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Based on an examination of K data from four different
sites, a new stochastic fractal model, fractional Laplace mo-
tion, is proposed. This model is based on the assumption
of spatially stationary ln(K) increments governed by the
Laplace PDF, with the increments named fractional Laplace
noise. Similar behavior has been reported for other incre-
ment processes (often called fluctuations) in the fields of
finance and turbulence. The Laplace PDF serves as the
basis for a stochastic fractal as a result of the geometric
central limit theorem. All Laplace processes reduce to their
Gaussian analogs for sufficiently large lags, which may ex-
plain the apparent contradiction between large-scale models
based on fractional Brownian motion and non-Gaussian be-
havior on smaller scales.

1. Introduction

The stochastic theory of non-stationary processes with
stationary increments began to be applied to detailed hy-
draulic conductivity (K) measurements during the early
1990’s [Molz and Bowman, 1993; Painter, 1996]. Numerous
additional applications followed [Molz et al., 2003]. Initial
studies assumed that ln(K) increments or fluctuations (the
stationary process) would follow Gaussian probability den-
sity functions (PDFs). However, careful analysis of a variety
of measurements soon showed that the increment PDFs were
strongly non-Gaussian with a distinct resemblance to the
Lévy-stable PDF [Painter and Paterson, 1994]. This PDF
was attractive, because like the Gaussian PDF it served as
the natural mathematical basis for a stochastic fractal. Still
further analysis of measurements, and simulations, led re-
searchers to realize that the tails of the empirical PDFs do
not have a power-law decay [Painter, 1996; Lu and Molz,
2001]. This led to the proposal of stochastic models that
can be varied between Gaussian and Lévy behavior [Painter,
2001].

Based on recent and ongoing studies of existing and new
data sets, with the new data being carefully measured in two
well-defined sandstone facies [Castle et al., 2003], we report
that the increment PDFs, including the full tails, appear to
follow the double exponential (Laplace) PDF or stretched
exponential PDF, exemplified by the so-called Bessel PDF
[Kotz et al., 2001]. Plotted on semi-log scale, the Laplace
PDF has a distinct “tent” shape. This behavior of the PDF
has been observed in a variety of fields, and for some time,
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the PDF (and its related cousin, the log-Laplace distribu-
tion) has been used for modeling various random processes
in archaeology, biology, economics and physics [Kozubowski
and Podgórski, 2003] as well as seismic reflection coefficients
[Walden and Hosken, 1986; Painter, 2003]. Of particular in-
terest to us is the appearance of the Laplace and related
PDFs in studies of turbulence, since turbulence is often
involved in sedimentation [Heslot et al., 1987; Ching and
Tu, 1994; Sparling and Bacmeister, 2001; Stepanova et al.,
2003]. Here we describe a stochastic process based on the
Laplace PDF, similar to fractional Brownian motion, and of-
fer an initial hypothesis for its appearance in sedimentation
processes.

2. Statistical analysis

It is common to model ln(K) as a stochastic process with
long-range dependence, characterized by the Hurst coeffi-
cient. Figure 1 indicates a Hurst coefficient of 0.24 for ln(K)
measurements from three horizontal transects of sandstone
facies at a site in Utah [Castle et al., 2003], based on a disper-
sional analysis [Caccia, et al., 1997, Lu, et al., 2002], similar
to rescaled range analysis. This suggests a fractional Brown-
ian motion or fractional Lévy motion model for ln(K), mod-
els that have been previously applied to other sites [Molz
and Bowman, 1993; Painter, 1996]. In a fractional Brownian
motion, increments are normally distributed. In a fractional
Lévy motion, increments follow a stable distribution [Feller,
1971; Samorodnitsky and Taqqu, 1994], a bell-shaped curve
with a heavier, power-law tail. A careful analysis shows
that neither of these models is a good approximation for
the Utah ln(K) data, because the probability tails of these
measurements fall off at an exponential rate.

Taking increments reduces statistical dependence and
clarifies the underlying distribution. Increments of ln(K) at
both the MADE and Cape Cod sites are nearly uncorrelated
with a similar shape, fairly symmetric with a sharp peak at
zero and long tails. A Laplace PDF f(x) = (λ/2) exp(−λ|x|)
gives a good fit to each of these data sets (see Figure 2). The
peak in the Laplace distribution at zero means that values
of hydraulic conductivity at nearby locations are more likely
to be closer together than the Gaussian model or the Lévy
model predicts. The tails are heavier than Gaussian but
lighter then Lévy. This was verified by plotting absolute in-
crements of ln(K) against tail probability on a semilog scale
(similar to Figure 4).

