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[1] Hydraulic conductivity (K) fields are used to parameterize groundwater flow and
transport models. Numerical simulations require a detailed representation of the K field,
synthesized to interpolate between available data. Several recent studies introduced high-
resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used
ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This
paper describes a statistical analysis of these data, and the implications for K field modeling
in alluvial aquifers. Two striking observations have emerged from this analysis. The first is
that a simple fractional difference filter can have a profound effect on data histograms,
organizing non-Gaussian ln K data into a coherent distribution. The second is that using
GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK
data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current
controversy in the literature, between those who favor Gaussian ln K models, and those who
observe non-Gaussian ln K fields. Both camps are correct, but at different scales.
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1. Introduction

[2] Groundwater flow and transport simulations require
a densely defined hydraulic conductivity (K) field to
populate the model grid. Because it is not practical to col-
lect 2-D or 3-D data at this resolution, stochastic simulation
methods are commonly used to interpolate between meas-
ured data values. Stochastic K field simulation requires a
statistical analysis of the available K data, to ensure that the
synthesized K field resembles the data in terms of its distri-
bution and correlation structure. The two main simulation
steps are: (1) generate an uncorrelated noise field and (2)
apply an appropriate filter to impose a correlation structure.
Since random number generators produce only uncorre-
lated noise, both steps are necessary. To parameterize the
simulation model, the process is reversed: (1) apply an
appropriate inverse filter to the raw data to remove the cor-
relation and (2) examine the filtered, uncorrelated data to
determine its true underlying distribution. Unless the data
is filtered properly to remove correlations, the data histo-
gram can significantly misrepresent the underlying distribu-
tion, since a histogram of correlated data need not reflect
the true underlying distribution. In this paper, we will see a
remarkable example of this simple and well-known fact.

[3] Hydraulic conductivity data from the Macro Disper-
sion Experiment (MADE) site, at the Columbus Air Force
Base in Mississippi, clearly show a high level of heteroge-
neity [Rehfeldt et al., 1992; Zinn and Harvey, 2003; Llo-
pis-Albert and Capilla, 2009]. The site was recently
revisited to obtain K measurements with much higher spa-
tial resolution than previous measurements [Bohling et al.,
2012; Liu et al., 2009]. Vertical columns (profiles) of hy-
draulic conductivity data were measured at approximately
1.5 cm depth increments, using a new direct-push profiling
method that couples the direct-push injection logger
(DPIL) and the direct-push permeameter (DPP) [Butler et
al., 2007; Liu et al., 2009, 2012]. This novel high-
resolution K (HRK) tool was advanced into the subsurface,
while water was injected out of a small screened port
located a short distance behind the tool tip. The injection
rate, and injection-induced back pressure, were recorded
every 1.5 cm, and the ratio of these quantities was then
transformed into K estimates [Liu et al., 2009]. The cm-
scale spatial resolution of the resulting K data is orders of
magnitude finer than the data considered in previous stud-
ies [Rehfeldt et al., 1992; Meerschaert et al., 2004]. Boh-
ling et al. [2012] analyzed the resulting K data, and
compared those measurements to previous flowmeter-based
K estimates collected at lower resolution across the same
site.

[4] A parallel data collection effort used ground-
penetrating radar (GPR) to image the related sedimentary
structures in the aquifer, called facies, by identifying dis-
tinct reflection characteristics, such as reflection termina-
tions, dip angles, amplitudes, and continuity. Such GPR
facies have been shown to correlate with hydrogeological
units [Van Overmeeren, 1998; Heinz and Aigner, 2003;
Schmelzbach et al., 2011]. Full-resolution 3-D GPR data
using 50 and 100 MHz antennae were obtained with step
sizes (and line spacings) of 0.2 and 0.1 m, respectively,
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using a Sensors and Software pulseEKKO 100 system.
Data processing and analysis to extract facies boundaries
were detailed in Dogan et al. [2011]. The map in Figure 1
outlines the GPR data collection site, and the location of
the four HRK profiles that form the basis for our study. The
intensively cored area (ICA) cube was the site of a push-
pull tracer test described in Liu et al. [2010], see also Zheng
et al. [2011]. The multilevel sampler (MLS) cube was the
site of the MADE-5 tracer test reported in Bianchi et al.
[2011].

