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Do Heterogeneous Sediment Properties and Turbulent 
Velocity Fluctuations have Something in Common?

Some History and a New Stochastic Process

Fred J. Molz1, Mark M. Meerschaert2, Tom J. Kozubowski3, and Paul D. Hyden4

It is increasingly apparent that sediment property distributions on sufficiently
small scales are probably irregular. This has led to the development of stochastic
theory in subsurface hydrology, including statistically heterogeneous concepts
based mainly on the Gaussian and Lévy-stable probability density functions
(PDFs), the mathematical basis for stochastic fractals. Gaussian and Levy-stable
stochastic fractals have been applied both in the field of turbulence and subsurface
hydrology. However, measurements have shown that the increment frequency dis-
tributions do not always follow Gaussian or Lévy-stable PDFs. Provided herein is
an overview of the origin and development of a new non-stationary stochastic
process, called fractional Laplace motion (flam) with stationary, correlated, incre-
ments called fractional Laplace noise (fLan). It is based on the Laplace PDF and
known generalizations, and does not display self-similarity. Uncorrelated versions
are equivalent to a Brownian motion subordinated to the gamma process. In anal-
ogy to the development of fractional Brownian motion (fBm) from Brownian
motion, fLam is equivalent to fBm subordinated to a gamma process. The new
stochastic fractal has increment PDFs that compare better with measurements, the
moments of the PDF family remain bounded, and decay of the increment distribu-
tion tails vary from being slower than exponential through exponential and on to
a Gaussian decay as the lag size increases. This leads to increasingly more inter-
mittent fluctuations as the lag size decreases. It may be that the geometric central
limit theorem, and possible generalizations, will play an important role in con-
necting the abstract mathematics to the physics underlying applications.

1

1. HISTORICAL OVERVIEW

1.1. Development of Theory

During the past 3 decades, it has become increasingly
apparent that heterogeneity in natural sediments is pervasive,
with the implication that property distributions on sufficiently
small scales are probably irregular. (Within this chapter, the
term “irregular” will mean continuous functions with dis-
continuous first derivatives or discontinuous functions.) As
this concept developed, various individuals were motivated
to characterize heterogeneous property distributions, such as
ln(K); K = hydraulic conductivity, using stochastic concepts.
In subsurface hydrology, a significant step forward was
taken by Freeze [1975], who began to apply time-series
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concepts to K distributions, with time replaced by distance. He
considered ln(K) to be normally distributed in space, with the
mean and variance independent of position. This is an example
of what we now call a spatially stationary, uncorrelated
Gaussian process. This was later followed by stationary corre-
lated Gaussian processes [Gelhar and Axness, 1983], which
served as the basis for a great deal of research during the
1980s and 1990s. This body of work may now be viewed as
classical stochastic subsurface hydrology, which is applicable to
statistically homogeneous (spatially stationary) porous media.

In order for the statistical parameters (mean, variance, etc.)
of a stochastic process to be well-defined, it is necessary that
the process be stationary. In the present context, this means
that the parameters are not a function of position, as illustrated
in Figure 1. Examination of many data sets, however, such as
those shown in Figure 2, have indicated that in general het-
erogeneous K or ln(K) distributions are not stationary, mean-
ing that different portions of the property distribution behave
very differently in a statistical sense. For example, the distrib-
ution plotted in Figure 2 (Transect X) appears to be composed
of three distinct portions – an initial moderately variable
portion, a central slightly variable portion, and a third highly

variable portion. Thus, mean and variance changes with
position along the transect where the property was measured
[Castle et al., 2004]. A distribution such as this may be called
statistically heterogeneous rather than statistically homoge-
neous. It appears that most property distributions in nature fall
in the statistically heterogeneous category [Molz et al., 2004].

