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1. INTRODUCTION

In this paper, we investigate the asymptotics of the sample cross-correlation for
linear time series with heavy tails. A probability distribution has heavy tails if
some of its moments fail to exist. Roughly speaking, this is because the
probability tails fall off like tÿá for some á. 0. More precisely, we assume that
the probability tails are regularly varying (Bingham et al., 1987; Seneta, 1976).
Heavy tail probability distributions are important in a wide variety of
applications, including electrical engineering (Nickias and Shao, 1995),
hydrology (Anderson and Meerschaert, 1998; Hosking and Wallis, 1987) and
®nance (Fama, 1965; Mandelbrot, 1963). Several additional applications to
economics and computer science appear in Adler et al. (1998). There is
extensive empirical evidence of heavy tail price ¯uctuations in stock markets,
futures markets, and currency exchange rates (Jansen and de Vries, 1991;
Loretan and Phillips, 1994; McCulloch, 1996). Mittnik and Rachev (2000) and
Nolan et al. (1994) discuss multivariable heavy tail models in ®nance. These
models are used for portfolio analysis involving several different stock issues or
mutual funds. Since different stocks have different probability tails with different
values of á, there is a need for multivariable techniques which allow the tail
parameter á to vary. The cross-correlation quanti®es the dependence between
scalar time series. Our main results give the asymptotic distribution of the
sample cross-correlation between two scalar time series whose innovations have
heavy tails. We allow one series to have a heavier tail (i.e., a smaller á) than the
other. Our results extend those of Davis et al. (1985) and Davis and Marengo
(1990), who assume that á is the same for both time series. Our results are
important in real applications because á is usually different for two different
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time series. It is also interesting to note that the asymptotics change signi®cantly
when á varies.

Given a pair of scalar moving averages

x
(i)
t �

X1
j�0

c
(i)
j z

(i)
tÿ j for i � 1, 2 (1)

we de®ne the sample correlation

r̂ij(h) � ã̂ij(h)����������������������
ã̂ii(0)ã̂ jj(0)

p (2)

in terms of the sample covariance

ã̂ij(h) � nÿ1
Xn

t�1

(x
(i)
t ÿ x(i))(x

( j)
t�h ÿ x( j)) (3)

where

x(i) � nÿ1
Xn

t�1

x
(i)
t (4)

is the sample mean. In this paper, we derive the asymptotic limit of the sample
cross-correlation r̂12(h) in the case where the IID innovations z

(i)
t have

probability tails which vary regularly with index ÿái. If
P

jjc(i)
j jä ,1 for

some 0 , ä,ái with ä < 1 then the series (1) converges almost surely; see
Proposition 13.3.1 of Brockwell and Davis (1991). In this paper, we will always
assume that this condition holds, so that the moving average process (1) is well
de®ned. If ái . 4 then the time series has ®nite fourth moments and the usual
normal asymptotics apply, so we restrict our attention to the case where
0 ,ái , 4. Earlier results which appear in Davis et al. (1985) and Davis and
Marengo (1990) assume that á1 � á2, so in this paper we deal with the case
á1 6� á2.

Our proof uses the tools of operator stable laws and generalized domains of
attraction, which is the general central limit theory for IID random vectors. In
the course of the proof, we establish some results on operator stable laws which
are of independent interest. In particular, Lemma 2.3 gives a necessary and
suf®cient condition for a nonnormal operator stable law to have a complete set
of one variable stable marginals. This corrects a mistake in Corollary 4.13.12
of Jurek and Mason (1993).

