is a complete orthonormal basis of eigenfunctions for Lx with Lxψn =
λnψn, ̄f (n) = ∫D f(x)ψn(x) dx, and the Mittag-Leffler function

Eβ(z) = ∞∑
k=0

zk
Γ(1 + βk) (17)

for any complex z. For β = 1, Eβ(−λntβ) = e−λn t andwe recover the well-known so-
lution to the Cauchy problem (12) obtained using separation of variables. In short,
equation (16) comes from (4), using the fact that Eβ(−λtβ) = ∫∞0 e−λuh(u, t) du.
Chen et al. [16, Theorem 5.1] show that the same formula (16) yields pointwise so-
lutions to the space-time fractional Cauchy problem (14) on a bounded domain
with Lx = −(−∆)α, the fractional Laplacian. In both cases, the Cauchy problem
(12) governs the probability densities of a killed Markov process B(t), and the frac-
tional Cauchy problem (14) governs the time-changed process B(Et). Note that
fractional Cauchy problems have exactly the same boundary conditions as the
original Cauchy problem, since these boundary conditions are part of the specifi-
cation of the generator and the Banach space.

A very special case of the fractional Cauchyproblem gives the governing equa-
tion of the pdf h(x, t) of the inverse stable subordinator itself. Take Lx = −∂x, the
generator of the shift semigroup Ttf(x) = f(x− t) corresponding to the non-random
process B(t) = t (e.g., see [36, Example 3.21]). Then the pdf of B(Et) = Et solves
the fractional Cauchy problem

∂βt h(x, t) = −∂xh(x, t) (18)

with the point source initial condition h(x, 0) = δ(x) written in terms of the Dirac
delta function, reflecting the fact that E0 = 0 with probability one.

Meerschaert and Straka [37] review several equivalent forms of the governing
equation (14). One form uses the Riemann-Liouville fractional derivative

𝔻β
t f(t) = 1

Γ(1 − β) ddt
t∫
0

f(s) ds(t − s)β , (19)

which differs from the Caputo form in that the first derivative is placed outside the
integral. Since integration and differentiation do not commute in general, these
two forms are not equal. In fact, we have

∂βt f(t) = 𝔻β
t f(t) − f(0) t−β

Γ(1 − β) (20)
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when 0 < β < 1, e.g., see [36, Eq. (2.33)]. Then we can also write the fractional
Cauchy problem (14) in the form

𝔻β
t m(x, t) = Lxm(x, t) + p0(x) t−β

Γ(1 − β) (21)

used in the original work of [5, 33, 52]. Then the pdf h(x, t) of the inverse stable
subordinator also solves the fractional equation

𝔻β
t h(x, t) = −∂xh(x, t) + δ(x) t−β

Γ(1 − β) (22)

for x > 0 and t > 0.

4 The fractional Poisson process
One nice application of the inverse stable subordinator is to define a fractional
Poisson process N(Et), whereN(t) is the traditional Poisson process [44]. The prob-
ability mass function (pmf) of the traditional Poisson process

p(n, t) = e−λt (λt)n
n!

; n = 0, 1, 2, 3, . . . (23)

gives the probability that N(t) = n. It solves the Cauchy problem

∂tp(n, t) = −λp(n, t) + λp(n − 1, t) (24)

which says that particles transition from state n − 1 to state n at rate λ > 0. Then
the fractional Cauchy problem

∂βt m(n, t) = −λm(n, t) + λm(n − 1, t) (25)

governs the pmf m(n, t) of the fractional Poisson process. Now the pmf m(n, t) of
the fractional Poisson process is given by the formula (4) where x = n is a nonneg-
ative integer, p(n, u) is given by (23), and h(u, t) is the pdf (8) of the inverse sta-
ble subordinator. Laskin [24] defines the fractional Poisson process as the count-
ing process whose pmf solves (25). Repin and Saichev [42] define the fractional
Poissonprocess as the countingprocesswithMittag-Lefflerwaiting times between
state transitions, so that the probability of waiting longer than some time t > 0 be-
fore the next jump equals Eβ(−λtβ). It was shown in [27] that all these definitions
are equivalent. The fractional Poisson process differs from the traditional Poisson
process in that very long resting times occur more often.
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Fig. 6: A continuous time random walk, where random jumps Jn are separated by random wait-
ing times Wn, explains the physical meaning of the time-fractional diffusion equation (1).