Attempting to deal with non-stationary property distribu-
tions leads one to consider the subject area of non-stationary
stochastic processes with stationary increments. In this
approach it is accepted that the property of interest, say ln(k)
(k = intrinsic permeability), is non-stationary (statistically
heterogeneous), but it is hypothesized that the increments or
fluctuations of the property distribution constitute a station-
ary, and therefore well-defined, stochastic process. In fact, the
increments of many ln(k) data sets appear to be stationary.
Such a situation is shown in Figure 3, where the increment
data from Figure 2, along with additional data from the same
site [Castle et al., 2004], are plotted as a function of along-bed
distance. The increment plot is a good approximation of a sta-
tionary process, and this motivates the exploration and study
of the statistical properties of increment distributions. In the
field of turbulence, stationary velocity increment distributions

2 HETEROGENEOUS SEDIMENT PROPERTIES AND TURBULENCE

Figure 1. Realization of fractional Gaussian noise (Hurst Coefficient H) for Log K increments. Each plot represents a stationary
stochastic process.
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Figure 2. Plots of permeability (k) in millidarcys (vertical coordinates) along three horizontal transects in a near-shore sandstone.
The data were obtained using the small-drill-hole gas mini-permeameter [Castle et al., 2004]. The test holes are separated by 15 cm,
and the three transects are spread vertically over about 1.5 m. In a statistical sense, the plots display non-stationary behavior in both
the vertical and horizontal.

Figure 3. Plots of Ln (k) increments as a function of position for data from the three transects of Figure 2. These plots appear to be a
good approximation of a stationary stochastic process.
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have been studied for several decades, especially since the
well-known stochastic theory developed by Kolmogorov in the
1940s (Frisch, 1995), but in this application, the corresponding
non-stationary process in an Eulerian Sense is not evident.

Stochastic fractals had their mathematical origin in the study
of non-stationary stochastic processes with stationary incre-
ments. For this case, the focus falls naturally on the increments
of a property, the difference between the property values mea-
sured at two points a known distance apart, rather than simply
the property value itself at each point. Thus, if a property is
measured at n points with a constant separation, h, one will
have n−1 increments associated with h, also called the lag.
These increment distributions may then be studied using
statistical techniques. For example, an obvious first step would
be to attempt to fit a probability density function (PDF) or
a cumulative distribution function (CDF) to the increment
distributions. Such distributions would be expected to vary in
some way with the lag size, which is one way to define quanti-
tatively the “scale” associated with a set of local measurements.
Since irregular functions appear irregular on all scales of
measurement, mathematical representations must reproduce
this property, with the possibility of doing so in some orderly
manner that (hopefully) agrees with experiment. It turns out
that mathematicians were working on such representations
throughout the first half of the 20th century, with that early work
collected in a series of classical texts by William Feller.

As discussed in Feller [1971], the most fundamental
property of PDF’s capable of representing increment distri-
butions in an orderly manner is that such distributions be infi-
nitely divisible. A probability distribution, PD, is said to be
infinitely divisible if and only if for any number, n, it can be
represented as the sum of n independent random variables with
a common distribution. Mathematically, this may be written as:

PD = PD1, n + PD2, n + …….. + PDn, n (1)

All so-called stable distributions, which include the Lévy-
stable distributions and the Gaussian special case, are infi-
nitely divisible [Feller, 1971]. Thus it was natural for these
distributions to be proposed as candidate PDFs for ln(K)
increments. The important aspects of stable distributions as
PDF’s for property increments of a given lag will be intro-
duced using the Gaussian probability density function
(GPDF(x)). (For a more general development that includes
the Lévy-stable case see Molz et al., 2004.) For a mean of
zero and a variance σ2, the Gaussian distribution is given by:

(2)

The fundamental property of the Gaussian distribution
upon which infinite divisibility is based may be stated as
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follows: the PDF of n independent Gaussian random variables
is still a Gaussian variable with a variance given by:

(3)

where σ is the standard deviation of the ith independent
random variable.