[5] The modeling of hydraulic conductivity fields at the
MADE site has been the focus of intensive study and mod-
eling for over 20 years. The geostatistical analysis of
Rehfeldt et al. [1992] documented a high level of heteroge-
neity, indicated by the variance of 4.5 for ln K in their
multi-Gaussian model, as well as anisotropy, indicated by
horizontal and vertical correlation scales of 12.8 and 1.6 m,
respectively. Silliman and Wright [1988] and Rubin and
Journel [1991] argued that a Gaussian model with a single
covariance function cannot reproduce the preferential path-
ways (connected regions with the highest ln K values)
observed in real aquifers. G�omez-Hern�andez and Wen
[1998] continued this argument against the multi-Gaussian
model, and cautioned against drawing broad conclusions
on the basis of one-dimensional data distributions. Renard
and Allard [2011] survey several methods for characteriz-
ing connectivity, and note that the multi-Gaussian model
alone is often insufficient to reproduce the connectivity
observed in real aquifers. Significant deviations from a
Gaussian profile were noted by Painter [1996] and
Meerschaert et al. [2004], and some alternative non-
Gaussian models were proposed. Zinn and Harvey [2003]
point out that even in a model with Gaussian ln K profiles,
deviation from the usual multi-Gaussian model can lead to

connected features. Salamon et al. [2007] discuss the non-
monotone variograms in MADE ln K data, and recommend
a sequential Gaussian simulation methodology with a non-
monotone covariance structure, to reproduce this ‘‘hole
effect.’’ Llopis-Albert and Capilla [2009] use a gradual
conditioning algorithm to produce non-Gaussian ln K fields
based on flowmeter, head, and concentration data from
MADE-2. This controversy between Gaussian and non-
Gaussian ln K fields has profound implications for flow and
transport modeling. Heavy tailed ln K distributions support
novel approaches including the continuous time random
walk (CTRW) [Berkowitz et al., 2006], fractional advection
dispersion equation (ADE) [Benson et al., 2013], and some
related stochastic hydrology models [Cushman and Ginn,
2000; Neuman and Tartakovsky, 2009], while Gaussian
ln K models are more consistent with the traditional ADE,
mobile-immobile, and dual-domain models.

[6] The two main findings of this study are that: (1) a
fractional difference filter can be useful to reveal the true
underlying distribution of highly correlated vertical col-
umns of HRK data and (2) using GPR facies, a multi-
Gaussian simulation method with an appropriate operator
scaling correlation structure applied to each facies can
reproduce the significantly non-Gaussian profiles seen in
columns of filtered HRK data. There remains a significant
debate in the literature between those who favor Gaussian
models, and others who believe that a non-Gaussian
approach is needed. In our view, both groups are correct,
albeit at different scales. Within a single facies, an appro-
priate multi-Gaussian model can be effective, and when
different facies are combined, a non-Gaussian profile with
a sharper peak and a heavier tail will emerge.

2. Statistical Analysis

[7] Many studies have analyzed the statistical properties
of low-resolution K data profiles; see Meerschaert et al.
[2004] for a brief review. A typical field experiment col-
lects K data at a vertical resolution of 1�3 m. Since the
vertical resolution of the new HRK data is orders of magni-
tude finer, it is useful to reconsider the results of past analy-
ses. For relatively homogeneous aquifers, it has been
common to employ a log-normal distribution for K : the dis-
tribution of ln K is assumed to be normal, and aquifer heter-
ogeneity is inferred from the variance of ln K [Rehfeldt et
al., 1992]. A more detailed analysis suggests a departure
from normality, with a sharper peak and heavier tails [e.g.,
Lu et al., 2002; Meerschaert et al., 2004]. This deviation
becomes more significant for aquifers that display a higher
degree of heterogeneity.

[8] Typical values for ln K are highly correlated, leading
many researchers to employ models such as a fractional
Brownian motion. The MADE site is highly heterogeneous,
with ln K variance greater than 4.5. Several novel models
have been proposed to try and capture this combination of
non-Gaussian distributions and strong correlations [e.g.,
Painter, 1996; Herrick et al., 2002; Molz and Boman,
1993; Kohlbecker et al., 2006].

