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LIMIT THEOREMS FOR CONTINUOUS-TIME
RANDOM WALKS WITH INFINITE
MEAN WAITING TIMES
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Abstract

A continuous-time random walk is a simple random walk subordinated to a renewal
process used in physics to model anomalous diffusion. In this paper we show that,
when the time between renewals has infinite mean, the scaling limit is an operator Lévy
motion subordinated to the hitting time process of a classical stable subordinator. Density
functions for the limit process solve a fractional Cauchy problem, the generalization of
a fractional partial differential equation for Hamiltonian chaos. We also establish a
functional limit theorem for random walks with jumps in the strict generalized domain
of attraction of a full operator stable law, which is of some independent interest.
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1. Introduction

Continuous-time random walks (CTRWs) were introduced in [30] to study random walks
on a lattice. They are now used in physics to model a wide variety of phenomena connected
with anomalous diffusion [18], [29], [37], [42]. A CTRW is a random walk subordinated to
a renewal process. The random-walk increments represent the magnitude of particle jumps,
and the renewal epochs represent the times of the particle jumps. If the time between renewals
has finite mean, the renewal process is asymptotically equivalent to a constant multiple of
the time variable, and the CTRW behaves like the original random walk for large time [2],
[19]. In many physical applications, the waiting time between renewals has infinite mean [39].
In this paper, we derive the scaling limit of a CTRW with infinite mean waiting time. The
limit process is an operator Lévy motion subordinated to the hitting time process of a classical
stable subordinator. The limit process is operator self-similar; however, it is not a Gaussian or
operator stable process, and it does not have stationary increments. Kotulski [19] and Saichev
and Zaslavsky [33] computed the limit distribution for scalar CTRW models at one fixed point
in time. In this paper, we derive the entire stochastic process limit in the space D([0,∞),Rd)

and we elucidate the nature of the limit process as a subordinated operator Lévy motion. We
also establish a functional limit theorem for random walks with jumps in the strict generalized
domain of attraction of a full operator stable law (Theorem 4.1) which is of some independent
interest.
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Zaslavsky [45] proposed a fractional kinetic equation for Hamiltonian chaos, which Saichev
and Zaslavsky [33] solved in the special case of symmetric jumps on R

1. This fractional partial
differential equation defines a fractional Cauchy problem [1] on R

1. In this paper, we show that
the distribution of the CTRW scaling limit has a Lebesgue density which solves a fractional
Cauchy problem on R

d . This provides solutions to the scalar fractional kinetic equation with
asymmetric jumps, as well as the vector case. Operator scaling leads to a limit process with
more realistic scaling properties, which is important in physics, since a cloud of diffusing
particles may spread at a different rate in each coordinate [28].

2. Continuous-time random walks

Let J1, J2, . . . be nonnegative independent and identically distributed (i.i.d.) random vari-
ables that model the waiting times between jumps of a particle. We set T (0) = 0 and
T (n) = ∑n

j=1 Jj , the time of thenth jump. The particle jumps are given by i.i.d. random vectors
Y1, Y2, . . . on R

d which are assumed independent of (Ji). Let S0 = 0 and Sn = ∑n
i=1 Yi , the

position of the particle after the nth jump. For t ≥ 0, let

Nt = max{n ≥ 0 : T (n) ≤ t}, (2.1)

the number of jumps up to time t , and define

X(t) = SNt =
Nt∑
i=1

Yi, (2.2)

the position of a particle at time t . The stochastic process {X(t)}t≥0 is called a continuous-time
random walk (CTRW).

Assume that J1 belongs to the strict domain of attraction of some stable law with index
β ∈ (0, 1). This means that there exist bn > 0 such that

bn(J1 + · · · + Jn) ⇒ D, (2.3)

whereD > 0 almost surely. Here ⇒ denotes convergence in distribution. The distribution ρ of
D is stable with index β, meaning that ρt = t1/βρ for all t > 0, where ρt is the t th convolution
power of the infinitely divisible law ρ and (aρ){dx} = ρ{a−1 dx} is the probability distribution
of aD for a > 0. Moreover, ρ has a Lebesgue density gβ which is a C∞ function. Note that
by Theorem 4.7.1 and (4.7.13) of [42] it follows that there exists a constant K > 0 such that

gβ(x) ≤ Kx(1−β/2)/(β−1) exp

{
−|1 − β|

(
x

β

)β/(β−1)}
(2.4)

for all x > 0 sufficiently small.
For t ≥ 0, let T (t) = ∑�t�

j=1 Jj and let b(t) = b�t�, where �t� denotes the integer part of
t . Then b(t) = t−1/βL(t) for some slowly varying function L(·) (so that L(λt)/L(t) → 1 as
t → ∞ for any λ > 0, see for example [13]) and it follows from Example 11.2.18 of [26] that

{b(c)T (ct)}t≥0
fd
⇒ {D(t)}t≥0 as c → ∞, (2.5)

where
fd
⇒ denotes convergence in distribution of all finite-dimensional marginal distributions.

The process {D(t)} has stationary independent increments and, since the distribution ρ ofD(1)
is strictly stable, {D(t)} is called a strictly stable Lévy process. Moreover,

{D(ct)}t≥0
fd= {c1/βD(t)}t≥0 (2.6)
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for all c > 0, where
fd= denotes equality of all finite-dimensional marginal distributions. Hence,

by Definition 13.4 of [36], the process {D(t)} is self-similar with exponent H = 1/β > 1.
See [36] for more details on stable Lévy processes and self-similarity. Also see [12] for a nice
overview of self-similarity in the one-dimensional case. Note that by Example 21.7 of [36] the
sample paths of {D(t)} are almost surely increasing. Moreover, sinceD(t)

d= t1/βD, where
d=

means equal in distribution, it follows that

D(t) → ∞ in probability as t → ∞.