In order to make Equation (3) more concrete, let us note
specifically that we are dealing with the increments of a
property, P, over a lag, h, ≡ ∆hP. Then the variance of the
increments for a given h is <(∆hP)2>, where the brackets
denote the expected value. In order to change from a set of
increments of lag, h, to a set of lag, 2h, one simply adds each
neighboring pair of increments together, that is, for each i:
Pi+2−Pi = (Pi+2−Pi+1) + (Pi+1−Pi). Combining this with (3)
yields the scaling relationship:

< (∆2hP)2 > = < [(∆hP) + (∆hP)]2 >
= < (∆hP)2 > + < (∆hP)2 >
= 2 < (∆hP)2 > , (4)

and for a change from lag, h, to an arbitrary lag of, rh, (4)
obviously generalizes to:

< (∆rhP)2 > = r < (∆hP)2 > (5)

Note that this scaling relationship may be extended to sta-
tistical moments of order k, in which case we would have:

< (∆rhP)k > = rk/2 < (∆hP)k >. (6)

As written, the scaling relationship implied by Equation (5)
applies to Gaussian distributions with independent (uncorre-
lated) increments, which are the increments of Brownian
motion. In 1968, Mandelbrot and Van-Ness extended Equation
(5) to include the case of correlated increments. The result is:

< (∆rhP)2 > = r2H < (∆hP)2 >,
with 0 < H < 1. (7)

This generalization is consistent with the existence of long-
range positive correlation (H > 1/2) or negative correlation
(H < 1/2) in the property increments, with the classical case
of independent increments given by H = 1/2. H is called the
Hurst coefficient, and when correlation is present, the incre-
ments constitute fractional Gaussian noise. The non-stationary
sums of the increments are known as fractional Brownian
motion. Convenient abbreviations are fGn, and fBm. To extend
Equation (3) to include the Lévy-stable PDF, the exponent
“2” is simply replaced by the Lévy stable index “α” (in which
case the σi’s are scale parameters, and not the standard
deviations, which do not exist in this case). The resulting

σ σ2 2

1

=
=
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i

n
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stochastic processes, analogous in several senses to fGn and
fBm, are called fractional Lévy noise (fLn) and fractional
Lévy motion (fLm). However, the infinite variance feature of
the Lévy-stable PDF makes this distribution a poor candidate
for the present applications [Painter, 2001; Lu and Molz,
2001]. The properties and applications of both Gaussian and
Lévy-stable fractals in subsurface hydrology have been
reviewed recently [Molz et al., 2004].

1.2. Results of Field Studies

In order to determine if the stochastic fractal theory
described in the introduction actually applies to field ln(K)
data, it is necessary to compare field measurements with theo-
retical predictions. For Gaussian fractals, two main predictions
apply: 1) the increments of ln(K) (∆hln(K)) should be distrib-
uted normally for each h value with mean zero and variance
σ2

h , and 2) the variance scaling relation given by Equation (7)
should be satisfied by the measured variances. Most studies
reported during the past decade have supported a variance
scaling relationship. However, for smaller scale measurements,
such as those obtained with a bore-hole flowmeter, the situa-
tion shown in Figure 4 was common [Meerschaert et al., 2004]
For smaller lags, the increment distributions displayed a dis-
tinctly non-Gaussian shape, with peaking around the mean,
and PDF tails that decayed in an approximately exponential
manner. These attributes were also documented by Painter
[2001], who presented PDF tails that decayed slower than the
Lévy-stable case but faster than the Gaussian case (and in that
sense anticipated the present work). For larger lags, Gaussian
behavior appears. It was the observed peaking around the
mean that led in part to the initial suggestion that the Lévy-
stable PDF family should be considered as candidate distribu-
tions for the ∆hln(K). However, the infinite variance feature
could not be accommodated, and some of the larger data sets,
such as the MADE data set (Figure 4), showed convergence to
the Gaussian PDF as h increased, a property that was inconsis-
tent with the Lévy-stable model [Liu and Molz, 1997;
Meerschaert et al., 2004]. By mid-2003, the present authors
also realized that similar variation was being displayed by
velocity increment distributions and other properties measured
in turbulent flows [Meerschaert et al., 2004]. Here, more data
are available over a larger range of h, and increment PDFs
roughly display the behavior PDF(x) ~ exp(−cxβ), with c and β
constants and x = property increment of interest over the lag h.
As h increases from smaller to larger values in steady turbulent
flows, or if h is held constant and the turbulent intensity is
decreased from larger values to smaller values, β is observed
to increase from values < 1 (sometimes called stretched
Laplace behavior), through approximately unity (pure Laplace
or double exponential behavior) and ultimately approaches 2
(Gaussian behavior). This type of behavior is illustrated in

