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Abstract

For a probability distribution with power law tails, a log–log transformation makes the tails of
the empirical distribution function resemble a straight line, leading to a least-squares estimate of
the tail thickness. Taking into account the mean and covariance structure of the extreme order
statistics leads to improved tail estimators, and a surprising connection with Hill’s estimator.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

A random variable X has heavy tails if the fractional absolute moments E|X |� =∞
for some real �¿ 0. This occurs, for example, if y = P(X ¿x) = Cx−
 for x¿ 0
large. In this case, log y = logC − 
 log x so that a log–log plot of the distribution
function for X has a linear tail. Then the slope of the best <tting line through the
points (log(X(n−i+1)); log(i=n)) for 16 i6 r, where X(1)6X(2)6 · · ·6X(n) are the
order statistics (ties are broken arbitrarily) and r6 n counts the number of extreme
order statistics, should be approximately equal to −
. This graphical estimate of the
tail thickness was pioneered by Mandelbrot (1963, 1982) in his seminal work on heavy
tails and fractals. Fig. 1 illustrates this method for a typical <nancial data set. The right
portion of the graph is nearly linear, indicating that this data set is heavy tailed.
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Fig. 1. Daily trading volume of Amazon, Inc. stock from 20 March 1995 to 18 June 2001.

In linear regression models it is standard to place the random response variables
on the vertical axis. The slope of the best <tting line through the points (log(i=n); log
(X(n−i+1))) for 16 i6 r should be approximately equal to −1=
. This method of
estimating 
 was proposed independently by Kratz and Resnick (1996), who call
it a qq-estimator, and Schultze and Steinebach (1996), who consider the equivalent
problem of least-squares estimation for data with exponential tails. This equivalence
holds because a random variable X has a Pareto distribution with P(X ¿x) =Cx−
 if
and only if Y = ln X has a shifted exponential distribution with P(Y ¿y) = e−
(y−d)

where d = 
−1lnC. CsHorgő and Viharos (1997) establish asymptotic normality of
this estimator for P(|X |¿x) regularly varying with index −
, see also CsHorgő and
Viharos (1998) and Viharos (1999) for some extensions, and a comparison of diJerent
tail estimators. The most popular of these is Hill’s estimator (Hill, 1975)


̂H(r) =

[
1

r − 1
r−1∑
i=1

(ln X(n−i+1) − ln X(n−r+1))

]−1

(1.1)

which is the conditional maximum likelihood estimator for 
 based on the r largest
order statistics for nonnegative data with a Pareto tail. 3 Asymptotic normality for Hill’s
estimator was addressed in Hall (1982), Hall and Welsh (1985), Haeusler and Teugels
(1985), CsHorgő and Mason (1985), Beirlant and Teugels (1989) and other references
cited there.
As a problem in linear regression, tail estimation is complicated by the fact that

deviations of the extreme order statistics from their respective means are neither in-
dependent nor identically distributed. Furthermore, if P(X ¿x) =Cx−
 then the mean
of the random variable ln(X(n−i+1)) is not equal to ln(i=n). In this paper, we develop
new linear regression estimators of 
 and C, taking into account both the mean and
covariance structure of the tail data. We compute the best linear unbiased estimator

3 Hill’s original estimator divides by r instead of r − 1 but the unbiased version (1.1) is now standard.
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(BLUE) of 
−1 and d= 
−1lnC, based on the r largest order statistics, and we show
that the resulting estimator is also the uniformly minimum variance unbiased estimator
(UMVUE). Surprisingly, this estimator for 
 also turns out to equal Hill’s estimator,
establishing an equivalence between the MLE and BLUE estimators, and placing Hill’s
estimator in the context of linear regression.