Then it follows from Theorem I.19 of [6] thatD(t) → ∞ almost surely as t → ∞. Furthermore,
note that since b(c) → 0 as c → ∞ it follows that

b(c)T (�cx� + k(c)) ⇒ D(x) as c → ∞
for any x ≥ 0 as long as |k(x)| ≤ M for all c > 0 and some constant M . Hence, it follows
along the same lines as Example 11.2.18 of [26] that

{b(c)T (�cx� + k(c))}x≥0
fd
⇒ {D(x)}x≥0 as c → ∞ (2.7)

as long as |k(c)| ≤ M for all c > 0 and some constant M . Furthermore, since (Jj ) are i.i.d.,
it follows that the process {T (k) : k = 0, 1, . . . } has stationary increments, that is, for any
nonnegative integer � we have

{T (k + �)− T (�) : k = 0, 1, . . . } fd= {T (k) : k = 0, 1, . . . }.
Assume that (Yi) are i.i.d. R

d -valued random variables independent of (Ji) and assume that
Y1 belongs to the strict generalized domain of attraction of some full operator stable law ν,
where ‘full’ means that ν is not supported on any proper hyperplane of R

d . By Theorem 8.1.5
of [26] there exists a function B ∈ RV(−E) (that is, B(c) is invertible for all c > 0 and
B(λc)B(c)−1 → λ−E as c → ∞ for any λ > 0), E being a d × d matrix with real entries,
such that

B(n)

n∑
i=1

Yi ⇒ A as n → ∞, (2.8)

where A has distribution ν. Then νt = tEν for all t > 0, where T ν{dx} = ν{T −1 dx} is the
probability distribution of TA for any Borel measurable function T : R

d → R
m. Note that by

Theorem 7.2.1 of [26] the real parts of the eigenvalues of E are greater than or equal to 1
2 .

Moreover, if we define the stochastic process {S(t)}t≥0 by S(t) = ∑�t�
i=1 Yi , it follows from

Example 11.2.18 of [26] that

{B(c)S(ct)}t≥0
fd
⇒ {A(t)}t≥0 as c → ∞, (2.9)

where {A(t)} has stationary independent increments with A(0) = 0 almost surely and PA(t) =
νt = tEν for all t > 0; PX denoting the distribution of X. Then {A(t)} is continuous in law,
and it follows that

{A(ct)}t≥0
fd= {cEA(t)}t≥0,

so, by Definition 11.1.2 of [26], {A(t)} is operator self-similar with exponentE. The stochastic
process {A(t)} is called an operator Lévy motion. If the exponent E = aI is a constant
multiple of the identity, then ν is a stable law with index α = 1/a, and {A(t)} is a classical
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d-dimensional Lévy motion. In the special case a = 1
2 , the process {A(t)} is a d-dimensional

Brownian motion.
Since we are interested in convergence of stochastic processes in Skorokhod spaces, we

need some further notation. If S is a complete separable metric space, let D([0,∞), S) denote
the space of all right-continuous S-valued functions on [0,∞) with limits from the left. Note
that in view of [6, p. 197], we can assume without loss of generality that sample paths of the
processes {T (t)} and {D(t)} belong to D([0,∞), [0,∞)), and that sample paths of {S(t)} and
{A(t)} belong to D([0,∞),Rd).

3. The time process

In this section we investigate the limiting behaviour of the counting process {Nt }t≥0 defined
by (2.1). It turns out that the scaling limit of this process is the hitting-time process for the Lévy
motion {D(x)}x≥0. This hitting-time process is also self-similar with exponent β. We will use
these results in Section 4 to derive limit theorems for the CTRW.

Recall that all the sample paths of the Lévy motion {D(x)}x≥0 are continuous from the right,
with left-hand limits, strictly increasing, and thatD(0) = 0 andD(x) → ∞ as x → ∞. Now,
the hitting-time process

E(t) = inf{x : D(x) > t} (3.1)

is well-defined. IfD(x) ≥ t , thenD(y) > t for all y > x so that E(t) ≤ x. On the other hand,
if D(x) < t , then D(y) < t for all y > x sufficiently close to x, so that E(t) > x. Then it
follows easily that, for any t1, . . . , tm such that 0 ≤ t1 < · · · < tm and any x1, . . . , xm ≥ 0, we
have

{E(ti) ≤ xi for i = 1, . . . , m} = {D(xi) ≥ ti for i = 1, . . . , m}. (3.2)

Proposition 3.1. The process {E(t)}t≥0 defined by (3.1) is self-similar with exponent β ∈
(0, 1), that is, for any c > 0,

{E(ct)}t≥0
fd= {cβE(t)}t≥0.

Proof. Note that it follows directly from (3.1) that {E(t)}t≥0 has continuous sample paths
and hence is continuous in probability and so in law. Now fix any t1, . . . , tm such that 0 < t1 <

· · · < tm and any x1, . . . , xm ≥ 0. Then by (2.6) and (3.2) we obtain that

P{E(cti) ≤ xi for i = 1, . . . , m} = P{D(xi) ≥ cti for i = 1, . . . , m}
= P{(c−β)1/βD(xi) ≥ ti for i = 1, . . . , m}
= P{D(c−βxi) ≥ ti for i = 1, . . . , m}
= P{E(ti) ≤ c−βxi for i = 1, . . . , m}
= P{cβE(ti) ≤ xi for i = 1, . . . , m}.