Figure 5, which contains plots of simulated temperature incre-
ment distributions in turbulent flow, with the turbulent inten-
sity increasing and h fixed [Ching and Tu, 1994]. Experimental
studies of velocity increment distributions have shown similar
qualitative scaling properties [van de Water, 1998]. The possi-
bility of some connection between turbulence and permeabil-
ity distributions in sediments, which are commonly deposited
in turbulent fluid flow fields, is interesting and should be
investigated further.

2. A NEW STOCHASTIC FRACTAL

2.1. Desired Properties

Based on the experimental work discussed above, a sto-
chastic fractal able to model heterogeneity in ln(K) should
have the  following attributes: (1) The process should be
spatially (or temporally) non-stationary with stationary
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Figure 4. Frequency distributions of the ln(k) increments measured
at the MADE site using a borehole flow-meter for lags of 15, 105 and
135 cm. The distribution for the 15 cm lag is nearly pure Laplace,
while that for a lag of 135 cm is approaching a Gaussian distribution.
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increments; (2) Statistical moments should remain bounded;
and (3) Decay of the increment distribution tails should vary
from being slower than exponential through exponential and
on to a Gaussian decay as the lag size increases. Can such a
stochastic process be identified?

Although not widely realized, the Laplace PDF is infinitely
divisible [Kotz et al., 2001], and therefore can form the basis
for what appears to be a new type of stochastic fractal. Some
basic attributes of this stochastic process were presented by
Meerschaert et al. [2004]. The stationary increment process was
called fractional Laplace noise (fLan), and the non-stationary
sum of increments was called fractional Laplace motion (fLam).

2.2. Development of fLam and fLan

Since the Laplace distribution is infinitely divisible, one
can define a stochastic process {X (t ), t ≥ 0} with stationary
(homogeneous), independent increments that starts at the origin
and such that the lag v increment, ∆vX (t) = X (t+ν) − X(t), has

a Laplace distribution with scale parameter σ (Kotz et al.,
2001). Lag s increments of the resulting Laplace motion that
have characteristic functions (ch.f.) of the form

φs(u) = 1 + (σ2u2/2)−s/v, u∈R, (8)

are known as generalized Laplace laws, and their densities
(see [12] below) can be written in terms of the modified
Bessel functions of the third kind (Kotz et al., 2001). When
s = v the above reduces to the Laplace ch.f., so the parameter
v > 0, determines the “Laplace scale”. This process can be
obtained as a Brownian motion {BH(t), t ≥ 0} (H = 1/2)
subordinated to the gamma process,

{X(t), t ≥ 0} = d {BH(Γt), t ≥ 0}. (9)

The gamma process {Γt , t ≥ 0} is a Lévy process that starts
at the origin, has independent and homogeneous increments,
and the distribution of the lag s increment has a gamma

6 HETEROGENEOUS SEDIMENT PROPERTIES AND TURBULENCE

Figure 5. Semilog plots of frequency distributions for simulated temperature fluctuations in turbulent flows of varying intensity.
In these simulations, the lag remained constant while the turbulent intensity increased from (a) through (d). Frequency distributions
changed from near Gaussian (a), through Laplace (b and c) to the so-called stretched Laplace (d) [After Ching and Tu, 1994].