2. ASYMPTOTICS FOR THE SAMPLE COVARIANCE MATRIX

To derive the joint asymptotics of the time series in (1), we consider the vector
moving average
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X t �
X1
j�0

C jZ tÿ j (5)

where X t � (x
(1)
t , x

(2)
t )9, C j � diag(c

(1)
j , c

(2)
j ) and Z t � (z

(1)
t , z

(2)
t )9. We also let

Ã̂(h) denote the sample covariance matrix of the moving average (5), which has
ij entry equal to ã̂ij(h) as de®ned in (3). We assume that the probability
distribution ì of Z t varies regularly with exponent E � diag(a1, a2). This means
that

nAnì! ö (6)

where An varies regularly with index ÿE and ö is a ó-®nite Borel measure on
R2nf0g which cannot be supported on any one dimensional subspace. Here
Aö(dx) � ö(Aÿ1dx) and tE � exp(E log t) where exp(A) � I� A� A2=2! � � � �
is the matrix exponential operator. The convergence in (6) means that
nAnì(S)! ö(S) for any Borel set S which is bounded away from the origin,
and whose boundary has ö-measure zero. This is sometimes called vague
convergence. The regular variation of An means that A[në]A

ÿ1
n ! ëÿE for all

ë. 0. It follows easily that t:ö � tEö for every t . 0. Regular variation of ì
implies that P(jz(i)

t j. x) varies regularly at in®nity with index ÿái � ÿ1=ai,
along with a balancing condition on the probability tails of Z t in every radial
direction; see Meerschaert and Schef¯er (1999a) for additional information. The
spectral decomposition of Meerschaert and Schef¯er (1999a) shows that in this
case we may always take An � diag(a(1)

n , a(2)
n ). It also implies that if ì varies

regularly on R2 with an exponent which has two real distinct eigenvalues, then
there is an orthonormal basis of coordinate vectors with respect to which
E � diag(a1, a2); see Meerschaert (1991). Hence, this assumption entails no loss
of generality.

Equation (6) with ai . 1
2

is necessary and suf®cient for Z t to belong to the
generalized domain of attraction of some operator stable random vector Y
having no normal component, and in fact

An(Z1 � � � � � Zn)ÿ sn!D Y � (y(1), y(2))

for some shifts sn 2 Rd; see for example Meerschaert (1993). The linear
operator E is also the exponent of the operator stable limit Y, meaning that for
fYng i.i.d. with Y we have nEY� cn identically distributed with Y1 � � � � � Yn

for each n, for some cn 2 Rd . Jurek and Mason (1993) is a good reference on
operator stable laws. Since An � diag(a(1)

n , a(2)
n ), we can project onto each

component to get a(i)
n (z

(i)
1 � � � � � z(i)

n )ÿ s(i)
n !D y(i) where y(i) is nonnormal

stable with index 0 ,ái , 2. In other words, fz(i)
t g belongs to the domain of

attraction of the stable limit y(i). See Feller (1971) for more information on
domains of attraction and also Samorodnitsky and Taqqu (1994) for propoerties
of stable laws.

Meerschaert and Schef¯er (1999b) show that, for an IID sequence of random
vectors fZng on Rd whose common distribution ì has regularly varying tails
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with exponent E, where every eigenvalue of E has real part exceeding 1
4
, we

have

An

Xn

i�1

Zi Z9i ÿ Bn

 !
A�n!

D
W (7)

where An is taken from the de®nition (6) above, A�n is the transpose of A
de®ned by hAx, yi � hx, A� yi for all x, y 2 Rd , Bn � EZ1Z91I(kAnZ1k < 1),
and W is a nonnormal operator stable random element of the vector space M2

s

of symmetric 2 3 2 matrices with real entries. If every eigenvalue of E has real
part exceeding 1

2
then we may take Bn � 0, and if every eigenvalue of E has real

part between 1
4

and 1
2

then we may take Bn � EZiZ9i.
In the following result, we relax the assumption that An, C j are diagonal

matrices. Instead, we assume only that they commute in general. It extends
Theorem 2.1 in Davis and Marengo (1990) and Theorem 3.1 of Davis et al.
(1985) to the case where the tails of the two time series are regularly varying
with possibly different indices, i.e., we allow á1 6� á2.

THEOREM 2.1. Suppose fX tg is the moving average (5) and Ã̂(h) is the
sample covariance matrix at lag h. Suppose that fZng are IID with common
distribution ì which varies regularly with exponent E, where every eigenvalue
of E has real part exceeding 1

4
. If AnC j � C jAn for all n, j then for all h0 we

have

nAn Ã̂(h)ÿ
X1
j�0

C jBnC�j�h

" #
A�n!