Hence by Definition 11.1.2 of [26] the assertion follows.

We now collect some further properties of the process {E(t)}t≥0.
For a real-valued random variable X, let E(X) denote its expectation, whenever it exists,

and var(X) denote the variance of X, whenever it exists.
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Corollary 3.1. For any t > 0,

(a) E(t)
d= (D/t)−β , where D is as in (2.3);

(b) for any γ > 0 the γ -moment of E(t) exists and there exists a positive finite constant
C(β, γ ) such that

E(E(t)γ ) = C(β, γ )tβγ ;
in particular,

E(E(t)) = C(β, 1)tβ; (3.3)

(c) the random variable E(t) has density

ft (x) = t

β
x−1−1/βgβ(tx

−1/β),

where gβ is the density of the limit D in (2.3).

Proof. Note that D(x)
d= x1/βD. In view of (3.2), for any x > 0,

P{E(t) ≤ x} = P{D(x) ≥ t} = P{x1/βD ≥ t} = P{(D/t)−β ≤ x},
proving part (a).

For the proof of (b), let Ht(y) = (y/t)−β . Since D has distribution ρ it follows from part
(a) that E(t) has distributionHt(ρ). Recall that ρ has a C∞ density gβ . For γ > 0 we then get

E(E(t)γ ) =
∫ ∞

0
xγ dHt(ρ)(x)

=
∫ ∞

0
(Ht (x))

γ dρ(x)

= tβγ
∫ ∞

0
x−βγ gβ(x) dx

= C(β, γ )tβγ ,

where C(β, γ ) = ∫ ∞
0 x−βγ gβ(x) dx is finite since gβ is a density function satisfying (2.4) for

some β ∈ (0, 1), so that gβ(x) → 0 at an exponential rate as x → 0.

Since E(t)
d= Ht(D) by (a) and H−1

t (x) = tx−1/β , (c) follows by a change of variables.

Corollary 3.2. For any t > 0, the variance of E(t) exists and var(E(t)) = (C(β, 2) −
C(β, 1)2)t2β .

Proof. It follows from Corollary 3.1(b) that E(E(t)2) exists and the result follows.

Corollary 3.3. The process {E(t)}t≥0 does not have stationary increments.

Proof. Suppose that {E(t)}t≥0 is a process with stationary increments. Then, for any
integer t ,

E(E(t)) = E(E(1)+ (E(2)− E(1))+ · · · + (E(t)− E(t − 1)) = t E(E(1)),

which contradicts (3.3).
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Theorem 3.1. The process {E(t)}t≥0 does not have independent increments.

Proof. Assume the contrary. The process {E(t)} is the inverse of the stable subordinator
{D(x)}, in the sense of Bingham [8]. Then Proposition 1(a) of [8] implies that, for any t1, t2
with 0 < t1 < t2,

∂2 E(E(t1)E(t2))

∂t1∂t2
= 1

	(β)2[t1(t2 − t1)]1−β . (3.4)

Moreover, by Corollary 3.1 we know that, for some positive constant C,

E(E(t)) = Ctβ (3.5)

Since E(t) has moments of all orders, it follows that, for t1, t2, t3 such that 0 < t1 < t2 < t3,
by independence of the increments and (3.5),

E((E(t3)− E(t2)) · (E(t2)− E(t1))) = E(E(t3)− E(t2)) · E(E(t2)− E(t1))

= C2{(t2t3)β − (t1t3)
β − t

2β
2 + (t1t2)

β}
=: R(t1, t2, t3).

On the other hand,

E((E(t3)− E(t2)) · (E(t2)− E(t1))) = E(E(t2)E(t3))− E(E(t1)E(t3))

− E(E(t2)
2)+ E(E(t1)E(t2))

=: L(t1, t2, t3),
so that R(t1, t2, t3) = L(t1, t2, t3) whenever 0 < t1 < t2 < t3.

Computing the derivatives of R directly and applying (3.4) to L gives

∂2R(t1, t2, t3)

∂t1∂t2
= C2β2(t1t2)

β−1,

∂2L(t1, t2, t3)

∂t1∂t2
= 	(β)−2(t1t2)

β−1
{

1 − t1

t2

}β−1

whenever 0 < t1 < t2 < t3. Since the left-hand sides of the above equations are equal, so are
the right-hand sides, which gives a contradiction.

Recall from Section 2 that the function b in (2.5) is regularly varying with index −1/β.
Hence b−1 is regularly varying with index 1/β > 0 so, by Property 1.5.5 of [38], there exists
a regularly varying function b̃ with index β such that 1/b(b̃(c)) ∼ c as c → ∞. (Here we
use the notation f ∼ g for positive functions f, g if and only if f (c)/g(c) → 1 as c → ∞.)
Equivalently,

b(b̃(c)) ∼ 1

c
as c → ∞. (3.6)

Furthermore, note that for (2.1) it follows easily that, for any integer n ≥ 0 and any t ≥ 0,

{T (n) ≤ t} = {Nt ≥ n}. (3.7)

With the use of the function b̃ defined above, we now prove a limit theorem for {Nt }t≥0.
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Theorem 3.2. As c → ∞,
{b̃(c)−1Nct } fd
⇒ {E(t)}t≥0.