2. Best linear unbiased estimator

In this section, we compute the best linear unbiased estimator for a random sample
with a Pareto tail. It is mathematically simpler to begin with the equivalent case of
a shifted exponential, which is related to the Pareto by a logarithmic transformation.
Consider a random sample X1; : : : ; Xn from a population with cumulative distribution
function of the form H (x)=G((x−�)=�); �¿ 0. If we de<ne Y=(X −�)=�, then Y has
distribution function G(y) free of the parameters � and �. Let X(1)¡X(2)¡ · · ·¡X(n)
and Y(1)¡Y(2)¡ · · ·¡Y(n) be the order statistics associated with Xi and Yi; i=1; : : : ; n.
The distribution of Y does not depend on the parameters, hence the means and covari-
ances of the order statistics of Y , denoted by E{Y(i)} = �i and Cov{Y(i); Y(j)} = �i; j,
where i; j = 1; : : : ; n, also do not depend on � and �. It follows from the relation
Y(i) = (X(i) − �)=� that E{X(i)} = � + ��i and Cov{X(i); X(j)} = �2�i; j implying that
E{X(i)} is linear in the parameters � and � while Cov{X(i); X(j)} only depends on �.
For any matrix W, we denote its transpose, inverse and determinant as W′, W−1,

and |W|, respectively. Let 1 denote the n × 1 vector of 1’s, �′ = (�1; : : : ; �n) denote
the n × 1 vector of means, let A = (1; �) denote the design matrix, and let B denote
an n × n matrix with ij element equal to �i; j. Let X′ = (X(1); : : : ; X(n)) and �′ = (�; �).
Our linear regression model is X = A� + e where the vector of errors e has mean
zero and covariance matrix �2B. Following Dillon and Goldstein (1984), we transform
this generalized linear regression problem to a standard form. Using the Cholesky
decomposition �2B = RR′, de<ne f = R−1e. The vectors of errors f are uncorrelated,
and we consider the equivalent model Z = D� + f with Z = R−1X and D = R−1A.
Now the Gauss–Markov Theorem (see, e.g., Bickel and Doksum, 1977) implies that
the BLUE for � is

�̂B = (D′D)−1D′Z= (A′B−1A)−1A′B−1X (2.1)

which minimizes the mean squared error (Z − D�)′(Z − D�) = (X − A�)′�−2B−1

(X − A�). Its mean is �, and its covariance matrix is �2(A′B−1A)−1.
If X1; : : : ; Xn is a random sample from a shifted exponential population with

cumulative distribution function H (x) = exp{(x − �)=�}, then Y1; : : : ; Yn are i.i.d.
unit exponential random variables. De<ning the constants ai ≡ ∑i

k=1 (n − k + 1)−1

and bi ≡∑i
k=1 (n− k+1)−2; for i=1; : : : ; n, it is known (see for instance, Barlow and

Proschan, 1981) that E{Y(i)}= �i = ai, and Cov{Y(i); Y(j)}= �i; j = bi; i6 j. Since the
matrices A and B are completely known, we can easily compute the BLUE for � and
its covariance matrix.
Now, suppose we assume that only the largest observations <t the shifted exponential

model. In this case, we can compute the BLUE for � based on the mean and covariance
of just these observations. Let 1r be a r × 1 vector of 1’s, X′

r = (X(n−r+1); : : : ; X(n)),
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�r=(�(n−r+1); : : : ; �(n)), Ar=(1r ; �r), and Br=(�i; j: i; j=n−r+1; : : : ; n). Now the BLUE
for � based on the r largest order statistics is given by �̂Br = (A

′
rB

−1
r Ar)−1A′

rB
−1
r Xr .

This estimator, which minimizes the mean squared error (Xr−Ar�)′�−2B−1
r (Xr−Ar�),

has mean � and covariance matrix �2(A′
rB

−1
r Ar)−1. Next we explicitly compute �̂Br =

(�̂Br ; �̂Br )
′. This requires some preliminary matrix calculations.

Lemma 2.1. The Cholesky decomposition for Br is given by the matrix R with
elements

Ri; j =




b1=2n−r+1 when j = 1;

(r − j + 1)−1 when i¿ j and j¿ 1;

0 otherwise:

Proof. Using the above de<nition of R, it can be shown that RR′=Br . Since R is lower
triangular with positive diagonal entries, this is the unique Cholesky decomposition
of Br .

Lemma 2.2. The matrix R−1 has the following elements:

R−1
i; j =




b−1=2
n−r+1 when i = j = 1;

(r − i + 1) when i = j and j¿ 1;

−(r − i + 1) when i = j + 1;

0 otherwise:

(2.2)

Proof. To prove the result, it can be shown that R−1R = I.

Lemma 2.3. The matrix R−1Ar has elements given by

(R−1Ar)i; j =




b−1=2
n−r+1 when i = 1; j = 1;

b−1=2
n−r+1an−r+1 when i = 1; j = 2;

1 when i¿ 1; j = 2;

0 otherwise:

(2.3)

Proof. Using Lemma (2.2) and the de<nition of Ar , the result follows.