5 Continuous time random walks
The continuous time random walk (CTRW) is a model in statistical physics that
explains the meaning of the time-fractional derivative. Start with a random walk
S(n) = J1 + ⋅ ⋅ ⋅ + Jn where the particle jumps J1, J2, J3, . . . are independent and
identically distributed (iid), with mean zero and finite variance σ2 > 0. Then the
central limit theorem implies that n−1/2S([nt]) ⇒ B(t) in distribution, where B(t)
is normal with mean zero and variance σ2t [36, Section 1.1]. Now assume that
the jumps Jn are separated by an iid sequence of random waiting times Wn, in-
dependent of the jumps. Then Tn = W1 + ⋅ ⋅ ⋅ + Wn is the time of the nth jump,
Nt = max{n ≥ 0 : Tn ≤ t} is the number of jumps by time t ≥ 0, and S(Nt) is the
particle position at time t ≥ 0. Figure 6 illustrates the model.

Now suppose that the randomwaiting times have a heavy power law tail: We
assume that ℙ[Wn > t] = Ct−β where C = 1/Γ(1 − β). Then the extended central
limit theorem [36, Theorem 3.41] implies that n−1/βT[nt] ⇒ Dt, a standard β-stable
subordinator. The random walk Tn of waiting times and the renewal process Nt
are inverse processes: {Nt ≥ n} = {Tn ≤ t}. (26)
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Then [33, Theorem 3.2] shows that these inverse processes have inverse limits:
n−βNnt ⇒ Et, the inverse stable subordinator (5). Next an application of the con-
tinuous mapping theorem [36, Section 4.4] yields that

n−β/2S(Nnt) = (nβ)−1/2S(nβ n−βNnt) ≈ (nβ)−1/2S(nβ Et) ⇒ B(Et),
a delayed Brownian motion whose pdf solves the time-fractional diffusion equa-
tion (1). Hence the time-fractional derivative of order 0 < β < 1 models long wait-
ing times distributed according to a power law with the same index β.

Many other fractional diffusion models can be investigated using the CTRW
model. Suppose for example that Xn ≥ 0 are iid with ℙ[Xn > x] = Cx−α for some
C > 0 and some 1 < α < 2. Then the mean μ = 𝔼[Xn] exists, and we can take
Jn = Xn − μ as the particle jumps. Now n−1/αS([nt]) ⇒ A(t), an α-stable Lévy
process with pdf p(x, t) [36, Theorem 3.41]. The governing equation of this pdf
solves (12) with p(x, 0) = δ(x), the Dirac delta function, Lx = D∂αx using a space-
fractional derivative, and D = CΓ(2 − α)/(α − 1) [36, p. 84]. The long-time limit of
the CTRW is derived as before:

n−β/αS(Nnt) = (nβ)−1/αS(nβ n−βNnt) ≈ (nβ)−1/αS(nβ Et) ⇒ A(Et).
The CTRW limit A(Et) has a pdf m(x, t) that solves the fractional Cauchy problem
(14) with the same generator Lx = D∂αx and the same initial condition. Further-
more, the exact form of the CTRW limit pdf is given by (4) where h(u, t) is the pdf
(8) of the inverse stable subordinator. If