Increments in ln(K) at the Utah site and the Borden site
appear more bell-shaped (see Figure 3). In order to distin-
guish between different bell-shaped distributional models,
we examine the probability tails. For both sites we find that
the α power of the absolute increments in ln(K) (α = 1.18
at the Utah site and α = 1.23 at the Borden site) has a tail
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probability that falls off exponentially. This corresponds to
the so-called “stretched exponential” distribution recently
observed in turbulent flow-fields. This was verified by plot-
ting the α power of the absolute increments of ln(K) against
tail probability on a semilog scale, illustrated in Figure 4 for
the Utah data.

Figure 5 shows that the distribution of increments at the
MADE site for different scales n = 2, 3, . . . , 9 converge to a
normal distribution as n gets larger, consistent with the cen-
tral limit theorem. Standard statistical tests also indicate
convergence to normality. Increments of ln(K) at the other
three sites examined show a similar behavior, converging to
a normal distribution as the scale increases.

Presently, it is not clear why a pure Laplace PDF is as-
sociated with measurements at some sites and a stretched
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Figure 1. Dispersional analysis of the horizontal Utah
data results in a Hurst coefficient H = 0.24. A reference
line with slope 2H is plotted against a log-log plot of the
actual variance as a function of lag, computed indepen-
dent of the dispersional analysis.
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Figure 2. Increments of ln(K) at the MADE site (top)
and the Cape Cod site (bottom) fit a Laplace distribu-
tion, with exponential tails. Both measurements based
on horizontal flow in a mean sense.

Laplace at others, although the same type of mixed behav-
ior has been reported in turbulence studies [Ching and Tu,
1994]. In the present case, there is a possibility that the
differences are related, at least in part, to the K measure-
ment process utilized in the various studies. It is well known
that in sedimentary materials we almost always see a pro-
nounced anisotropy in property values. Thus property val-
ues should always be measured along a principal axis of the
anisotropy. The MADE and Cape Cod data are based on
a horizontal flow field set up by pumping a well. So the
mean flow would be along a principal direction (horizon-
tal) of the anisotropy. However, the Utah data are based
on spatially small but 3D flow-fields associated with a gas
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Figure 3. Increments of ln(K) at the Utah site (top)
and the Borden site (bottom) are more bell-shaped, but
peaking around the mean is evident in both data sets.
Utah data based on 3D flow of unknown detail. Borden
data based on highly disturbed samples.
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Figure 4. Absolute values of increments in ln(K) raised
to the power α = 1.167 at the Utah site show an excellent
fit to an exponential distribution.
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mini-permeameter, which would involve flow at all angles
relative to the principal anisotropy directions. Also, the
Borden data were based on remixed samples. It is certainly
plausible that the selected measurement procedures at these
two sites could have modified a more pure Laplace structure
in the principal directions.

3. Fractional Laplace motion

In this section we propose an alternative fractal model for
ln(K) based on the Laplace PDF rather than the normal or
Lévy stable PDF. The stable PDF family (which includes
normal as a special case) appears in the extended central
limit theorem [Feller, 1971]. Sums of IID random variables
are asymptotically stable, normal if their variance is finite.
Sums of IID stable random variables maintain the same PDF
(up to a change of scale), leading to elegant self-affine sto-
chastic models.

The Laplace PDF emerges from a different and less well-
known central limit theorem. The sum of a random number
of IID variates with finite variance is asymptotically Laplace
if the random count is geometrically distributed. For exam-
ple, daily price changes in a stock are the sum of a random
number of price jumps, one for each trade. The probabil-
ity that the number of trades exceeds n falls off geometri-
cally, like pn for some 0 < p < 1, and then the geometric
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Figure 5. The distribution of ln(K) increments at the
MADE site converges to a normal as the scale increases.
Increments are computed as the difference between every
nth value of ln(K) for n = 2, 3, . . . , 9. Fractional Laplace
motion PDFs give a good fit.

central limit theorem implies that daily price changes are
approximately Laplace, as often seen in financial data. A
similar explanation for the appearance of the Laplace PDF
in sedimentation may be due to a geometric number of de-
positional events. Although a detailed analysis is beyond
the scope of the present letter, it would seem likely that
the geometric central limit theorem would play an impor-
tant role in a physical explanation for the appearance of the
Laplace PDF in both turbulence and sedimentation. Such
considerations are topics for future research in a variety of
disciplines. We mention the idea here merely to give some
initial rough hypothesis for the Laplace PDFs that we and
others have observed.

The Laplace PDF, as the limit of a random number of
observations, can also be considered as a normal PDF with
a random variance or spread. A similar idea was used by
Painter [2001] to develop realistic simulations of K fields.
The simplest way to implement this model is by subordina-
tion. In subordination, a stochastic process X(t) is replaced
by another process X(T (t)) where T (t) is a randomized ver-
sion of the independent variable t. In groundwater hydrol-
ogy, T (t) has been used to represent the “operational time”
a particle experiences, a time that passes more rapidly in
high velocity zones [Baeumer, et al., 2001]. When modeling
characteristics of a porous medium such as hydraulic con-
ductivity, the subordinator may represent the number of de-
positional features encountered over a distance t. Since the
depositional process is probably chaotic, the same Laplace
and stretched exponential probability models that describe
turbulent flow are also relevant here.