Proof. Fix any t1, . . . , tm such that 0 < t1 < · · · < tm and any x1, . . . , xm ≥ 0. Note that
by (3.7) we have

{Nt ≥ x} = {T (�x
) ≤ t},
where �x
 is the smallest integer greater than or equal to x. This is equivalent to {Nt < x} =
{T (�x
) > t}, and then (2.7) together with (3.2) and (3.6) imply

P{b̃(c)−1Ncti < xi for i = 1, . . . , m}
= P{Ncti < b̃(c)xi for i = 1, . . . , m}
= P{T (�b̃(c)xi
) > cti for i = 1, . . . , m}
= P{b(b̃(c))T (�b̃(c)xi
) > b(b̃(c))cti for i = 1, . . . , m}
→ P{D(xi) > ti for i = 1, . . . , m} = P{D(xi) ≥ ti for i = 1, . . . , m}
= P{E(ti) ≤ xi for i = 1, . . . , m} = P{E(ti) < xi for i = 1, . . . , m}

as c → ∞ since both E(t) and D(x) have a density. Hence,

(b̃(c)−1Ncti : i = 1, . . . , m) ⇒ (E(ti) : i = 1, . . . , m)

and the proof is complete.

As a corollary we get convergence in the Skorokhod space D([0,∞), [0,∞)) with the J1-
topology.

Corollary 3.4. As c → ∞,

{b̃(c)−1Nct }t≥0 ⇒ {E(t)}t≥0 in D([0,∞), [0,∞)).

Proof. Note that the sample paths of {Nt }t≥0 and {E(t)}t≥0 are increasing and that by the
proof of Proposition 3.1 the process {E(t)}t≥0 is continuous in probability. Then Theorem 3.2
together with Theorem 3 of [8] yields the assertion.

Remark 3.1. The hitting time E(t) = inf{x : D(x) > t} is also called a first-passage time.
A general result of Port [32] implies that P{E(t) ≥ x} = o(x1−1/β) as x → ∞, but in view
of Corollary 3.1 that tail bound can be considerably improved in this special case. Getoor [14]
computed the first and second moments of the hitting time for a symmetric stable process, but
the moment results of Corollaries 3.1 and 3.2 are apparently new. The hitting-time process
{E(t)} is also an inverse process to the stable subordinator {D(t)} in the sense of Bingham [8].
Bingham [8] and Bondesson et al. [10] showed thatE(t) has a Mittag–Leffler distribution with

E(e−sE(t)) =
∞∑
n=0

(−stβ)n
	(1 + nβ)

,

which gives another proof of Corollary 3.1(b) in the special case where γ is a positive integer.
The process {E(t)} is also a local time for the Markov processR(t) = inf{D(x)−t : D(x) > t};
see [6, Exercise 6.2]. This means that the jumps of the inverse local time {D(x)} for the Markov
process {R(t)}t≥0 coincide with the lengths of the excursion intervals during which R(t) > 0.
Since R(t) = 0 whenD(x) = t , the lengths of the excursion intervals for {R(t)} equal the size
of the jumps in the process {D(x)}, and E(t) represents the time it takes until the sum of the
jump sizes (the sum of the lengths of the excursion intervals) exceeds t .
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4. Limit theorems

In this section we prove a functional limit theorem for the CTRW {X(t)}defined in (2.2) under
the distributional assumptions of Section 2. The limiting process {M(t)}t≥0 is a subordination
of the operator stable Lévy process {A(t)} in (2.9) by the process {E(t)} introduced in Section 3.
We also show that {M(t)} is operator self-similar with exponent βE, where β is the index of
the stable subordinator {D(t)} andE is the exponent of the operator stable Lévy motion {A(t)}.
Then we compute the Lebesgue density of the limitM(t). In Section 5 we will use this density
formula to show that {M(t)} is the stochastic solution to a fractional Cauchy problem.

Our method of proof uses the continuous mapping theorem. In order to do so, we first need
to prove D([0,∞),Rd)-convergence in (2.9), which is apparently not available in the literature.
The following result, which is of independent interest, closes this gap.

Theorem 4.1. Under the assumptions of Section 2,

{B(n)S(nt)}t≥0 ⇒ {A(t)}t≥0 in D([0,∞),Rd)

as n → ∞ in the J1-topology.

Proof. In view of (2.9) and an easy extension of Theorem 5 of [15, p. 435], using the theorem
in [41] in place of Theorem 2 of [15, p. 429], it suffices to check that

lim
h↓0

lim sup
n→∞

sup
|s−t |≤h

P{‖ξn(t)− ξn(s)‖ > ε} = 0 (4.1)

for any ε > 0 and T > 0, where 0 ≤ s, t ≤ T and

ξn(t) = B(n)

�nt�∑
i=1

Xi.

Recall that S(j) = X1 + · · · +Xj . Given any ε > 0 and δ > 0, using the fact that {B(j)S(j)}
is uniformly tight, there exists an R > 0 such that

sup
j≥1

P{‖B(j)S(j)‖ > R} < δ. (4.2)

In view of the symmetry in s, t in (4.1) we can assume that 0 ≤ s < t ≤ T and t − s ≤ h. Let

rn(t, s) = ‖B(n)B(�nt� − �ns�)−1‖
and note that

rn(t, s) = ‖B(n)B(n · (�nt� − �ns�)/n)−1‖
≤ sup

0≤λ≤h+1/n
‖B(n)B(nλ)−1‖

= ‖B(n)B(nλn)−1‖
for some λn such that 0 ≤ λn ≤ h+ 1/n.