D X1
j�0

C jWC�j�h (8)

jointly in h � 0, . . ., h0.

PROOF. This convergence for a single lag h follows from Theorem 3 of
Meerschaert and Schef¯er (2000). The joint convergence can be obtained by a
simple extension of those arguments. The centering Bn is the same as in (7), in
particular we can omit the centering when every ai . 1

2
and if every ai , 1

2
then

the centering is the covariance matrix Ã(h) � EX tX9t�h.
Now we apply Theorem 2.1 to the case at hand. Since An and C j are

diagonal, they commute. The limiting matrix in (8) has ij entry

lij(h) �
X1
k�0

c
(i)
k c

( j)
k�hwij (9)

where wij is the ij entry of W. Then we have

na(i)
n a( j)

n (ã̂ij(h)ÿ bijn(h))!D lij(h) (10)

jointly in i, j, h. We can take

bijn(h) � 0 if ai � aj . 1
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and

bijn(h) � ãij(h) � Ex
(i)
t x

( j)
t�h if ai � aj , 1

To see this, project (7) onto the ij coordinate and apply the standard results on
centering for scalar domains of attraction; see for example Feller (1971, XVII.5).

Next, we consider the joint distribution of the matrix elements wij. Since W
is operator stable, we begin with two simple lemmas on operator stable laws.
The ®rst of these may be well known but we could not locate a suitable
reference. The second corrects a mistake in Corollary 4.13.12 of Zurek and
Mason (1993).

LEMMA 2.2. If Y is operator stable with exponent E and if E�è � aè for
some è 6� 0 then hY, èi is a stable random variable with index 1=a.

PROOF. Since E�è � aè it follows that nÿE�è � nÿaè. Now for Yn IID with
Y, we have for all n, for some bn, that Y � nÿE(Y1 � � � � � Yn ÿ bn) meaning
that both sides are identically distributed. But then

hY, èi � hnÿE(Y1 � � � � � Yn ÿ bn), èi

� hY1 � � � � � Yn ÿ bn, nÿE�èi

� hY1 � � � � � Yn ÿ bn, nÿaèi

� nÿahY1 � � � � � Yn ÿ bn, èi

� nÿa(hY1, èi � � � � � hYn, èi ÿ hbn, èi)

which concludes the proof.

LEMMA 2.3. Suppose that Y � (Y1, . . ., Yk)9 is full nonnormal operator
stable with exponent E. The coordinate axis marginals Yi are independent
nondegenerate stable with index 1=ai if and only if E � diag(a1, . . ., ak) and
the LeÂvy measure ö is concentrated on the coordinate axes.

PROOF. If ö is concentrated on the coordinate axes write ö(dx) �
ö1(dx) � � � � � ök(dx) where ö j is concentrated on the jth coordinate axis.
Let ð j(x) � xj and ~ö j � ð jö j so that ~ö j is a LeÂvy measure on R1, and
ð jök � 0 for j 6� k. Since Y is full, Yi is nondegenerate. If E � diag(a1,
. . ., ak) then ð j t

E � ta jð j. Then for all t . 0 we have
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tö � tEö

ð j tö � ð j t
Eö

tð j(ö1 � � � � � ök) � ta jð j(ö1 � � � � � ök)

t~ö j � ta j ~ö j

so that ~ö j is the LeÂvy measure of a stable law with index 1=aj. The log
characteristic function of Y is

ø(t) � iha, ti �
�

x 6�0

eihx, ti ÿ 1ÿ ihx, ti
1� kxk2

ö(dx)

�
Xk

j�1

iajtj �
�

x 6�0

eihx, ti ÿ 1ÿ ihx, ti
1� kxk2

ö j(dx)

 !