Lemma 2.4. De9neM=(A′
rB

−1
r Ar)−1A′

rB
−1
r where Ar is a 2×r matrix with (Ar)i;1=1

and (Ar)i;2 = an−r+i for all 16 i6 r. We claim that

Mi; j =




1 + an−r+1 when i = 1; j = 1;

−1 when i = 2; j = 1;

−an−r+1=(r − 1) when i = 1; j ¿ 1;

1=(r − 1) when i = 2; j ¿ 1:

(2.4)
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Proof. We will verify this in several steps. Since RR′=Br we have B−1
r =(R−1)′R−1

so that

M = (A′
r(R

−1)′R−1Ar)−1A′
r(R

−1)′R−1 = (Q′Q)−1Q′R−1

where Q= R−1Ar . Let C=Q′Q. After some simpli<cations, it can be shown that

C=

(
b−1
n−r+1 b−1

n−r+1an−r+1

b−1
n−r+1an−r+1 b−1

n−r+1a
2
n−r+1 + (r − 1)

)
: (2.5)

Note that N = |C|= b−1
n−r+1(r − 1) and so

C−1 =


 a2n−r+1

r−1 + bn−r+1 − an−r+1

r−1

− an−r+1

r−1
1

r−1


 : (2.6)

Next de<ne E= C−1Q′ and note that

E=

(
b1=2n−r+1 − an−r+1

r−1 · · · − an−r+1

r−1

0 1
r−1 · · · 1

r−1

)
:

Finally, we have M = ER−1 so that

Mi; j =
r∑

k=1

Ei; kR−1
k; j

=
r∑

k=1

{
b1=2n−r+1I{i=k=1} − an−r+1

r − 1 I{i=1; k¿1} +
1

r − 1 I{i=2; k¿1}
}

×{b−1=2
n−r+1I{k=j=1} + (r − k + 1)I{k=j¿1} − (r − k + 1)I{k=j+1}} (2.7)

Simplifying the above expression leads us to the result.

Next we apply the matrix calculations above to determine a simpli<ed form of the
BLUE for � and �, based on the r largest order statistics.

Theorem 2.5. Let X1; : : : ; Xn be a random sample from a shifted exponential popula-
tion with cumulative distribution function H (x; �; �) = 1 − exp[(x − �)=�]. The best
linear unbiased estimator for � and � based on the r largest order statistics is

�̂Br = X(n−r+1) − (r − 1)−1an−r+1

r∑
i=1

{X(n−i+1) − X(n−r+1)}; (2.8)

�̂Br = (r − 1)−1
r∑

i=1

{X(n−i+1) − X(n−r+1)}: (2.9)
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Proof. Since �̂Br = (A
′
rB

−1
r Ar)−1A′

rB
−1
r Xr =MXr , the results of the theorem follow

immediately from Lemma 2.4.

Corollary 2.6. Let X1; : : : ; Xn be a random sample from a Pareto population with
cumulative distribution function H (x; 
; C) = 1−Cx−
. The best linear unbiased esti-
mator for 
−1 based on the r largest order statistics is the same as Hill’s estimator
(1.1).

Proof. Recall that ln X has a shifted exponential distribution with parameters �= 
−1

and � = 
−1 lnC and apply Theorem 2.5, noting that the i = r term is zero in the
sum.

Remark 2.7. Theorem 2.5 also yields an estimator ĈBr = exp(�̂Br =�̂Br ) for C which is
diJerent from Hill’s estimator ĈH = (r=n)X


̂H
(n−r+1). Of course neither of these is the

BLUE for C since they are not linear. Alternatively, the BLUE (2.8) can be used along
with the parameterization P(X ¿x) = (x=e�)−
.

Remark 2.8. Since the BLUE for 
−1 is the same as Hill’s estimator, this estimator is
asymptotically normal for certain classes of distributions satisfying P(X ¿x)=x−
L(x)
with L(x) slowly varying. See CsHorgő and Viharos (1997) for a survey of these results.

3. Uniformly minimum variance unbiased estimator

In this section, we show that the best linear unbiased estimators for the parameters
of a shifted exponential distribution, given in Theorem 2.5, are also the UMVUE. Then
it follows that Hill’s estimator, the BLUE for the tail thickness parameter 
−1 of a
heavy tailed distribution, is also the UMVUE.