Q2
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distribution with shape parameter α = s/v and scale β = 1,
denoted by G(α, β), whose PDF is

f (x) = [βαΓ (α)]−1 xα−1 e−x/β, x > 0. (10)

Consequently, the marginal distributions of Laplace
motion are scale mixtures of normal distributions of the form

X(t) = d (σ2Gt2H )1/2Z, (11)

where H = 1/2, the variable Z is standard normal, and Gt has
the gamma distribution G( t/v, 1). Written in Bessel function
form, the PDF corresponding to logs increments of the
uncorrelated Laplace family is given by

(12)

where K is the modified Bessel function of the 3rd kind of
index s/n – 1/2. For a fixed value of ν, different values of s
correspond to different members of the family. Several
family members are plotted in Figure 6.

As developed so far, X(t) is a stochastic process with uncor-
related increments. As such, it is analogous to Brownian
motion, so it is desirable to try to extend the process to be
analogous to the autocorrelated process fractional Brownian
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motion (fBm). Therefore, starting with Laplace motion,
Meerschaert et al. [2004] defined a process with correlated
increments by subordinating a fBm with Hurst parameter H
(0 ≤ H ≤ 1) to the gamma process via (9). FBm is a centered
Gaussian process defined by the covariance function

(13)

where σ is the standard deviation of BH(1). Following
Meerschaert et al. (2004), we call the resulting process the
fractional Laplace motion (fLam). The marginal distribu-
tions of this process are still of the form (11), but this time
the stochastic variance Gt

2 H has the generalized gamma
distribution with PDF of the form

h (x) = [2H Γ (t/v)]−1 x t/ (2vH ) −1 exp(−x1/(2H))
x > 0, (14)

(It is a power of a gamma variable.) The covariance structure
of the fLam is easy to derive from that of a fBm (given by
(13)) via conditioning on the values of the gamma process,
leading to

<X(t)X(s)> =

t, s > 0. (15)

By using the asymptotics of the gamma function (Stirling’s
formula), one can show that when t, s, and |s-t| get large, (15)
converges to the covariance function of fBm. Lag h incre-
ments of fLam Y(k) = X(hk + h)−X(hk), k = 0,1,2,… form a
stationary sequence called a fractional Laplace noise (fLan)
with parameters σ, v, h > 0 and 0 < H < 1 - see Meerschaert
et al. (2004). By stationarity, the marginal distribution of Y(k)
is the same as that of X(h). The covariance function of this
process, r(n) = <Y(k)Y(k + n )>, can be derived from that of
X(t), leading to

(16)

Using representation (11) in conjunction with moments of
the generalized gamma and normal distributions, one obtains
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Figure 6. Semi-log plots of selected members of the generalized
Laplace family, based on Equation (12), with zero mean and v = 1.
The concave upward (sharply peaked) curve (s = 0.25) is below what
we call the Laplace scale, the two straight lines (s = 1) represent a
classical Laplace PDF (double exponential), and the concave down-
ward curve (s = 4) represents a generalized family member above the
Laplace scale and moving towards a Gaussian distribution (s = ∞).
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the following expression for the pth (absolute) moment of a
fLam X(t):

Sp(t) = <|X(t) |p> = σ p (17)

This behaves like a power law, Sp(t) ~ Cpt
ζ( p), for small

and large values of t.