[9] Figure 2a shows a histogram of ln K data from HRK
profile 121108A (see map in Figure 1). The histogram sug-
gests a complex underlying distribution, widely varying
with several peaks, and no simple discernible shape. A

Figure 1. Layout of Macrodispersion Experiment test
site, showing key features of MADE-2 and MADE-3
experiments, as well as the locations of GPR data collected
for this project. The inset of the 12 � 12 m ICA (Inten-
sively Cored Area) cube shows the locations of the four
HRK profiles and the 2-D transect discussed in this paper.
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fractional difference filter was applied to remove the corre-
lations, resulting in the histogram in Figure 2b. The filtered
data show no significant serial correlations, indicating that
fractionally integrated noise is a reasonable model for this
vertical column of ln K data. Fractional models have been
applied in hydrology since pioneering work of Hurst
[1951] on flood levels of the Nile river. In these models,
observations Xn are related to a sequence of independent
and identically distributed random variables Zn (white
noise) by the fractional difference relation

Zn ¼
X1
j¼0

wjXn�j; ð1Þ

where the fractional binomial coefficients wj can be com-
puted recursively using w0¼ 1 and wj ¼ wj�1 j� 1� dð Þ=j
for j� 1. If the underlying noise sequence Zn is Gaussian,
then the sequence Xn is a fractional Brownian motion with
Hurst index H¼ d�1/2. See Appendix A for more details.

[10] Figure 2b was obtained using a fractional difference
filter with d¼ 0.9. The parameter d was gradually increased
until the autocovariance plot showed no significant correla-
tions, see Figure 3. The same value of d was effective in
removing correlation in all four vertical HRK columns
111108A, 111108B, 111108C, and 121108A (see Figure 1)
that formed the basis for our study. A fractional difference
filter of order d¼ 0.89 was used in Lu et al. [2002] to
remove correlations in laboratory ln K data from a vertical
sandstone core; a value of d¼ 0.9 was found suitable for a
sandstone slab in Major et al. [2011] and Meerschaert et
al. [2004] used d¼ 0.74 for lower resolution ln K values
from three horizontal profiles in a sandstone facies at a site
in Utah.

[11] The effect of fractional differencing on the histo-
gram is striking. The filtered HRK data in Figure 2b form a
coherent shape, with a sharper peak and a heavier tail than

a Gaussian (the data fail the Anderson-Darling test for nor-
mality, p< 0.0005). It is known that correlation can distort
a histogram, but we have never seen such a clear example
in real data. The fractional difference filter transforms a
highly complex histogram into a form amenable to statisti-
cal modeling, by removing the correlation. This is the first
major finding of our statistical analysis : A simple fractional
difference filter is sufficient to capture and remove the cor-
relation structure of a vertical ln K profile. This filter
reveals the underlying noise distribution needed to design a
faithful ln K field simulation.

[12] The dramatic transformation between Figures 2a
and 2b has not been observed previously, perhaps because
the available data were either more homogeneous (e.g., lab-
oratory studies of a sandstone slab) or more widely spaced
(e.g., flowmeter data from field studies) than the data con-
sidered in this study. Since our data are closely spaced,
many similar K values tend to clump together due to high
correlations, creating histogram peaks. These high correla-
tions are evident in Figure 3a. Mathematically, this strong
correlation is a fractional integration. Since each vertical
section spans several different facies, with significantly dif-
ferent material properties, multiple peaks can occur in a
single HRK profile. The fractional differencing filters out
the correlations by reversing the fractional integration.

[13] Next, we discuss our simulation scheme. Since the
ln K data exhibit long-range dependence, with a shorter
correlation length in the vertical direction, we applied the
anisotropic random field generator of Benson et al. [2006]:
Fourier transformed Gaussian white noise on a 1.5 cm grid
was multiplied by a Fourier filter  kð Þ ¼

P
i Cijk�

�
�ij2�� Hþ1ð Þ=2 with Hurst index H¼ 0.4, �1 horizontal, �2

vertical, and correlation length parameters C1¼ 10 and
C2¼ 1 to produce anisotropic ln K fields with a longer cor-
relation length in the horizontal direction. In this simula-
tion, any horizontal row or vertical column of simulated
data represents a fractional Brownian motion with Hurst
index H¼ 0.4. The horizontal autocorrelation parameter C1

Figure 2. Histogram of ln K for HRK profile 121108A
(see map in Figure 1) (a) before and (b) after applying the
fractional difference filter equation (1) with d¼ 0.9. The
filtered data are organized into a unimodal distribution with
a sharper peak and a heavier tail than the best fitting Gaus-
sian pdf (black line).