Now choose h0 > 0 such that ‖hE‖ < ε/2R whenever 0 < h ≤ h0 and assume in the
following that 0 < h ≤ h0. Given any subsequence, there exists a further subsequence (n′)
such that λn′ → λ ∈ [0, h] along (n′). We have to consider several cases separately.

Case 1. If λ > 0, then, in view of the uniform convergence on compact sets,

‖B(n)B(nλn)−1‖ → ‖λE‖
and, hence, there exists an n0 such that rn′(t, s) < ε/R for all n′ > n0.
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Case 2. If λ = 0 and n′λn′ ≤ M for all n′ in the subsequence (n′), then, since B(n) → 0 as
n → ∞, there exists an n0 such that

‖B(n′)B(n′λn′)−1‖ ≤ ‖B(n′)‖ sup
1≤j≤M

‖B(j)−1‖ < ε

R

for all n′ ≥ n0 and, hence, rn′(t, s) < ε/R for all n′ ≥ n0.

Case 3. If λ = 0 and n′λn′ → ∞ along (n′), let m = nλn and λ(m) = n/m so that m → ∞
and λ(m) → ∞. Choose λ0 > 1 large enough to make ‖λ−E

0 || < 1
4 . Then choose m0 large

enough to make ‖B(λm)B(m)−1 − λ−E‖ < 1
4 for all m ≥ m0 and all λ ∈ [1, λ0]. Now

‖B(mλ0)B(m)
−1‖ < 1

2 for all m ≥ m0, and since ‖λ−E‖ is a continuous function of λ > 0,
this ensures that for some C > 0 we have ‖B(λm)B(m)−1‖ ≤ C for all m ≥ m0 and all
λ ∈ [1, λ0]. Givenm ≥ m0, write λ(m) = µλk0 for some integer k and some µ ∈ [1, λ0). Then

‖B(n)B(nλn)−1‖ = ‖B(mλ(m))B(m)−1‖
≤ ‖B(µλk0m)B(λk0m)−1‖ · · · ‖B(λ0m)B(m)

−1‖
≤ C( 1

2 )
k

and, since λ(m) → ∞, this shows that ‖B(n)B(nλn)−1‖ → 0 as n → ∞ along (n′). Hence
there exists an n0 such that

‖B(n′)B(n′λn)−1‖ < ε

R

for all n′ ≥ n0 and, hence, rn′(t, s) < ε/R for all n′ ≥ n0.

Now it follows easily that there exist an h0 > 0 and an n0 such that

rn(t, s) <
ε

R
(4.3)

for all n ≥ n0 and s, t such that |t − s| ≤ h < h0. Finally, in view of (4.2) and (4.3), we obtain
that, for n ≥ n0 and s, t such that |t − s| ≤ h < h0,

P{‖ξn(t)− ξn(s)‖ > ε} = P{‖B(n)S(�nt� − �ns�)‖ > ε}
≤ P{rn(t, s)‖B(�nt� − �ns�)S(�nt� − �ns�)‖ > ε}
≤ sup
j≥1

P{‖BjS(j)‖ > R} < δ,

which proves (4.1).

Recall from the comments preceding (3.6) that b̃ is regularly varying with index β and that
the norming functionB in (2.9) is RV(−E). We define B̃(c) = B(b̃(c)). Then B̃ ∈ RV(−βE).
Theorem 4.2. Under the assumptions of Section 2, as c → ∞,

{B̃(c)X(ct)}t≥0 ⇒ {M(t)}t≥0 in D([0,∞),Rd) (4.4)

in the M1-topology, where {M(t)}t≥0 = {A(E(t))}t≥0 is a subordinated process with

P(M(t1),...,M(tn)) =
∫

R
m+
P(A(xi ):1≤i≤m) dP(E(ti ):1≤i≤m)(x1, . . . , xm) (4.5)

whenever 0 < t1 < · · · < tm.
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Proof. Note that, since (Ji) and (Yi) are independent, the processes {S(t)} and {Nt } are
independent; hence, it follows from Corollary 3.4 together with Theorem 4.1 that we also have

{(B̃(c)S(b̃(c)t), b̃(c)−1Nct )}t≥0 ⇒ {(A(t), E(t))}t≥0 as c → ∞
in D([0,∞),Rd)× D([0,∞), [0,∞)) in the J1-topology and, hence, also in the weaker M1-
topology. Since the process {E(t)} is not strictly increasing, Theorem 3.1 of [44] does not
apply, so we cannot prove convergence in the J1-topology. Instead we use Theorem 13.2.4
of [43] which applies as long as x = E(t) is (almost surely) strictly increasing whenever
A(x) �= A(x−). This condition is easily shown to be equivalent to the statement that the
independent Lévy processes {A(x)} and {D(x)} have (almost surely) no simultaneous jumps,
which is easy to check. Then the continuous mapping theorem (see e.g. [7, Theorems 5.1
and 5.5]) together with Theorem 13.2.4 of [43] yields that

{B̃(c)S(Nct )}t≥0 ⇒ {A(E(t))}t≥0 in D([0,∞),Rd) as c → ∞
in the M1-topology, which proves (4.4). Then (4.5) follows easily, since {A(t)} and {E(t)} are
independent.