ℙ[Xn > x] = pCx−α and ℙ[Xn < −x] = qCx−α
we get a two-sided α-stable Lévy process with generator Lx = pD∂αx + qD∂α−x
that also involves a negative fractional derivative. If the particle jumps Jn are ran-
dom vectors, the generator involves vector fractional derivatives. For example, if
Jn = RnΘn whereℙ[Rn > r] = Cr−α are iid andΘn are iid uniformly distributed ran-
domunit vectors, independent of Rn, then n−1/αS([nt]) ⇒ A(t), a spherically sym-
metric α-stable Lévy motion with generator Lx = D∆α, using the fractional Lapla-
cian [36, Example 6.24]. The exact form of the constant D is given in [36, Example
6.24]. The pdf m(x, t) of the time-changed process A(Et) is given by (4), where
p(x, u) is the pdf of the vector stable process x = A(u), and h(u, t) is the inverse
stable subordinator (8). The pdf m(x, t) solves the space-time fractional diffusion
equation (14) with the generator Lx = D∆α and a delta function initial condition.
If the particle jumps are correlated, then one can obtain a delayed fractional Brow-
nian motion BH(Et) in the limit: n−HS([nt]) ⇒ BH(t) and n−βHS(Nnt) ⇒ BH(Et),
see [30, Theorem 2.4].
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6 Fractal properties
Blumenthal and Getoor [8] showed that the range of a stable subordinator is a
random fractal with dimension β. Hence the same number β describes the power
lawwaiting times, the order of the fractional derivative, and the fractal dimension
of the stable subordinator. Fractal properties of the inverse stable subordinator,
and time-changed processes B(Et), are derived in [31]. The graph of a Brownian
motion B(t) is a random fractal with dimension 3/2. Meerschaert, Nane and Xiao
[31, Proposition 2.3] show that the graph of the delayed Brownian motion B(Et)
is a random fractal with dimension 1 + β/2, which reduces to 3/2 in the limit
case β = 1. The graph of a scalar-valued α-stable Lévy process A(t) with index
1 < α ≤ 2 is a random fractal with dimension 2 − 1/α. This reduces to 3/2 in the
case α = 2, since an α-stable Lévy process with α = 2 is a Brownian motion. The
graph of the CTRW limit A(Et) is a random fractal with dimension 1 + β(1 − 1/α)
[31, Proposition 2.3], which reduces to 2−1/α in the limit case β = 1. The graph of
a fractional Brownianmotionwith Hurst index 0 < H < 1 is a random fractal with
dimension 2 − H, which reduces to 3/2 in the special case H = 1/2 of a Brownian
motion. The graph of a delayed fractional Brownian motion BH(Et) is a random
fractal with dimension β + 1 − Hβ, which reduces to 2 − H in the limit case β = 1.
Hence, even though the sample paths of the inverse stable subordinator Et are
continuous and nondecreasing, they are sufficiently irregular as to influence the
fractal dimension of a time-changed process.

7 Higher order equations
In many cases, fractional partial differential equations can be written in equiva-
lent higher order forms, some of which do not involve any fractional derivatives.
The inverse stable subordinator explains the equivalence between these equa-
tions.

One interesting example involves Brownian subordinators. Given a Brownian
motion B(t), let B󸀠t be another independent Brownianmotion. Allouba and Zheng
[1, 2] consider the time-changed process Xt = B(|B󸀠t |), which they call “Brownian
time Brownian motion.” Burdzy [9] considers a closely related process called “it-
erated Brownian motion” where B(t) is a two-sided Brownian motion on −∞ <
t < ∞ and Yt = B(B󸀠t). Both processes have the same pdf, and hence the same
governing equation

∂tm(x, t) = ∂2xp0(x)√πt + ∂4xm(x, t); m(x, 0) = p0(x) (27)
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for t > 0 and x real [2]. They also consider a vector equation, but we will focus
here on the scalar case. Note that (27) is not a Cauchy problem, due to the pres-
ence of the first term on the right-hand side, which depends on t > 0. Baeumer,
Meerschaert and Nane [7, Corollary 3.2] show that in fact equation (27) is equiva-
lent to the time-fractional diffusion equation (1) with β = 1/2. One way to see this
is to apply ∂1/2t to both sides of (1), or to the equivalent form (21) with Lx = −∂2x .
Another approach is to note that the absolute value |B󸀠t | has the same pdf as the
maximum Mt = max{B󸀠u : 0 ≤ u ≤ t} by the reflection principle. But since the
stable subordinator Dt with index β = 1/2 is the first passage time of the Brown-
ian motion B󸀠t, and since the maximum process is the inverse of the first passage
time, |B󸀠t| has the same pdf as the inverse stable subordinator Et. Since (1) governs
the delayed Brownian motion B(Et) and (27) governs the Brownian time Brown-
ian motion B(|B󸀠t |), and since both processes have the same pdf, the governing
equations must be equivalent.