Figure 3. Autocorrelation function for ln K from HRK
profile 121108A (see Figure 1) (a) before and (b) after
applying the fractional difference filter equation (1) with
d¼ 0.9. Autocorrelations inside dashed lines are statisti-
cally zero.
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was chosen to match measured autocorrelations between
the four vertical HRK profiles 111108A, 111108B,
111108C, and 121108A used in this study, but due to the 4
m horizontal spacing, this represents only a very rough fit.
The simulated ln K field was then adjusted to impose the
same mean and standard deviation as the log-transformed
HRK data. The conditioning algorithm of Benson et al.
[2013] was then applied, to make the simulated ln K field
agree with available HRK data. Figure 4a shows the results
of this simulation procedure for the combined HRK data,
without subdividing into GPR facies.

[14] Next, the HRK data were segregated by facies,
using the GPR method discussed in section 1. Both the
mean and the standard deviation of ln K were found to vary
significantly between facies. Separate ln K fields with the
same mean and standard deviation as the log-transformed
HRK data were generated over the entire model domain for
each facies, using the same method of Benson et al. [2006,
2013] with the same filter, and the same white noise
sequence as in Figure 4a, with dip angle �1 matched to the
orientation of GPR reflections for each facies. Then, GPR
facies boundaries were used to cut out the relevant portions
of the simulated ln K field for each facies, resulting in the
ln K field shown in Figure 4b. The multiscaling fractal filter
used in this simulation methodology produces enhanced
connectivity, as compared to a traditional multi-Gaussian
model. Connectivity is further enhanced by our facies
approach, since ln K statistics vary by facies.

[15] Figure 5 shows the Gaussian fit to fractionally dif-
ferenced ln K data in a single facies, using the facies boun-
daries shown in Figure 4b. The data from facies A
(shallowest) at horizontal location 174 m had the smallest
standard deviation (�¼ 0.0110). The probability plot in
Figure 5a shows that these data fit a Gaussian distribution
reasonably well, except for a single outlier (0.7244,
removed). The histogram (not shown) is similar to Figure

4c. Figure 5b shows the corresponding plot for facies D
(deepest) at horizontal location 170 m, which had the larg-
est standard deviation (�¼ 0.3637). Since the points on the
probability plot in Figure 5b show a significant and system-
atic deviation from the reference line, a lack of fit to the
Gaussian model is indicated. The histogram (not shown) is
similar to Figure 4d. We attribute this deviation from the
Gaussian model in our data to the existence of subfacies
and smaller sedimentary variations with significantly dif-
ferent material properties [Dogan et al., 2011]. In this
study, we employ only a few of the most definitive and
connected GPR reflection boundaries, to subdivide the
model domain into four distinct facies. However, the full
geostatistical analysis reported in Dogan et al. [2011] did
uncover additional substructures. Zhang et al. [2013], and
others referenced in section 3.5 of that paper, find that sub-
facies heterogeneity has only a secondary influence on
transport, hence the importance of accurately modeling
subfacies is unclear.

[16] As noted by Silliman and Wright [1988] and further
discussed in G�omez-Hern�andez and Wen [1998], a multi-
Gaussian simulation with a single covariance function will
not produce continuous regions where the highest or lowest
ln K values occur. However, in our model, the facies with
the highest or lowest mean ln K value produce just such
features. This is no contradiction, because our model
employs a different multi-Gaussian mean and covariance
structure in each facies. In our opinion, the ‘‘hole effect’’ in
the variograms of Rehfeldt et al. [1992] and Salamon et al.
[2007] can be the result of combining data from distinct
facies, which will naturally cause a deviation from a single
multi-Gaussian model with a fixed mean and covariance
structure. Furthermore, combining the simulated multi-
Gaussian ln K values from different facies does produce the
kind of non-Gaussian histogram, with a sharper peak and a
heavier tail, frequently seen in column data.