Theorem 3.1. The best linear unbiased estimators given by Eqs. (2.8) and (2.9) in
Theorem 2.5 are also the unique UMVUE for � and �.

Proof. From theory of order statistics (see, e.g., David, 1981), the joint density function
of the r largest order statistics (X(n−r+1); X(n−r+2); : : : ; X(n)) from a shifted exponential
distribution with cumulative distribution function H (x; �; �) = 1 − exp[(x − �)=�] is
given by

n!
(n − r)!

�−r
{
exp

[
−
(∑r

i=1 x(n−r+i) − r�
�

)]}
{
1− exp

[
−
(
x(n−r+1) − �

�

)]}n−r

I{x(n−r+1)¿ �}:

By the Factorization Theorem (see, e.g., Theorem 6.5 in Lehmann and Casella, 1998),
(X(n−r+1);

∑r
i=1 X(n−r+i)) are jointly suRcient statistics for (�; �). Consequently (T1; T2),

where T1 = X(n−r+1) and T2 =
∑r

i=1 [X(n−r+i) − X(n−r+1)], are also jointly suRcient
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for (�; �) since they are 1–1 transformations of (X(n−r+1);
∑r

i=1 X(n−r+i)) (see, e.g.,
Lehmann and Casella, 1998, pp. 36–37).

Lemma 3.2. Let X(n−r+1)¡X(n−r+2)¡ · · ·¡X(n) be the r largest order statistics from
a shifted exponential with shift parameter � and scale parameter �. Then T1 =
X(n−r+1) and T2 =

∑r−1
i=1 [X(n−r+i) − X(n−r+1)] are independently distributed where T1

has marginal density

h1(t1; �; �) =
n!

(n − r)!(r − 1)! �
−1exp

[
− (n − r + 1)(t1 − �)

�

]

×
{
1− exp

[
−
(
t1 − �
�

)]}r−1
I{t1¿ �} (3.1)

and T2 has a Gamma (r − 1; �−1) density given by h2(t2; �)= [(r − 2)!]−1�−(r−1)tr−22
e−t2=�.

Proof. Using standard results on order statistics (see, e.g., David, 1981), the marginal
density function of the jth smallest order statistic is given by

n!
(n − j)!(j − 1)! [H (x(j); �; �)]

n−jh(x(j); �; �)[1− H (x(n−r+1); �; �)] j−1:

Letting j = n − r + 1, substituting the density and cumulative distribution functions of
the shifted exponential, and simplifying, we obtain (3.1). To derive the density of T2,
note that if

Zi = (n − i + 1)
(X(i) − X(i−1))

�
; X(0) = 0; i = 1; : : : ; n; (3.2)

then Z1; : : : ; Zn are iid unit exponential random variables (see David, 1981, pp. 20–21
for details). Hence

n∑
i=n−r+2

Zi = �−1
n∑

i=n−r+2

(n − i + 1)(X(i) − X(i−1))

= �−1
r−1∑
i=1

(X(n−r+i) − X(n−r+1)): (3.3)

Since
∑n

i=n−r+2 Zi is distributed as Gamma(r − 1; 1), then T2 =
∑r−1

i=1 (X(n−r+i) −
X(n−r+1)) is distributed as Gamma(r−1; �−1). The independence of T1 and T2 follows
from the fact that

T1 = X(n−r+1) = �
n−r+1∑
i=1

Zi
n − i + 1

and

T2 =
r−1∑
i=1

(X(n−r+i) − X(n−r+1)) = �
n∑

i=n−r+2

Zi

in view of (3.2).
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Next we show that (T1; T2) are complete statistics. This means that if E�;�[f(T1; T2)]=0,
for all �; � for some measurable real-valued integrable function f then f(t1; t2) = 0
a.e.-(dt1×dt2). We adapt the proof found in Lehmann and Casella (1998, p. 43). Note
that