Corollary 4.1. The limiting process {M(t)}t≥0 obtained in Theorem 4.2 is operator self-similar
with exponent βE, that is, for all c > 0,

{M(ct)}t≥0
fd= {cβEM(t)}t≥0.

Proof. We first show that {M(t)}t≥0 is continuous in law. Assume that tn → t ≥ 0 and let f
be any bounded continuous function on R

d . Since {A(x)}x≥0 is continuous in law, the function
x �→ ∫

f (y) dPA(x)(y) is continuous and bounded. Recall from Section 3 that {E(t)}t≥0 is
continuous in law and hence E(tn) ⇒ E(t) as n → ∞. Then

∫
f (y) dPM(tn)(y) =

∫ (∫
f (y) dPA(x)(y)

)
dPE(tn)(x)

→
∫ (∫

f (y) dPA(x)(y)

)
dPE(t)(x) =

∫
f (y) dPM(t)(y)

as n → ∞, showing that {M(t)}t≥0 is continuous in law. It follows from Theorem 4.2 that, for
any c > 0,

{B̃(s)X(s(ct))}t≥0
fd
⇒ {M(ct)}t≥0

as s → ∞ and, since B̃ ∈ RV(−βE), we also get

{B̃(s)X((sc)t)}t≥0 = {(B̃(s)B̃(sc)−1)B̃(sc)X((sc)t)}t≥0
fd
⇒ {cβEM(t)}t≥0

as s → ∞. Hence,

{M(ct)}t≥0
fd= {cβEM(t)}t≥0

and the proof is complete.

Recall from [17, Theorem 4.10.2] that the distribution νt of A(t) in (2.9) has a C∞ density
p(x, t), so dνt (x) = p(x, t) dx and gβ is the density of the limit D in (2.3).



Limit theorems for continuous-time random walks 633

Corollary 4.2. Let {M(t)}t≥0 be the limiting process obtained in Theorem 4.2. Then, for any
t > 0,

PM(t) =
∫ ∞

0
ν(t/s)

β

gβ(s) ds = t

β

∫ ∞

0
νξgβ(tξ

−1/β)ξ−1/β−1 dξ. (4.6)

Moreover, PM(t) has the density

h(x, t) =
∫ ∞

0
p(x, (t/s)β)gβ(s) ds = t

β

∫ ∞

0
p(x, ξ)gβ(tξ

−1/β)ξ−1/β−1 dξ. (4.7)

Proof. Let Ht(y) = (y/t)−β . Then by Corollary 3.1 we know that E(t)
d= Ht(D) and,

since PA(s) = νs , we obtain that

PM(t) =
∫ ∞

0
PA(s) dPE(t)(s) =

∫ ∞

0
νsdPHt (D)(s)

=
∫ ∞

0
νHt (s) dPD(s) =

∫ ∞

0
ν(t/s)

β

gβ(s) ds.

The second equality of (4.6) follows from a simple substitution. The assertion (4.7) on the
density follows immediately.

Corollary 4.3. The limiting process {M(t)}t≥0 obtained in Theorem 4.2 does not have station-
ary increments.

Proof. Suppose that t > 0 and h > 0. In view of (3.1) and (3.2),

{E(t + h) = E(h)} = {E(t + h) ≤ E(h)} = {D(E(h)) ≥ t + h}.
Thus,

P{M(t + h)−M(h) = 0} = P{A(E(t + h)) = A(E(h))}
≥ P{E(t + h) = E(h)} = P{D(E(h)) ≥ t + h}
> 0

for all t > 0 sufficiently small, since D(E(h)) > h almost surely by Theorem III.4 of [6].
But P{M(t) = 0} = 0 since M(t) has a density, hence M(t) and M(t + h) − M(h) are not
identically distributed.

Theorem 4.3. Let {M(t)}t≥0 be the limiting process obtained in Theorem 4.2. Then the
distribution of M(t) is not operator stable for any t > 0.

Proof. The distribution ν of the limitA in (2.8) is infinitely divisible, hence its characteristic
function is ν̂(k) = e−ψ(k) for some continuous complex-valued function ψ(·); see for example
[26, Theorem 3.1.2]. Since |ν̂(k)| = |e− Reψ(k)| ≤ 1, we must have F(k) = Reψ(k) ≥ 0 for
all k. Since ν is operator stable, Corollary 7.1.2 of [26] implies that |ν̂(k)| < 1 for all k �= 0,
so in fact F(k) > 0 for all k �= 0. Since νt = tEν, we also have tF (k) = F(tE

∗
k) for all

t > 0 and k �= 0, which implies that F is a regularly varying function in the sense of [26,
Definition 5.1.2]. Then Theorems 5.3.14 and 5.3.18 of [26] imply that, for some positive real
constants a, b1, c1, b2, c2,

c1‖k‖b1 ≤ F(k) ≤ c2‖k‖b2 (4.8)
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whenever ‖k‖ ≥ a. In fact, we can take b1 = 1/ap − δ and b2 = 1/a1 + δ, where δ > 0 is
arbitrary and the real parts of the eigenvalues of E are a1 < · · · < ap. In view of (4.6), the
random vector M(t) has characteristic function

ϕt (k) =
∫ ∞

0
e−(t/s)βψ(k)gβ(s) ds, (4.9)

where gβ is the density of the limit D in (2.3). Using the well-known series expansion for this
stable density [42, Equation (4.2.4)], it follows that, for some positive constants c0, s0,

gβ(s) ≥ c0s
−β−1 (4.10)

when s ≥ s0. Take r0 = max{a, sβ/b2
0 t−β/b2c

−1/b2
2 }. Then, if ‖k‖ ≥ r0 and s1 = tc

1/β
2 ‖k‖b2/β ,

(4.8) holds and, since s1 ≥ s0, (4.10) also holds for all s ≥ s1. Then in view of (4.9) and the
fact that e−u ≥ 1 − u for all real u it follows that