More generally, Allouba and Zheng [2] show that if B(t) is a Markov process
in one or more dimensions with generator Lx, then the pdf of B(Et) with β = 1/2
also solves the higher order equation

∂tm(x, t) = Lxp0(x)√πt + Lx2m(x, t); m(x, 0) = p0(x). (28)

Then the pdf of the Brownian time process B(|B󸀠t |) solves the same equation. The
higher order equation (28) is equivalent to the fractional Cauchyproblem (14)with
β = 1/2.

Another iterated equation comes from the theory ofmedical ultrasound. Kelly
et al. [19] propose a time-fractional wave equation

1
c20

∂2t m(x, t) + 2α0
c0b

𝔻β+1
t m(x, t) + α20

b2
𝔻2β

t m(x, t) = ∆xm(x, t) (29)

to model the variations in pressurem(x, t) for acoustic wave conduction in a com-
plex medium (e.g., human tissue), where c0 is the speed of sound in a homoge-
neous medium, and the constant b = cos(πy/2). This equation models power law
attenuation, which is commonly seen in applications: An input sound wave at-
tenuates according to a power law, and in particular, the amplitude decays like
e−α(ω)t where the attenuation coefficient α(ω) = α0|ω|β depends on the frequency
ω of the input wave according to a power lawwith index β. Straka et al. [48] show
that the higher order equation (29) on onedimension is equivalent to a lower order
time-fractional equation that involves an inverse stable subordinator. Start with
the stable subordinator t/c0 + (α0/b)1/βDt where Dt is the standard stable subor-
dinator. The pdf h0(x, t) of the corresponding inverse stable subordinator solves
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the governing equation

1
c0

∂th0(x, t) + α0
b 𝔻β

t h0(x, t) = −∂xh0(x, t) (30)

for x > 0 and t > 0. Then [48, Section 3] shows that the function h0(x, t) also
solves the higher order equation (29) in one dimension. The key is to note that
the operator on the left-hand side of (29) is the same as the operator on the left-
hand side of (30) applied twice. A closely related argument in Meerschaert et al.
[38] shows that if p(x, t) solves the traditional wave equation (12) with Lx = ∆x,
then the function m(x, t) given by (4) with h replaced by h0 solves (29) in three
dimensions. The inverse stable subordinator also leads to a useful CTRW model
for the time-fractional wave equation (29), see [38, Section 5].

8 Subordinators and inverse subordinators
The standard β-stable subordinator is one example of a subordinator, i.e., a non-
decreasing Lévy process. More generally, we can consider a wide array of subordi-
nators and their inverses, both of which can be useful in applications. Any subor-
dinator Dt with pdf g(x, t) has a Laplace transform

g̃(s, t) = ∞∫
0

e−sxg(x, t) dx = e−tψD(s) (31)

where the Laplace symbol can be written in the form

ψD(s) = as + ∞∫
0

(1 − e−sy)ϕD(dy) (32)

using the Lévy-Khintchine formula [4, 45]. Here ϕD(dy) is the Lévy measure,
which governs the jumps of the process [36, p. 51]. For a standard stable process
we have a = 0 and ϕD(y,∞) = y−β/Γ(1 − β), which leads to ψD(s) = sβ, e.g., see
[36, p. 114]. For the rest of this section we assume that a = 0, but note that an
example with a > 0 was already discussed in Section 7.

Meerschaert and Scheffler [35, Theorem3.1] shows that, under somemild tech-
nical conditions, the inverse subordinator Et defined by (5) has a pdf

h(x, t) = t∫
0

ϕD(t − u,∞)g(u, x) dy. (33)
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The formula (8) can be obtained as a special case. They also show that the inverse
subordinator pdf has Laplace transform h̃(x, s) = s−1ψD(s)e−xψD(s) [35, Eq. (3.130],
which reduces to (11) in the case of a standard β-stable subordinator. Veillette and
Taqqu [51] develop numerical methods for computing the pdf h(x, t) of a general
inverse subordinator.