Figure 4. Simulated ln K field (a) without and (b) with GPR facies (dashed lines), conditioned on four
HRK profiles (vertical black lines). (c and d) Histogram of one column (white line at x¼ 172 m) from
simulated ln K field (a, b, respectively) after applying the fractional difference filter equation (1) with
d¼ 0.9. The histogram (Figure 4c) fits a Gaussian model, but the histogram (Figure 4d) from facies sim-
ulation (Figure 4b) deviates from Gaussian shape, similar to measured HRK data (Figure 2b).
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[17] This simulation methodology used to produce the ln
K field in Figure 4b produces results similar to the indicator
geostatistics method of Fogg et al. [1998], which has been
successfully applied in both groundwater hydrology
[Weissmann and Fogg, 1999] and surface water hydrology
[Rubin et al., 2006]. The idea of combining fractal simula-
tion methods with a facies model is already present in Lu et
al. [2002]. The difference in our approach is that we use
GPR to determine the facies boundaries. Since the actual
facies boundaries are known, there is no need to resort to
an indicator simulation method to synthesize the facies
boundaries. Ritzi [2000] notes that lithofacies data can also
be used to determine facies boundaries, but if aquifer lithol-
ogy is not available at sufficient resolution to parameterize
a flow and transport model, then a combination of GPR fa-
cies and HRK profiles can provide a useful modeling
approach for highly detailed K field synthesis.

3. Model Validation

[18] If a simulated ln K profile exhibits the statistical fea-
tures of a measured ln K data profile, then this validates the
simulation methodology. The histogram shown in Figure
4c represents a single column (81st column, at 172 m) of
values from the simulated ln K field without GPR facies in
Figure 4a, fractionally differenced with d¼ 0.9 as in Figure
2b. Without facies, the fractionally differenced simulated
HRK profile fits a Gaussian distribution, and hence does
not resemble the measured HRK data. Figure 4d shows the
corresponding histogram from a single column of the simu-
lated ln K values with GPR facies in Figure 4b, fractionally
differenced with d¼ 0.9. Before fractional differencing, the
simulated profile histogram (not shown) appeared similar
to Figure 2a. After fractional differencing, the histogram of
simulated values in Figure 4d appears quite similar to the
corresponding histogram in Figure 2b, with a sharper peak
and a heavier tail than the best-fitting Gaussian. There are
also some significant differences between Figures 4d and
2b, including a higher peak and some asymmetry in Figure
2b, but the overall shape supports our conclusion that com-
bining simulated Gaussian ln K values from different facies
can reproduce a significantly non-Gaussian shape, similar
to what is seen in real HRK data profiles. Even though the

simulated noise is normal in each facies, the histogram in
Figure 4d does not fit a normal probability density (Ander-
son-Darling test p< 0.0005). This is due to the well-known
fact that a mixture of Gaussian random variates with differ-
ent mean and/or standard deviation cannot be normally dis-
tributed. Indeed, many non-Gaussian distributions that
have been used to model ln K data, including the Laplace
and symmetric stable, are Gaussian mixtures [Kotz et al.,
2001; Guadagnini et al., 2012; Riva et al., 2013a]. We
conclude that GPR facies are useful in this simulation, as
they provide a data-based procedure for delineating statisti-
cally distinct regions of K values, leading to the more
sharply peaked and non-Gaussian profile evident in Figure
4d. The facies approach also allows us to preserve observed
correlation structures and angles.

[19] In order to gain a practical appreciation for the accu-
racy of d estimates, we then simulated a number of statisti-
cally identical ln K fields, and applied automatic d
estimation to the resulting ln K profiles. Using a standard
maximum likelihood estimation routine for fractional
autoregressive integrated moving average (ARIMA) mod-
els, we found typical estimates of the d parameter to vary
from the true (input) value of d¼ 0.9 by 60.2 in those sim-
ulations. Hence, we cannot rule out other values of d
(including d¼ 1.0, a simple difference), and the estimated
d value from any single profile should only be taken as a
rough indicator of the true value. However, since the value
d¼ 0.9 resulted in no significant serial correlation in any of
the four HRK profiles in this study, this value was deemed
adequate for our purposes. It is certainly possible that more
significant variations in d could emerge on a larger scale,
or at a different site.