0 = E�;�[f(T1; T2)] =
∫ ∞

�

∫ ∞

0
f(t1; t2)h2(t2; �) dt2h1(t1; �; �) dt1

=
∫ ∞

�
g(t1; �)h1(t1; �; �) dt1

=
∫ ∞

�
g+(t1; �)h1(t1; �; �) dt1 −

∫ ∞

�
g−(t1; �)h1(t1; �; �) dt1;

where

g(t1; �) = E�[f(t1; T2)] (3.4)

and g+ and g− are the positive and negative parts of g, respectively, implying that∫ ∞

�
g+(t1; �)h1(t1; �; �) dt1 =

∫ ∞

�
g−(t1; �)h1(t1; �; �) dt1

for all −∞¡�¡∞; and for a <xed �¿ 0. Consequently,∫
A
g+(t1; �)h1(t1; �; �) dt1 =

∫
A
g−(t1; �)h1(t1; �; �) dt1 (3.5)

for any Borel set, A. If we let A={t1: g(t1; �)¿ 0}, then ∫A g+(t1; �)h1(t1; �; �) dt1 =0
which follows from (3.5). Similarly, if we take A={t1 : g(t1; �)¡ 0}, then ∫A g−(t1; �)
× h1(t1; �; �) dt1 = 0. Thus, for any <xed �, g(t1; �) = 0 a.e.-dt1. It then follows that∫∞
� g+(t1; �) dt1 = 0. Since f; h1 are jointly measurable, g+ is jointly measurable, and
the Fubini theorem yields

0 =
∫ ∞

0

∫ ∞

�
g+(t1; �) dt1 d� =

∫ ∞

�

(∫ ∞

0
g+(t1; �) d�

)
dt1;

so that
∫∞
0 g+(t1; �) d�=0 a.e.-dt1I{t1¿�} for any � and hence a.e.-dt1. In other words,

there is a measurable set B ⊂ (−∞;∞) such that ∫t1 �∈B dt1 =0 and
∫∞
0 g+(t1; �) d�=0

for all t1 ∈B. Then for any t1 ∈B we have g+(t1; �) = 0 a.e.-d�. Using a similar
argument, we can show that g−(t1; �) = 0 a.e.-d� so that g(t1; �) = 0 a.e.-d�.
Since f is integrable and h2(t2; �) = [(r − 2)!]−1�−(r−1)tr−22 e−t2=�, if �n → �¿ 0

then �n ¿�=2 for all n large, and then a straightforward application of the dominated
convergence theorem implies that

g(t1; �n) =
∫ ∞

0
f(t1; t2)h2(t2; �n) dt2 →

∫ ∞

0
f(t1; t2)h2(t2; �) dt2 = g(t1; �);

so that g(t1; �) is a continuous function of � for any <xed t1. Then for any t1 ∈B
we have g(t1; �) = 0 for all �¿ 0. Since the densities h2 constitute an exponential
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family, T2 is a complete statistic for �, and hence it follows from 0 = g(t1; �) =
E�[f(t1; T2)] that f(t1; t2) = 0 a.e.-dt2. In other words, for any t1 ∈B there exists
a measurable set A(t1) ⊂ (0;∞) such that ∫t2 �∈A(t1)

dt2 = 0 and f(t1; t2) = 0 for all
t1 ∈B; t2 ∈A(t1). Since t1 ∈B and t2 ∈A(t1) imply f(t1; t2) = 0, f(t1; t2) �= 0 implies
that either t1 �∈ B or t1 ∈B; t2 �∈ A(t1). Hence∫ ∫

I{f(t1 ;t2)�=0}dt2 dt16
∫ ∫

(I{t1 �∈B} + I{t1∈B;t2 �∈A(t1)}) dt2 dt1

=
∫ ∫

I{t1 �∈B}dt1 dt2 +
∫
t1∈B

∫
I{t2 �∈A(t1)}dt2 dt1 = 0 + 0

so that f(t1; t2) = 0 a.e.-dt1 × dt2. Hence (T1; T2) are jointly complete statistics for
(�; �).
Finally, since �̂Br and �̂Br are unbiased estimators of � and � and are functions of

the jointly complete suRcient statistics (T1; T2), (�̂Br ; �̂Br ) is the unique UMVUE for
(�; �) (see, e.g., Theorem 1.11 of Lehmann and Casella, 1998) based on the r largest
order statistics.