A flexible model for ln(K), consistent with all of the
statistical analysis shown in the previous section, can be
obtained by subordinating a (fractional) Brownian motion
X(t) with Hurst coefficient 0 < H < 1 to a Gamma process
T (t), a stationary independent increment process with an
exponential PDF at t = 1, and more generally a Gamma
PDF (the sum of IID exponentials has a Gamma PDF).
For H = 1/2 the subordinated process Y (t) = X(T (t))
is called a Laplace motion [Kotz, et al., 2001]. For other
values of 0 < H < 1 we call Y (t) a fractional Laplace
motion. A simple conditioning argument [Kozubowski, et
al., 2004] shows that the fractional Laplace motion vari-
able Y (t) has stretched exponential tails that fall off like
|x|α exp(−λ|x|β) for large x where λ > 0, α = 2t/(1+2H)−1
and β = 2/(1 + 2H), so that β = 1 (exponential tails) when
H = 1/2. As t increases, the subordinator T (t) ∼ ct so the
variables Y (t) converge to a normal, which is consistent with
the data. If ln(K) has exponential probability tails, then K
has power law tails, consistent with the findings of Benson,
et al. [2001].

Laplace motion has many of the familiar properties of
Brownian motion, except that now increments follow a
Laplace rather than a normal PDF. Fractional Brownian
motion X(t) has stationary increments and covariance func-
tion <X(t)X(s)> = (1/2)

[
|t|2H + |s|2H − |t − s|2H

]
. Frac-

tional Laplace motion Y (t) = X(T (t)) also has stationary
increments, and its covariance function <Y (t) Y (s)> =

1

2

[
Γ(|t| + 2H)

Γ(|t|) +
Γ(|s| + 2H)

Γ(|s|) − Γ(|t − s| + 2H)

Γ(|t − s|)

]

is asymptotically equivalent to that of fBm, using the well-
known fact that Γ(x + c) ∼ xc Γ(x) as x → ∞. The incre-
ments of fractional Brownian motion X(t) at lag h, defined
by N(t) = X(t) − X(t − h), are called fractional Gaussian
noise. This stationary process with stationary increments
has covariance function <N(t) N(t+r)> = (1/2)[|r+h|2H +
|r−h|2H − 2|r|2H ]. Increments of fractional Laplace motion
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defined by L(t) = Y (t)− Y (t− h), called fractional Laplace
noise, form a stationary process with stationary increments
and covariance function <L(t)L(t + r)> =

1

2

[
Γ(|r + h| + 2H)

Γ(|r + h|) +
Γ(|r − h| + 2H)

Γ(|r − h|) − 2
Γ(|r| + 2H)

Γ(|r|)

]
,

asymptotically equivalent to the covariance function of frac-
tional Gaussian noise. Details may be found in a forthcom-
ing paper [Kozubowski, et al., 2004]. Fractional Laplace
motion can be simulated by the method of Painter [2001] us-
ing an exponential subordinator, or directly from a Laplace
noise field as described in Benson, et al. [2003].

4. Summary

Based on an examination of K data from 4 different sites,
a new stochastic fractal model, fractional Laplace motion
(fLam), is proposed. This model is based on the assump-
tion of spatially stationary ln(K) increments governed by
the Laplace PDF, which has been observed at a number
of sites. Similar behavior has been reported for other in-
crement processes (often called fluctuations) in the fields of
finance and turbulence. A possible stochastic connection
between turbulence and sedimentation as reflected by ln(K)
distributions is intriguing and deserves more study. Some-
times the PDF observed is stretched Laplace, and the reason
for this deviation from pure Laplace behavior is not clear,
but may relate to imperfect measurement procedures.

The Laplace PDF serves as the basis for a stochastic frac-
tal as a result of the so-called geometric central limit the-
orem, which states that a Laplace PDF will appear from
random sums of IID variables with finite variance if the ran-
dom count is geometrically distributed. FLam and frac-
tional Laplace noise (fLan) are named in analogy to the
corresponding Gaussian processes (fBm and fGn), and the
covariance function for each stochastic process is presented.
A generation procedure for fLam based on subordination of
fBm to a Gamma PDF is suggested. All Laplace processes
reduce to their Gaussian analogs for sufficiently large lags,
consistent with the K field data, and this property also
potentially removes an apparent contradiction between the
large-scale fBm model of Neuman (1990) and the consistent
observation of non-Gaussian PDFs on smaller scales.
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