Now suppose that A(t) is a Lévy process with pdf p(x, t). Since this process
can take both positive and negative values, we apply the Fourier transform (FT)

p̂(k, t) = ∞∫
−∞

e−ikxp(x, t) dx.
The Lévy-Khintchine formula [36, Theorem 3.4] implies that

p̂(k, t) = etψA(k) (34)

where the Fourier symbol can be written in the form

ψA(k) = −ikb − Dk2 + ∞∫
−∞

(e−iky − 1 + iky
1 + y2 )ϕA(dy). (35)

The time-changedprocess B(Et)has pdfm(x, t) given by (4) [33, Corollary 3.8].
Taking LT and FT in this equation, we can see that

m̄(k, s) = ∞∫
−∞

e−ikx
∞∫
0

e−stm(x, t) dt dx
= ∞∫

0

( ∞∫
−∞

e−ikxp(x, u) dx) (∞∫
0

e−sth(u, t) dt) du

= ∞∫
0

euψA(k)s−1ψD(s)e−uψD(s) du

= s−1ψD(s)
ψD(s) − ψA(k) (36)

which we can rewrite in the form

ψD(s)m̄(k, s) = ψA(k)m̄(k, s) + s−1ψD(s). (37)

The Laplace and Fourier symbols correspond to pseudo-differential operators
(e.g., see Jacob [18]). Using the functional calculus, since (ik) ̂f (k) is the FT of the
weak derivative ∂xf(x), the FT ψA(k) ̂f (k) inverts to ψA(−i∂x)f(x). Similarly, since
s ̃f (s) is the LT of the weak derivative ∂t f(t), the LT ψD(s) ̃f (s) inverts to ψD(∂t)f(t).
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For example, if A(t) is a Brownian motion then ψA(k) = −Dk2 = D(ik)2 and
ψA(k) ̂f (k) is the FT of D∂2x f(x). If Dt is the standard β-stable subordinator, then
ψD(s) = sβ, and ψD(s) ̃f (s) is the LT of 𝔻β

t f(t). For a discussion of weak versus
strong derivatives, and how this relates to the formula s ̃f (s)− f(0) for the LT of the
traditional derivative ∂tf(t), see [37, Section 3]. In short, the extra term f(0) comes
from the weak derivative of the Heaviside function at t = 0. Now invert the LT and
FT in (37) to obtain the governing equation of A(Et):

ψD(∂t)m(x, t) = ψA(−i∂x)m(x, t) + δ(x)ϕD(t,∞), (38)

using the fact [35, Eq. (3.12)] thatϕD(t,∞)hasLT s−1ψD(s).More generally,we can
consider generalized Cauchy problems of the form (38) with ψA(−i∂x) replaced by
the generator Lx of some semigroup. Chen [15] develops solution to generalized
Cauchyproblems, extending [5, Theorem3.1] to the case of a general time operator.
This provides a governing equation for the time-changed process B(Et)where B(t)
is a Markov process with generator Lx, and Et is an independent general inverse
subordinator. See Toaldo [49] for some related results.

If A(t) is a Brownian motion and Dt is the standard stable subordinator, then
(38) reduces to (21) with Lx = D∂2x , since ϕD(t,∞) = t−β/Γ(1 − β). If A(t) = t and
Dt is the standard stable subordinator, then p(x, t) = δ(x − t), p̂(k, t) = eψA(k)t

with ψA(k) = −ik, and (38) reduces to (22) with Lx = −∂x. This generator is also a
weak derivative, a fact that has caused some confusion in the literature [37, Sec-
tion 5]: Weak and traditional derivatives are the same for differentiable functions,
but since the inverse stable pdf h(x, t) has a jump discontinuity at x = 0, the weak
derivative has an extra term h(0+, t)H󸀠(x) = δ(x)t−β/Γ(1 − β) at x = 0. This can-
cels the last term in (38), and then (20) yields the alternative governing equation
found in Hahn, Kobayashi and Umarov [17]:

∂βt h(x, t) = −∂xh(x, t) − δ(x) t−β
Γ(1 − β) (39)

where now ∂x is the traditional derivative, which is only defined on x > 0.
8.1 Tempered stable subordinator