[20] We believe that the departure from a Gaussian dis-
tribution, commonly observed in many ln K data profiles
from alluvial aquifers, can be attributed to mixing.
Although our simulated ln K field is based on Gaussian
noise, the distribution of any single column exhibits a sig-
nificant non-Gaussian shape, because different facies are
mixed. This leads to the second major finding of our statis-
tical analysis : A simulation that uses GPR facies, with a
fractional Brownian motion within each facies, generates ln
K fields whose fractionally differenced vertical profiles
have a strongly non-Gaussian distribution, with a sharper

Figure 5. (a) Fractionally differenced ln K data from the shallowest facies at horizontal location 174 m
fits a Gaussian distribution. (b) Deepest facies at horizontal location 170 m deviates from the Gaussian
model. These probability plots show the sorted data on the horizontal axis, and the corresponding model
percentiles for the best fitting Gaussian model on the vertical axis. If the data fits this model, the points
will follow the reference line, with some random scatter.
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peak and a broader tail, consistent with non-Gaussian ln K
models applied in previous studies [Meerschaert et al.,
2004; Painter, 1996]. The GPR data are valuable in this
simulation method, since they delineate facies boundaries
that allow the Gaussian simulation to reproduce non-
Gaussian ln K profiles.

4. Discussion

[21] Modeling and simulation of K fields is challenging,
especially in highly heterogeneous aquifers including the
MADE site, where the ln K fields exhibit anisotropy [Boggs
et al., 1990; Riva et al., 2008], long-range correlations
[Neuman, 2003; Ritzi et al., 2000], nonmonotone vario-
grams [Ritzi et al., 2004; Salamon et al., 2007], and a sig-
nificantly non-Gaussian shape [Ritzi et al., 2004]. The
standard model of ln K is based on a normal distribution,
but many studies have found significant deviations from
the Gaussian shape in increments of low resolution ln K
field data, with a sharper peak and/or heavier tails [Meer-
schaert et al., 2004; Painter, 1996, 2001]. Some research-
ers have suggested that accurate representation of the K
data at the smallest scale may be a critical component of
solute transport simulation, particularly regarding the dis-
tribution and long-range dependence [Zheng and Gorelick,
2003; Ritzi et al., 2004; Dai et al., 2004; Ramanathan et
al., 2008]. Based on the statistical analysis reported in this
paper, we find that the observed non-Gaussian distribution
of fractionally differenced ln K data from alluvial aquifers
can be reproduced using a Gaussian ln K field in each fa-
cies. The combination of ln K data from different facies at
different depths combines into a data profile with a non-
Gaussian shape [e.g., Painter, 2001]. The non-Gaussian ln
K distributions used in previous studies are also Gaussian
mixtures of this type. It is well known that mixing of data
from different populations changes the histogram shape,
but it is usually impossible to reconstruct the Gaussian
components. This has led to popular indicator geostatistics
methods that synthesize facies boundaries [e.g., Weissmann
and Fogg, 1999]. Using GPR facies, it does seem possible
to delineate the actual facies boundaries without resorting
to simulations, and thereby reduce measured ln K data to a
reasonably Gaussian form. This allows a simple method for
interpolating highly variable and nonstationary ln K fields.
Another advantage of facies modeling is laid out in Winter
and Fogg. [2002, 2003]: It facilitates efficient
perturbation-based stochastic methods based on locally ho-
mogeneous ln K fields. Riva et al. [2013b] has reported a
significantly non-Gaussian distribution of log permeability
for the two faces parallel to bedding in a relatively homo-
geneous sandstone slab, while the distribution on the other
four faces was close to Gaussian. Hence, the Gaussian fa-
cies model promoted here may not be universally
applicable.

5. Conclusions

[22] In this paper, ground-penetrating radar (GPR)
reflections were used to delineate facies boundaries, and a
high-resolution fractal ln K field was simulated within each
facies to interpolate between available K data. There were
two main findings of this study. First, a fractional differ-

ence filter can be useful to capture the correlation structure
of ln K profiles. The unfiltered data histogram from one
profile is severely distorted, but the filter uncovers a coher-
ent noise distribution, required for simulation design.
Second, GPR data can be used to delineate facies bounda-
ries for the K field model. While the overall distribution
of ln K profiles in a typical alluvial aquifer deviates signifi-
cantly from Gaussian, it is reasonable to model the
ln K field within each GPR facies as Gaussian. The devia-
tion from Gaussian in the combined profile is the result of
mixing, since the combination of data from different Gaus-
sian distributions will no longer fit a Gaussian model. In
past research, many investigators have assumed a Gaussian
model for ln K, while many others have presented strong
evidence for non-Gaussian alternatives. Our analysis indi-
cates that both groups are correct, albeit at different scales,
consistent with the findings of Lu et al. [2002]. A Gaussian
model with an appropriate correlation structure can be
adequate for a single facies. For a highly heterogeneous
aquifer, comprised of significantly different facies, the
combination of ln K values with a different mean and
variance in each facies will produce significantly non-
Gaussian profiles.