�
Xk

j�1

iajtj �
�

x j 6�0

eix j t j ÿ 1ÿ ixjtj

1� x2
j

~ö j(dxj)

 !
which shows that Y has independent stable marginals Yi with index 1=ai.
Conversely if Yi are independent stable laws with index 1=ai let ~ö j denote the
LeÂvy measure of Yi as before. Since the log characteristic function of Y is a sum
by virtue of independence, we can reverse the steps above to see that Y is
nonnormal and in®nitely divisible with LeÂvy measure ö concentrated on the
coordinate axes. Furthermore, since ö is not concentrated on any proper
subspace of Rk it follows that Y has a full distribution. Since t~ö j � ta j ~ö j for
j � 1, . . ., k we also have tö � tEö where E � diag(a1, . . ., ak), hence Y is
nonnormal operator stable with this exponent.

THEOREM 2.4. Suppose fZng are IID with common distribution ì which
varies regularly with exponent E � diag(a1, a2), where ai . 1

4
. Then the matrix

entries wij in the limit W of (7) are all stable with index 1=(ai � aj). Both w11,
w22 are nondegenerate, and w12 � w21 is degenerate if and only if the limit
measure ö in (6) is concentrated on the coordinate axes, in which case w11,
w22 are independent.

PROOF. We show in Meerschaert and Schef¯er (1999b) that the random
matrix W is operator stable on the vector space M2

s of symmetric 2 3 2
matrices, with an exponent î which is a linear operator on M2

s de®ned by
î(M) � EM�ME for any M 2M2

s. Let Eij denote the symmetric matrix with
1 in both the ij and ji position and zeroes elsewhere. It is easy to check that
î(Eij) � (ai � aj)Eij, and hence by Lemma 2.2 we have wij stable with index
1=(ai � aj), but possibly degenerate. The LeÂvy measure of W is Tö where
Tx � xx9 and ö is the limit measure in (6), and we know from the proof of
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Theorem 2 in Meerschaert and Schef¯er (1999b) that supp(Tö) � T supp(ö). If
for example w11 is degenerate then Tö is supported on the subspace
perpendicular to E11 in M2

s , where we use the standard inner product
hA, Bi �Pi, jAijBij. Since

T
x1

x2

� �
� x2

1 x1x2

x1x2 x2
2

 !
(11)

this means that x2
1 � 0 for any (x1, x2)9 2 supp(ö). But then ö is concentrated on

the x2-axis which is a contradiction. Thus wii is nondegenerate. Now if ö is
concentrated on the coordinate axes in R2 then

supp(Tö) � T
x1

0

� �
: x1 6� 0

( )
[ T

0

x2

� �
: x2 6� 0

( )

� x2
1 0

0 0

� �
: x1 6� 0

( )
[ 0 0

0 x2
2

� �
: x2 6� 0

( )

� u 0

0 v

� �
: u, v . 0

( )
and this set is perpendicular to E12, hence w12 is degenerate. Also since the LeÂvy
measure Tö is concentrated on the coordinate axes, w11, w22 are independent by
Lemma 2.4. Conversely if w12 is degenerate then Tö is supported on the
subspace perpendicular to E12. Then if (x1, x2)9 2 supp(ö) we must have
x1x2 � 0 in (11), showing that ö is concentrated on the coordinate axes in R2.

REMARK 1. If every ai . 1
2

then (6) is necessary and suf®cient for Zt to
belong to the generalized domain of attraction of some Y nonnormal operator
stable with exponent E and LeÂvy measure ö. This means that

An(Z1 � � � � � Zn ÿ sn)!D Y (12)

for some sn 2 R2. If ö is concentrated on the coordinate axes and
E � diag(a1, a2) then by Lemma 2.3 the marginals of Y are independent stable
laws, i.e. z

(1)
t , z

(2)
t are asymptotically independent. Then it follows from Theorem

3.2 and Remark 3.3 of Meerschaert and Schef¯er (2000) that x
(1)
t , x

(2)
t are also

asymptotically independent.

REMARK 2. The papers Davis et al. (1985) and Davis and Marengs (1990)
assume a1 � a2 � 1=á so that each wij is stable with index á=2. Those papers
use a very different method of proof, involving point processes. Proposition 3.1
of Resnick (1986) shows that the regular variation (6) is necessary and
suf®cient for weak convergence of the point processes
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X1
j�1

å( j=n,An Z j)

to a Poisson random measure on (0, 1) 3 Rd with mean measure m 3 ö where
m is Lebesgue measure on the positive real line. It may also be possible to obtain
Theorem 2.4 via point process methods, but we have not pursued this.