Re ϕt (k) =
∫ ∞

0
e−(t/s)β Reψ(k)gβ(s) ds

≥
∫ ∞

s1

e−(t/s)βF (k)gβ(s) ds

≥
∫ ∞

s1

[
1 −

(
t

s

)β
F (k)

]
c0s

−β−1 ds

≥
∫ ∞

s1

[
1 −

(
t

s

)β
c2‖k‖b2

]
c0s

−β−1 ds

=
(
c0

β

)
s
−β
1 −

(
c0

2β

)
tβc2‖k‖b2s

−2β
1

=
(
c0

β

)
s
−β
1

[
1 − tβc2‖k‖b2s

−β
1

2

]

=
(
c0

β

)
t−βc−1

2 ‖k‖−b2 [1 − 1
2 ]

= C‖k‖−b2 ,

where C > 0 does not depend on the choice of k such that ‖k‖ > r0. But if M(t) is operator
stable, then the same argument as before shows that Re ϕt (k) = e−F(k) for some F satisfying
(4.8) whenever ‖k‖ is large (for some positive real constants a, b1, c1, b2, c2), so that Re ϕt (k) ≤
e−c1‖k‖b1 whenever ‖k‖ is large, which is a contradiction.

For a one-dimensional CTRW with infinite mean waiting time, Kotulski [19] derived the
results of Theorem 4.2 and Corollary 4.2 at one fixed time t > 0. Our stochastic process
results, concerning D([0,∞),Rd)-convergence, seem to be new even in the one-dimensional
case. Kotulski [19] also considered a coupled CTRW model in which the jump times and
lengths are dependent. Coupled CTRW models occur in many physical applications [9], [18],
[20], [39]. The authors are currently working to extend the results of this section to coupled
models.

In the one-dimensional situation d = 1, Corollary 4.2 implies that M(t)
d= (t/D)β/αA,

where D is the limit in (2.3) and A is the limit in (2.8). If A is a nonnormal stable random



Limit theorems for continuous-time random walks 635

variable with index α ∈ (0, 2), thenM(t) has a ν-stable distribution [22], i.e. a random mixture
of stable laws. Corollary 3.1 shows that the mixing variable (t/D)β/α has moments of all
orders, and then Proposition 4.1 of [22] shows that, for some D > 0 and some q ∈ [0, 1],
P(M(t) > x) ∼ qDx−α and P(M(t) < −x) ∼ (1 − q)Dx−α as x → ∞. Proposition 5.1 of
[22] shows that E |M(t)|p exists for p ∈ (0, α) and diverges for p ≥ α. If A is a nonnormal
stable random vector, then M(t) has a multivariate ν-stable distribution [23], and again the
moment and tail behaviour of M(t) are similar to that of A. The ν-stable laws are the limiting
distributions of random sums, so their appearance in the limit theory for a CTRW is natural. It
may also be possible to consider ν-operator stable laws, but this is an open problem.

If A is normal, then the density h(x, t) of M(t) is a mixture of normal densities. In some
cases, mixtures of normal densities take a familiar form. If A is normal and D is the limit in
(2.3), then the density of Dγ/2A is stable with index γ when 0 < γ < 2; see [34]. If D is
exponential, thenD1/2A has a Laplace distribution. More generally, if A is any stable random
variable or random vector andD is exponential, thenD1/2A has a geometric stable distribution
[25]. Geometric stable laws have been applied in finance [21], [24].

5. Anomalous diffusion

Let {A(t)}t≥0 be a Brownian motion on R
1, so that A(t) is normal with mean zero and

variance 2Dt . The density p(x, t) of A(t) solves the classical diffusion equation

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2 . (5.1)

We call {A(t)} the stochastic solution to (5.1) and we say that (5.1) is the governing equation
for {A(t)}. This useful connection between deterministic and stochastic models for diffusion
allows a cloud of diffusing particles to be represented as an ensemble of independent Brownian
motion particles whose density functions represent relative concentration. Because Brownian
motion is self-similar with Hurst indexH = 1

2 , particles spread like tH in this model. In some
cases, clouds of diffusing particles spread faster (superdiffusion, whereH > 1

2 ) or slower (sub-
diffusion, where H < 1

2 ) than the classical model predicts. This has led physicists to develop
alternative diffusion equations based on fractional derivatives. Fractional space derivatives
model long particle jumps, leading to superdiffusion, while fractional time derivatives model
sticking and trapping, causing subdiffusion.

Continuous-time random walks are used by physicists to derive anomalous diffusion equa-
tions [29]. Assuming that both the waiting times and the particle jumps have a Lebesgue density,
Montroll and Weiss [30] gave a formula for the Laplace–Fourier transform

∫ ∞

0
e−st

∫ ∞

−∞
e−ikxP (x, t) dx dt

of the Lebesgue density P(x, t) for the CTRW variable Xt in (2.2). Rescaling in time and
space and taking limits gives the Laplace–Fourier transform of the CTRW scaling limit. Using
properties of Laplace and Fourier transforms, we get a partial differential equation, which may
involve fractional derivatives. In some cases, we can invert the Laplace–Fourier transform to
obtain solutions to this partial differential equation. If we can recognize these solutions as
density functions of a stochastic process, we also obtain stochastic solutions.