2.3. FLan and fLam Simulations With Uncorrelated Increments

Using results developed in Kotz et al. [2001], it is straight-
forward to construct the generalized Laplace family describing
distributions of uncorrelated increments. The general structure
of the uncorrelated, generalized, symmetric Laplace family
with mean zero and v = 1 is shown in Figure 6. This figure is
based on plots of selected members from Equation (12).
Additional plots may be found in Figure 4.2 of Kotz et al.
[2001]. One may observe qualitatively that the type of behav-
ior being observed in subsurface heterogeneity and turbulence
(Figures 4 and 5, respectively) is displayed by the various
members of the generalized Laplace family, with the case of s
< 1 being analogous to what some individuals have been call-
ing “stretched Laplace” [Ching and Tu, 1994]. Shown in
Figures 7 and 8 are realizations of fLan and fLam, again for the
case of uncorrelated increments. The noise process shown in
Figure 7 was generated by simulating independent and identi-
cally distributed realizations of the generalized (symmetric)
Laplace distribution, with s = 0.01, utilizing the density

2 1

2

p p Hp t v
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function given by Kotz et al. [2001]. Taking a cumulative sum
of the noise process gives the motion displayed in Figure 8.

What we see at the scale of the plots is a stochastic process
that appears more like a Lévy flight than a Brownian motion.
However, the noise (increment) process has finite statistical
moments of all orders [Kotz et al., 2001], and will appear
Gaussian at sufficiently large lags. The intermittency of the
process is due mainly to input from the increment PDFs
below the Laplace scale where the distributions peak highly
around zero and have tails that decay slower than e−x.

3. DISCUSSION

The fundamental difference between fLam/fLan and other
similar stochastic processes is summed up in Figure 6. In the
somewhat analogous Gaussian and Levy-stable processes,
increment PDFs for all lags will be either Gaussian or Lévy-
stable. In the new stochastic process, however, increment
PDFs are highly variable with lag, especially for lags below
the value of s/ν = 1, which yields the Laplace scale when
H = 0.5. Below the s = ν lag, the PDFs develop increasingly
higher peaks around the mean of zero, and more slowly
decaying tails. This favors fluctuations that cluster around the
zero value but exhibit occasional large changes, which is
characteristic of intermittent behavior. As s increases above ν
however, behavior becomes much more regular as the incre-
ment PDFs approach a Gaussian shape. Turbulent velocity
and ln(k) data both display this type of variation with lag.

It is intriguing to see at least similar qualitative behavior
displayed by fluctuations of several quantities in turbulence

8 HETEROGENEOUS SEDIMENT PROPERTIES AND TURBULENCE

Figure 7. A realization of fractional Laplace noise for the case of
uncorrelated increments. Such a process could potentially represent
ln(k) increments, in which case “t” would represent distance along
a transect, similar to the plot in Figure 3. Alternatively, fLan might
represent turbulent velocity increments measured at a fixed point as
a function of time.

Figure 8. A realization of fractional Laplace motion that is the sum
of the increments shown in Figure 7 above. Because the underlying
increment PDFs change form markedly with lag, this stochastic
process looks very different on different scales of observation. In
this sense, it is more versatile than fBm or fLm.
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and fluctuations (increments) of ln(k) in heterogeneous
sediments. (We have verified that fLan reproduces
Kolmogorov’s laws within the inertial range of turbulence,
which corresponds to the Gaussian limit [Frisch, 1995].)
Superficial reasoning would suggest at least the possibility of
such a commonality, since many sediments are formed through
turbulent processes involving mainly wind and water. However,
there is a little-appreciated central limit theorem, called the
geometric central limit theorem (GCLT), that applies to the
Laplace PDF [Kotz et al., 2001; Meerschaert et al., 2004].
A physical analog of the GCLT could then possibly illumi-
nate a connection between the generalized Laplace family
and the physical measurements discussed in this chapter. It is
beyond the scope of the present communication to discuss
what such a potential connection might be. However, an out-
line of the GCLT is given below.