3. LIMIT THEOREMS FOR THE SAMPLE CROSS-CORRELATION

Now we come to the main results of this paper, in which we derive the
asymptotic distribution of the sample cross-correlation (2) between two scalar
time series. We begin with the case where ai . 1

2
so that Ejz(i)

t j2 � 1. In this
case, the cross-correlation

r12(h) � ã12(h)������������������������
ã11(0)ã22(0)
p (13)

is unde®ned. The following result shows that, even in this case, the sample
cross-correlation provides some useful information.

THEOREM 3.1. Suppose x
(i)
t are scalar moving averages as in (1) where the

innovations vectors (z
(1)
t , z

(2)
t )9 are IID with common distribution ì which

varies regularly with exponent E � diag(a1, a2), where ai . 1
2
. Then

r̂12(h)!D l12(h)����������������������
l11(0)l22(0)
p (14)

where lij(h) is de®ned in (9).

PROOF. Apply the continuous mapping theorem along with (10) to obtain

r̂12(h) � na(1)
n a(2)

n ã̂12(h)�����������������������������������������������������
n(a

(1)
n )2ã̂11(0)n(a

(2)
n )2ã̂22(0)

q !D l12(h)����������������������
l11(0)l22(0)
p

and note that f (x, y, z) � x=
�����
yz
p

is continuous at (x, y, z) � (l12(h),
l11(0), l22(0)) with probability one by Theorem 2.4 since (l11(0), l22(0)) is full
and operator stable and hence it has a density. Note also that lii(0) is stable with
index 1=(2ai) , 1 and skewness 1, so the expression under the square root is
almost surely positive.

REMARK 3. If z
(1)
t , z

(2)
t are asymptotically independent then so are x

(1)
t , x

(2)
t in

view of Remark 2. Then Theorem 2.4 shows that w12 � 0 almost surely (in this
case no centering is required in (7) and we obtain a limit W which is centered
at zero) and so l12(h) � 0 almost surely. Then (14) yields r̂12(h)! 0 in
probability. Otherwise l12(h) is nondegenerate stable, hence it has a density,
and so the limit in (14) is almost surely nonzero. Thus the sample cross-
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correlation indicates asymptotic independence even when the cross-correlation
is unde®ned.

THEOREM 3.2. Suppose x
(i)
t are scalar moving averages as in (1) where the

innovations vectors (z
(1)
t , z

(2)
t )9 are IID with common distribution ì which

varies regularly with exponent E � diag(a1, a2), where 1
4

, a1 , a2 , 1
2
. Then

n(a(2)
n )2(r̂12(h)ÿ r12(h))) ÿ 1

2

r12(h)

ã22(0)
l22(0) (15)

where lij(h) is de®ned in (9).

PROOF. De®ne v � (ã̂12(h), ã̂11(0), ã̂22(0))9 and v0 � (ã12(h), ã11(0), ã22(0))9
and let f (x, y, z) � x(yz)ÿ1=2. Since a1 , a2 and a(i)

n varies regularly with index
ÿai we have a(i)

n a( j)
n =(a(2)

n )2 ! 0 unless i � j � 2. Then it follows from (10)
that

n(a(2)
n )2(vÿ v0)!D (0, 0, l22(0))9

Since

Df (v0) � r12(h)

ã12(h)
, ÿ 1

2

r12(h)

ã11(0)
, ÿ 1

2

r12(h)

ã22(0)

� �
9

we have

n(a(2)
n )2(r̂12(h)ÿ r12(h)) � n(a(2)

n )2( f (v)ÿ f (v0))

� Df (v0)n(a(2)
n )2(vÿ v0)� oP(1)

!D ÿ 1

2

r12(h)

ã22(0)
l22(0)

which completes the proof.