One issue with the stable subordinator pdf is that its mean and variance are un-
defined, since g(x, t) ≈ x−β−1 for x large. A useful idea [10, 43] for handling this
is to “temper” the heavy tail of the pdf so that all moments exist. The function
e−λxg(x, t) has a light tail for any λ > 0, and if the tempering parameter λ is suf-
ficiently small, then the difference will not be noticeable for moderate x. Hence
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tempering is a mathematical construct to avoid diverging moments. Of course
e−λxg(x, t) is no longer a probability density, but we can apply (10) to see that

gλ(x, t) = e−λxg(x, t)etcλβ (40)

is a pdf, with LT
g̃λ(s, t) = e−tcψλ(s) (41)

where ψλ(s) = (λ+ s)β − λβ . It is not clear from this calculation that gλ(x, t) should
be the pdf of a Lévy subordinator, but another calculation using (32) with an expo-
nentially tempered Lévy measure ϕλ(t,∞) = ceλyt−β/Γ(1 − β) shows that g̃(s, t)
is indeed the Laplace symbol of a subordinator. Taking c = 1 yields the pdf of the
standard tempered stable subordinator, which we will denote by Dλ

t . Substituting
Dλ
t for Dt in (5) yields the inverse tempered stable subordinator, which we will de-

note by Eλt . Since the jump intensity (Lévy measure) is an exponentially tempered
power law, the effect of the tempering is to “cool” the big jumps.

Alrawashdeh et al. [3] give an explicit formula for the inverse tempered stable
pdf

hλ(x, t) = exλβ [[e
−λth(x, t) + λ t∫

0

e−λτh(x, τ) dτ − λβ t∫
0

e−λτg(τ, x) dτ]] (42)

using the inverse stable pdf (8) and the standard β-stable pdf. Plots of the pdf are
quite similar to Figure 3, see [3, Fig. 1]. Some alternative forms for the inverse tem-
pered stable pdf hλ(x, t) are given in Kumar and Vellaisamy [23], along with an
explicit formula for hλ(0+, t) in terms of the incomplete gamma function, asymp-
totic behavior of the moments of Eλt , and higher order governing equations for
the case β = 1/n for some integer n. See Stanislavsky et al. [47] and Veillette and
Taqqu [50] for additional information.

If A(t) is a Lévy process with pdf p(x, t) and Fourier symbol ψA(k), then (4)
with h replaced by hλ gives the pdf of B(Dλ

t ). This pdf solves (38) with ψD replaced
by ψλ. We call 𝔻β,λ

t = ψλ(∂t) the tempered fractional derivative. A calculation
using the shift property of the LT [36, p. 209] shows that

𝔻β,λ
t f(t) = e−λt𝔻β

t [eλtf(t)] − λβf(t). (43)

If B(u) is a Brownian motion, then (38) reduces to the tempered fractional diffu-
sion equation 𝔻β,λ

t m(x, t) = ∂2xm(x, t) + δ(x)ϕλ(t,∞). (44)

This model exhibits transient anomalous diffusion, resembling anomalous sub-
diffusion (1) at small time scales and traditional diffusive behaviour at large time
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scales. More generally, (14) with ∂βt replaced by ψλ(∂t) represents a tempered frac-
tional Cauchy problem. Classical solutions to tempered fractional Cauchy prob-
lems on bounded domains, similar to (16), are developed in [29].

It has been suggested [3, 35] that a tempered Caputo fractional derivative can
be defined as ∂β,λt f(t) = 𝔻β,λ

t f(t) − f(0)ϕλ(t,∞), to simplify (44) into a form re-
sembling (1). Then the inverse tempered stable pdf solves the tempered fractional
Cauchy problem (18) with ∂βt replaced by ∂β,λt [3, Proposition 3.1]. Some other
forms of the tempered fractional derivative have been suggested [6, 25, 32].