Remark 3.3. The fact that Hill’s estimator is at once the BLUE, UMVUE, and
conditional MLE for 
−1 argues strongly for its use in the case of data with Pareto
tails. However, real data are usually not exactly Pareto, even in the tail, so the ques-
tion of robustness remains open. For example, although it is common to employ Hill’s
estimator for <nancial data which many believe to be at least approximately stable,
McCulloch (1997) points out that Hill’s estimator performs poorly for such data when
the stable index 1:5¡
¡ 2 (see also Fofack and Nolan, 1999). Meerschaert and
ScheSer (1998) suggest a diJerent estimator based on the asymptotics of the sample
variance, which is more robust in this situation. Aban and Meerschaert (2001) develop
a shift-invariant version of Hill’s estimator, which is another way to increase robust-
ness. Beirlant et al. (1999) use an exponential regression model to obtain tail estimates
assuming a second-order regular variation condition, which adjusts for the bias in Hill’s
estimator in this case. A closely related estimator to this latter estimator was obtained
by Feuerverger and Hall (1999) which is also based on a nonlinear regression, under
similar model assumptions, to obtain a diJerent bias correction.

4. Other least-squares estimators

In Section 2, we showed that Hill’s estimator for the tail thickness parameter 
−1

is actually a linear regression estimator, taking into account the mean and covariance
structure of the largest order statistics. Other estimators can be obtained in the same
manner, using a diJerent set of assumptions about the data. If we ignore the covariance
matrix Br of the r largest order statistics and instead minimize (Xr −Ar�)′(Xr −Ar�)
with respect to �, the resulting least-squares estimator for � based on the r largest order
statistics is �̂Sr=(A′

rAr)−1A′
rXr with covariance matrix �2(A′

rAr)−1(A′
rBrAr)(A′

rAr)−1.
This simpli<ed version of BLUE (SBLUE) is typically used when the covariance matrix
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of the data is unknown (see, e.g., David, 1981). This method leads to the tail thickness
estimator


̂−1
Sr =

r∑
i=1

ki ln X(n−i+1)

with

ki =
Tar(an−i+1 − Tar)∑r
i=1 (an−i+1 − Tar)2

and

Tar =
1
r

r∑
i=1

an−i+1:

This estimator is still unbiased for 
−1 but has a larger variance than the BLUE.
Another least-squares estimator for tail thickness is the qq-estimator of Kratz and

Resnick (1996), or equivalently the exponential tail estimator of Schultze and Steinebach
(1996). Given X1; : : : ; Xn i.i.d. with P(X ¿x) = Cx−
 for x large, the qq-estimator
is based on the regression equation ln X(n−i+1) = 
−1 lnC − 
−1ln(i=n); i = 1; : : : ; r.
Let X′

r = (ln X(n−r+1); : : : ; ln X(n)) and let 1r be a r × 1 vector of 1’s. If we de<ne
�′
r=(-r; : : : ; -1) where -i=ln(i=n), then the design matrix for this least-squares problem
is Er=(1r ; �r), and the estimator, �̂qqr=(E′

rEr)−1E′
rXr , minimizes (Xr−Er�)′(Xr−Er�)

with respect to �. Unlike the BLUE and SBLUE, this estimator is biased with mean
vector (E′

rEr)−1E′
rAr� and covariance matrix �2(E′

rEr)−1(E′
rBrEr)(E′

rEr)−1.
One way to sharpen the qq-estimator is to take into account the variance–covariance

matrix of the log-transformed data. This is similar to the BLUE but with a diJer-
ent design matrix. Minimizing (Xr − Er�)′B−1

r (Xr − Er�) with respect to �, we ob-
tain the empirical-based least-squares estimator (ELSE), �̂Er = (E

′
rB

−1
r Er)−1E′

rB
−1
r Xr .

This estimator is biased with mean (E′
rB

−1
r Er)−1E′

rB
−1
r Ar� and covariance matrix

�2(E′
rB

−1
r Er)−1. Here the linear regression model is Xr=Er�+e where E{e}=a �= 0.