REMARK 4. Since a(2)
n varies regularly with index ÿa2 the norming sequence

n(a(2)
n )2 varies regularly with index 1ÿ 2a2 . 0 and hence this sequence tends

to in®nity, which agrees with the fact that r̂12(h)! r12(h) in probability. If
1
4

, a1 � a2 , 1
2

and an � a(i)
n for i � 1, 2 then an argument similar to that of

Theorem 3.2 yields

na2
n(r̂12(h)ÿ r12(h))) r12(h)

ã12(h)
l12(h)ÿ 1

2

r12(h)

ã11(0)
l11(0)ÿ 1

2

r12(h)

ã22(0)
l22(0) (16)

which agrees with the result in (Davis and Marengo, 1990). If z
(1)
t , z

(2)
t are

independent then r12(h) � 0 and n1=2r̂12(h)!D N normal with mean zero; see,
for example, Brockwell and Davis (1991, Theorem 11.2.2). In this case, the weak
limit in (15) or (16) is zero, and the norming sequence tends to in®nity slower
than n1=2, so there is no contradiction.
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THEOREM 3.3. Suppose x
(i)
t are scalar moving averages as in (1) where the

innovations vectors (z
(1)
t , z

(2)
t )9 are IID with common distribution ì which

varies regularly with exponent E � diag(a1, a2), where 1
4

, a1 , 1
2

, a2. If
a1 � a2 , 1 then

r̂12(h)

n1=2a
(2)
n

!D ã12(h)�����������������������
ã11(0)l22(0)
p (17)

and if a1 � a2 . 1 then

n1=2a(1)
n r̂12(h)!D l12(h)�����������������������

ã11(0)l22(0)
p (18)

where lij(h) is de®ned in (9).

PROOF. Since 2a1 , 1 we know that ã11(0) exists and (10) implies that
ã̂11(0)!P ã11(0). Since 2a2 . 1 we know that ã22(0) is unde®ned, and in this
case (10) yields n(a(2)

n )2ã̂22(0)) l22(0). Now if a1 � a2 , 1 then ã12(h) exists
and ã̂12(h)!P ã12(h), so continuous mapping yields

r̂12(h)

n1=2a
(2)
n

� ã̂12(h)���������������������������������������
ã̂11(0)n(a

(2)
n )2ã̂22(0)

q !D ã12(h)�����������������������
ã11(0)l22(0)
p

as desired. If a1 � a2 . 1 then ã12(h) is unde®ned and na(1)
n a(2)

n ã̂12(0)) l12(h),
so

n1=2a(1)
n r̂12(h) � na(1)

n a(2)
n ã̂12(h)���������������������������������������

ã̂11(0)n(a
(2)
n )2ã̂22(0)

q !D l12(h)�����������������������
ã11(0)l22(0)
p

by another application of the continuous mapping theorem. Note that l22(0) is
stable with index 1=(2a2) , 1 and skewness 1, so the denominator in the limit is
almost surely positive.

REMARK 5. The norming sequence n1=2a(i)
n varies regularly with index 1

2
ÿ ai.

Since 1
2

, a2, we have n1=2a(2)
n !1 and since a1 , 1

2
we have n1=2a(1)

n ! 0.
De®ne âij � Ez

(i)
t z

( j)
t if ai � aj , 1 so that this mean exists, and âij � wij if

ai � aj . 1, so that Ez
(i)
t z

( j)
t does not exist. Then each of the limits in (14),

(17), and (18) can be written in the form

â12

P1
k�0c

(1)
k c

(2)
k�h

â11

P1
k�0(c

(1)
k )2â22

P1
k�0(c

(2)
k )2

which is also equal to r12(h) if ai , 1
2
, in which case r̂12(h) converges in

probability to this limit.
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4. DISCUSSION

The time series models treated in this paper are linear and stationary. In some
applications, it is more natural to employ periodically stationary time series
models; see, for example, the river ¯ow model in Anderson and Meerschaert
(1998). There is also mounting evidence that, at least in ®nance, the most
promising time series models are nonlinear; see, for example, McCulloch (1996)
and the article by Resnick in (Adler et al., 1998). It would be quite interesting to
explore the asymptotics of the sample cross-correlation for nonstationary or
nonlinear time series.
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