Appendix A: Fractional Difference Filter

[23] The fractional difference filter was pioneered by
Hurst [1951] to remove correlation in river flood level data.
It has now become a standard tool in one-dimensional time
series analysis [Brockwell and Davis, 1991] and multidi-
mensional spatial statistics [Beran, 1994]. Given a corre-
lated time series Xn (or a spatial series collected at equally
spaced intervals along a one-dimensional line), the back-
ward shift operator BXn ¼ Xn�1 facilitates a simple nota-
tion for the fractional difference

DdXn ¼ I � Bð ÞdXn ¼
X1
j¼0

wjXn�j; ðA1Þ

where the fractional binomial coefficients

wj ¼ �1ð Þj d
j

� �
¼ �1ð ÞjG d þ 1ð Þ

j!G d � jþ 1ð Þ ðA2Þ

using the natural extension of the integer order binomial
coefficients. Using the well-known property G xþ 1ð Þ ¼
xG xð Þ of the gamma function, one can also write

wj ¼
�d 1� dð Þ � � � j� 1� dð Þ

j!
ðA3Þ

from which the recursive formula wj ¼ wj�1 j� 1� dð Þ=j
follows. Hence in the special case where d is a positive inte-
ger, the sum in equation (A1) is finite, since wj¼ 0 when
j> d. Integer order derivatives are defined as the limit of dif-
ference quotients using these operators. In the same way,
fractional derivatives can be defined as the limit of fractional
difference quotients [Meerschaert and Sikorskii, 2012].

[24] In time series and spatial statistics, an integer order
difference is also useful to remove trends, since for exam-
ple the first-order difference of a linear trend is a constant,
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and the second-order difference of a quadratic trend is also
a constant. Since the goal is to filter out the correlation (and
possibly a trend), an effective fractional difference filter
will output an uncorrelated white noise Zn ¼ DdXn. This is
tested in practice by computing the sample autocorrelation
defined by �̂ hð Þ ¼ �̂ hð Þ=�̂ 0ð Þ, where the sample autocovar-
iance is defined by

�̂ hð Þ ¼
XN�h

n¼1

Znþh � Z
� �

Zn � Z
� �

with Z ¼ 1

N

XN

n¼1

Zn ðA4Þ

for a data set of length N. Standard statistical theory
[Brockwell and Davis, 1991] shows that, for large N, the
sample autocorrelation of an uncorrelated white noise at
any lag h is approximately normally distributed with mean
zero and variance 1/N. Since this random quantity lies
between 61:96=

ffiffiffiffi
N
p

approximately 95% of the time, the
autocorrelation plots in Figure 3 show dashed lines at
61:96=

ffiffiffiffi
N
p

. Then, the correlation in the data is judged to
be statistically insignificant (statistically zero) if 95% of the
sample autocorrelations �̂ hð Þ lie within these bounds, and
the remaining sample correlations do not lie very far out-
side these bounds. In this case, there is no compelling evi-
dence to contradict the (null) hypothesis that the correlation
is zero at any lag h 6¼0. The data Zn in Figure 2b was
obtained from equation (1) using the data Xn from Figure
2a, and the optimal value of d¼0.9 was determined by
increasing d gradually until the autocorrelation (Figure 3)
was reduced to be statistically zero. It is also possible to
obtain an estimate of d for a single time series using stand-
ard maximum likelihood estimation routines for fractional
ARIMA models [Brockwell and Davis, 1991].

[25] For spatial data in two or three dimensions collected
at equally spaced grid points, a fractional difference filter
can be applied in each coordinate. The order d of the frac-
tional difference filter can vary with the coordinate to
remove spatial correlations. The entire data set can be used
to estimate the order(s) of the fractional difference [Beran,
1994; Guo et al., 2009], which facilitates a more accurate
estimate of the d parameter(s).
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