ACTRWmodel for tempered fractional diffusionwasdeveloped inChakrabarty
and Meerschaert [11]: The waiting times are exponentially tempered power laws.
Several applications of tempered fractional diffusion to problems in geophysics
are outlined in Meerschaert, Zhang and Baeumer [39]. Another interesting appli-
cation is the tempered fractional Poisson process N(Eλt ), see [3, Section 7]. The
pmf m(x, t) of this process is given by (4) where p(n, t) is given by (23) and h is
replaced by hλ. It solves the tempered fractional Cauchy problem (25) with ∂βt
replaced by ∂β,λt [3, Eq. (7.4)].

8.2 Distributed order and ultraslow diffusion

Chechkin et al.[12, 13, 14] consider a model where the fractional order β of the
time derivative in (1) is randomized. They define the distributed order fractional
diffusion equation

∂p(β)t m(x, t) = D∂2xm(x, t), (45)

where the distributed order fractional derivative is defined as a mixture of Caputo
derivatives of different order:

∂p(β)t f(t) = 1∫
0

∂βt f(t) p(β)dβ. (46)

If the pdf p(β) gives positive probability to values of β near zero, then (45) models
ultraslow diffusion, where a plume of particles spreads at a logarithmic rate. Meer-
schaert and Scheffler [34, Theorem 3.4] show that the model (45) corresponds to a
subordinator Dt with Lévy measure

ϕD(y,∞) = 1∫
0

y−β
Γ(1 − β) p(β)dβ. (47)
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Hence the jumps of this subordinator are power law, with an index β governed by
the pdf p(β). A calculation using (32) with a = 0 shows that

ψD(s) = 1∫
0

sβ p(β)dβ. (48)

Now let Et be the distributed order inverse subordinator defined by (5). Its pdf
h(x, t) is given by (33), and so if B(t) is an independent Brownianmotion with pdf
p(x, t), then the pdf m(x, t) of B(Et) solves the distributed order fractional diffu-
sion equation (45). This pdf is given by (4), where p(x, t) is the pdf of B(t), and
h(x, t) is the pdf of the distributed order inverse subordinator. If the pdf p(β) gives
positive probability to values of β near zero, then the subordinator Dt is ultrafast,
and hence its inverse Et is ultraslow: The presence of very large jumps in Dt trans-
lates to very long waiting times for Et, see Kovács and Meerschaert [22] for more
details.

The distributed order fractional diffusion equation (45) is a special case of
(38). To see this, recall that s−1ψD(s) is the LT of ϕD(y,∞), and substitute (48)
into (37) to get

1∫
0

sβm̄(k, s) p(β)dβ = −Dk2m̄(k, s) + 1∫
0

sβ−1 p(β)dβ. (49)

Rearrange to get

1∫
0

(sβm̄(k, s) − sβ−1) p(β)dβ = −Dk2m̄(k, s)
and note that m̂(k, 0) = 1 since B(E0) = 0. Invert the FT and LT to arrive at (45). A
CTRW model for distributed order fractional diffusion is developed in [34]: Take
Bn iid with pdf p(β), and conditional on the value of Bn, take waiting times iid
with ℙ[Wn > t|Bn = β] = Ct−β for some C > 0. Classical solutions to more general
distributed order Cauchyproblems, defined by (14)with ∂βt replaced by ∂

p(β)
t , were

developed in [28].

9 Summary
Time-fractional equations like (1) model time-changed stochastic processes B(Et)
where Et in the inverse of a subordinator Dt. The waiting times between particle
jumps follow a power law distribution, and the power law index equals the order
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of the time-fractional derivative. The inverse stable time change produces many
interesting stochastic models, including delayed Brownian motion, and the frac-
tional Poisson process. The range of the β-stable subordinator is a random fractal
of dimension β, the same number that describes the power law jumps and the or-
der of the fractional derivative. The inverse stable time change also changes the
fractal dimension of the graph of B(Et). A continuous time random walk model
with power lawwaiting times gives a physical interpretation to the time-fractional
derivative. Higher order governing equations for B(Et) exist, and in some cases, do
not involve any fractional derivatives. More general inverse subordinators lead to
tempered fractional diffusion, a tempered fractional Poisson process, and ultra-
slow diffusion, where particles spread at a logarithmic rate.
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