Subtracting a from both sides gives a generalized linear regression model with mean
zero errors, and then the same argument that lead to (2.1) shows that the ELSE has
minimum variance among all linear estimators with this bias.
Fig. 2 compares the theoretical variances of all four least-squares estimators of 
−1

in the case 
 = 1 and n = 10; 000. Typically the variance of the qq-estimator and
SBLUE, which do not take the covariance structure of the order statistics into account,
are about twice as large as BLUE and ELSE. This is in agreement with known results:
Hall (1982) showed that Hill’s estimator of 
 is asymptotically normal with variance

2=r, while CsHorgő and Viharos (1997) showed that the qq-estimator is asymptotically
normal with variance 2
2=r.
Fig. 3 applies each of these estimators to the data set (n = 1570 daily trading vol-

umes) from Fig. 1. Since the estimators with the smaller theoretical variance (BLUE
and ELSE) are considerably less smooth, some practitioners may prefer the smoother
estimators (SBLUE and qq) despite their theoretical shortcomings. Alternatively, one
could smooth the BLUE or ELSE estimators (e.g., see Resnick and StUaricUa (1997) and
recall that Hill’s estimator for 
−1 is the BLUE). Hill’s estimator ĈH = (r=n)X 
̂H

(n−r+1)
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Fig. 2. Theoretical variances for least-squares estimators of 
̂−1 based on the r largest order statistics, in
the case 
 = 1 and n = 10; 000.

Fig. 3. Estimates of 
−1 (left) and C (right) with varying values of r for daily trading volume of
Amazon, Inc. stock from 20 March 1995 to 18 June 2001. Hill’s estimates for C are indistinguishable from
BLUE.

diJers from the BLUE Ĉ = exp(�̂=�̂) but the diJerence is too small to see on this
graph. The <tted line on Fig. 1 uses the values 
=1:808 and C=6:973×107 obtained
from the BLUE with r=75. Hill’s estimator with r=75 yields the same 
, as expected
in view of Corollary 2.6, and C = 7:022× 107, very close to the BLUE.
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Remark 4.1. Another way to improve the qq-estimator is to make a continuity correc-
tion. Using the regression equation

ln X(n−i+1) = 
−1lnC − 
−1ln
(
i − 1=2

n

)
; i = 1; : : : ; r;

signi<cantly reduces the bias of the qq-estimator, as well as the ELSE.
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881.

David, H., 1981. Order Statistics, 2nd Edition. Wiley, New York.
Dillon, W., Goldstein, M., 1984. Multivariate Analysis. Wiley, New York.
Feuerverger, A., Hall, P., 1999. Estimating a tail exponent by modelling departure from a Pareto distribution.
Ann. Statist. 27, 760–781.

Fofack, H., Nolan, J., 1999. Tail behavior, modes and other characteristics of stable distribution. Extremes
2, 39–58.

Haeusler, E., Teugels, J.L., 1985. On the asymptotic normality of Hill’s estimator for the index of regular
variation. Ann. Statist. 13, 743–756.

Hall, P., 1982. On some simple estimates of an exponent of regular variation. J. Roy. Statist. Soc. B 44,
37–42.

Hall, P., Welsh, A.H., 1985. Adaptive estimators of parameters of regular variation. Ann. Statist. 13,
331–341.

Hill, B., 1975. A simple general approach to inference about the tail of a distribution. Ann. Statist. 3,
1163–1173.

Kratz, M., Resnick, S., 1996. The qq-estimator and heavy tails. Comm. Statist. Stochastic Models 12,
699–724.

Lehmann, E.L., Casella, G., 1998. Theory of Point Estimation, 2nd Edition. Springer, New York.
Mandelbrot, B., 1963. The variation of certain speculative prices. J. Business 36, 394–419.
Mandelbrot, B., 1982. The Fractal Geometry of Nature. W.H. Freeman, San Francisco.
McCulloch, J., 1997. Measuring tail thickness to estimate the stable index 
: a critique. J. Business Econom.
Statist. 15, 74–81.

Meerschaert, M., ScheSer, H.P., 1998. A simple robust estimator for the thickness of heavy tails. J. Statist.
Plann. Inference 71, 19–34.

Resnick, S., StUaricUa, C., 1997. Smoothing the Hill’s estimator. Adv. Appl. Probab. 29, 271–293.
Schultze, J., Steinebach, J., 1996. On least-squares estimation of an exponential tail coeRcient. Statist.
Decisions 14, 353–372.

Viharos, L., 1999. Weighted least-squares estimators of tail indices. Probab. Math. Statist. 19, 249–265.


	Generalized least-squares estimators for the thickness of heavy tails
	Introduction
	Best linear unbiased estimator
	Uniformly minimum variance unbiased estimator
	Other least-squares estimators
	References