The GCLT is associated with the idea of a random geometric
sum, which in turn involves the well-known geometric PDF.
Such PDFs arise naturally in several physical contexts.
Herein we will use the context of a waiting time distribution.
Start with a sequence of time intervals and number them
sequentially. If an event has a constant probability “q” of
occurring during any time interval, then the random number
(N) of the interval in which the event is observed for the first
time has the geometric PDF given by:

P(N = n) = P( T = n∆t) = q(1 – q)n−1; n = 1, 2, 3, … (18)

where P = probability, n = event number, and T is the waiting
time for the event to occur. It is easy to see how (18) arises
by observing that (1 – q )n−1 is the probability that the event
will not occur in the first n−1 trials and q is the probability
that it will occur in the nth trial. Given the geometric PDF, the
GCLT may be stated as follows:

1) Start with a set of independent, identically distributed
and symmetric random variables (RVs).

2) Number the random variables in a consecutive manner
(RVj, j = 1, 2, 3, …).

3) For each i = 1, 2, 3, … choose Ni to be a geometric ran-
dom variable (17) where q = qi converges to zero (so that
the mean of Ni converges to infinity).

4) For each i, form the sum:    where Yi

(i = 1, 2, 3, …) is the random number resulting from
each sampling.

5) As i approaches infinity (and qi converges to zero) the
frequency distribution of the Yi will approach a Laplace
PDF [Kotz et al., 2001].

We offer the GCLT as a basis for future study of possible
connections between the generalized Laplace family and
observed turbulent and heterogeneous phenomena.

Y q RVi i j
j

Ni

=
=

∑
1

The increased understanding associated with the full devel-
opment of such a possible connection could have practical
implications for improved simulation of flow and transport in
natural systems. For example, it might improve capabilities
by providing the basis for a better understanding of parame-
ter scale-dependence that is a concern in the application of
numerical models. Alternatively, we might develop a basis
for understanding that there are fundamental limitations to
our predictive capabilities when faced with pervasive natural
heterogeneity. A mathematical basis for limited predictability
is formulated within the modern theory of deterministic
chaos, and fractal-like structures seem to be associated with
chaotic processes [Faybishenko, 2004].

4. CONCLUSIONS

Data have suggested that the “order” inherent in many irreg-
ular processes in sedimentation (permeability, electrical resis-
tivity) and turbulence (turbulent velocity and temperature,
among others) may be found in the increment PDFs of selected
measurements. In the past, fractional Gaussian noise and frac-
tional Lévy-stable noise have been used as models for such
increment distributions. However, careful analysis of measure-
ments has indicated that the increment PDFs are neither
Gaussian nor Lévy-stable over the range of measurement scales
utilized. In particular, Lévy-stable tail behavior is not observed,
and distinctly non-Gaussian PDFs are observed for smaller
lags. As an alternative, we are suggesting a new type of fractal
based on members of the generalized Laplace distribution. In
analogy with standard terminology, the stationary increment
process is called fractional Laplace noise, and summing the
increments yields the corresponding non-stationary process
called fractional Laplace motion. The uncorrelated increment
cases would simply be called Laplace noise and Laplace
motion, which would be analogous to Gaussian noise and
Brownian motion. However, the analogy should not be carried
too far, because the Laplace-based fractal is fundamentally dif-
ferent from Gaussian and Lévy stable fractals; in particular, it
does not exhibit self-similarity or self-affinity [Kotz et al.,
2001]. This is because the underlying increment PDFs, while all
being members of the generalized Laplace family, change
dramatically with scale, something that does not occur with
Gaussian or Lévy stable fractals. Also, fLam/fLan does not fall
completely within the class of multifractals that have been of
much interest lately [Kozubowski et al., 2005].

At the level of analysis performed so far, we have been
able to see some potential statistical commonality between
fluctuation processes in both heterogeneous sediments and
in turbulent flows, suggesting that there may be some under-
lying connection between these phenomena. Future research
should be devoted to studying this possibility and also to
developing the complete features of the generalized Laplace
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family. In physical applications, it may be that the geometric
central limit theorem will play an important role in con-
necting the abstract mathematics to various types of
measurements.
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Queries

Q1. Kindly check and advise in Figure 1 caption, we inserted closing bracket.
Q2. Kindly check and advise in Equation no. 8 we inserted open bracket.
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