This method has been successful for scalar models of anomalous diffusion. If particle jumps
belong to the strict domain of attraction of a stable law with index α, and waiting times have
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a finite mean, then we obtain an α-stable Lévy motion {A(t)} as the stochastic solution of the
fractional diffusion equation

∂p(x, t)

∂t
= qD

∂αp(x, t)

∂(−x)α + (1 − q)D
∂αp(x, t)

∂xα
, (5.2)

where D > 0 and 0 ≤ q ≤ 1 [4], [11]. Using the Fourier transform

p̂(k, t) =
∫

e−ikxp(x, t) dx,

so that p̂(−k, t) is the characteristic function of A(t), the fractional space derivative

∂αp(x, t)

∂(±x)α
is defined as the inverse Fourier transform of (±ik)αp̂(k, t), extending the familiar formula
where α is a positive integer (see e.g. [35]). The equation (5.2) has been applied to problems in
physics [40] and hydrology [5], [3] where empirical evidence indicates superdiffusion. Since
α-stable Lévy motion is self-similar with Hurst indexH = 1/α, densitiesp(x, t) for the random
particle locationA(t) spread faster than the classical model predicts when α < 2. When α = 2,
(5.2) reduces to (5.1), reflecting the fact that Brownian motion is a special case of Lévy motion.

If {A(t)} is an operator Lévy motion on R
d and if νt is the probability distribution of A(t),

then the linear operators Ttf (x) = ∫
f (x − y)νt (dy) form a convolution semigroup [13], [16]

with generator L = limt↓0 t
−1(Tt − T0). Then q(x, t) = Ttf (x) solves the abstract Cauchy

problem
∂q(x, t)

∂t
= Lq(x, t), q(x, 0) = f (x)

for any initial condition f (x) in the domain of the generatorL (see e.g. [31], Theorem I.2.4). If
νt has Lebesgue density p(x, t) for t > 0, then q(x, t) = ∫

f (x − y)p(y, t) dy and {p(x, t) :
t > 0} is called the Green’s function solution to this abstract Cauchy problem. In this case,
{A(t)} is the stochastic solution to the abstract partial differential equation ∂p(x, t)/∂t =
Lp(x, t). An α-stable Lévy motion on R

1 has generator

L = qD
∂α

∂(−x)α + (1 − q)D
∂α

∂xα
(5.3)

and then (5.2) yields an abstract Cauchy problem whose Green’s function solution p(x, t)
is the Lebesgue density of A(t). If {A(t)} is an α-stable Lévy motion on R

d , then L is a
multidimensional fractional derivative of order α [27]. If {A(t)} is an operator Lévy motion,
then L represents a generalized fractional derivative on R

d whose order of differentiation can
vary with coordinate [28].

Zaslavsky [45] proposed a fractional kinetic equation,

∂βh(x, t)

∂tβ
= Lh(x, t)+ δ(x)

t−β

	(1 − β)
, (5.4)

for Hamiltonian chaos, where 0 < β < 1 and δ(·) is the Dirac delta function. The fractional
derivative ∂βh(x, t)/∂tβ is defined as the inverse Laplace transform of sβ h̃(x, s), where
h̃(x, s) = ∫ ∞

0 e−sth(x, t) dt is the usual Laplace transform. In the special case where L is
given by (5.3) with q = 1

2 , Saichev and Zaslavsky [33] used the Montroll–Weiss method to
show that (5.4) is the governing equation of a CTRW limit with symmetric particle jumps and
infinite mean waiting times, but this method does not identify the limit process.
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Theorem 5.1. Suppose that {A(t)} is an operator Lévy motion on R
d . Let p(x, t) denote the

Lebesgue density of A(t) and let L be the generator of the convolution semigroup Ttf (x) =∫
f (x − y)p(y, t) dy. Then the function h(x, t) defined by (4.7) solves the fractional kinetic

equation (5.4). Since this function is also the density of the CTRW scaling limit {M(t)} obtained
in Theorem 4.2, this limit process is the stochastic solution to (5.4).

Proof. Baeumer and Meerschaert [1] showed that, whenever p(x, t) is the Green’s function
solution to the abstract Cauchy problem ∂p(x, t)/∂t = Lp(x, t), the formula

h(x, t) = t

β

∫ ∞

0
p(x, ξ)gβ(tξ

−1/β)ξ−1/β−1 dξ

solves the fractional Cauchy problem (5.4), where gβ is the density of a stable law with Laplace
transform exp(−sβ). But Corollary 4.2 shows that this function is also the density of the CTRW
scaling limit {M(t)}.

If {A(t)} is a Brownian motion on R
d , then the stochastic solution to (5.4) is self-similar

with Hurst index H = β/2 in view of Corollary 4.1, since {A(t)} is operator self-similar with
exponent E = 1

2I . Since H < 1
2 , this process is subdiffusive. Saichev and Zaslavsky [33]

stated that, in the case where {A(t)} is scalar Brownian motion, the limiting process {M(t)}
is ‘fractal Brownian motion’. Theorem 4.3 shows that the limiting process is not Gaussian,
since M(t) cannot have a normal distribution, and in view of Corollary 4.3 the process {M(t)}
does not have stationary increments. Therefore, this process cannot be a fractional Brownian
motion, but rather a completely new stochastic process that merits further study.
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