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[1] A fractal mobile/immobile model for solute transport assumes power law waiting
times in the immobile zone, leading to a fractional time derivative in the model equations.
The equations are equivalent to previous models of mobile/immobile transport with power
law memory functions and are the limiting equations that govern continuous time random
walks with heavy tailed random waiting times. The solution is gained by performing
an integral transform on the solution of any boundary value problem for transport in the
absence of an immobile phase. In this regard, the output from a multidimensional
numerical model can be transformed to include the effect of a fractal immobile phase. The
solutions capture the anomalous behavior of tracer plumes in heterogeneous aquifers,
including power law breakthrough curves at late time, and power law decline in the
measured mobile mass. The MADE site mobile tritium mass decline is consistent with a
fractional time derivative of order g = 0.33, while Haggerty et al.’s [2002] stream tracer
test is well modeled by a fractional time derivative of order g = 0.3. INDEX TERMS: 3250
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1. Introduction

[2] As they move through an aquifer or stream, dissolved
solutes may sorb to solids or diffuse into regions where the
advective flux is negligible. To sufficiently describe the
mobile solute concentrations and masses, some functional
relationship between the concentrations in the relatively
mobile and immobile regions (phases) must be formulated.
Typically, this is done with equilibrium (time-independent)
or kinetic relationships in a continuum setting. The earliest
efforts along these lines gave the linear retardation factor for
instantaneous, equilibrium sorption [Bear, 1972; Reynolds
et al., 1982] and first-order kinetic mass transfer, commonly
called the mobile/immobile (MIM) model [Coats and Smith,
1964; van Genuchten and Wierenga, 1976]. Both have been
successfully applied to a large number of tracer tests. The
former predicts rapid decline of the late portion of a
breakthrough curve (BTC), while the latter predicts expo-
nential decline. However, several recent field tests that have
resolved very low concentrations show breakthrough curves
with heavier, power law, tails [e.g., Becker and Shapiro,
2000; Haggerty et al., 2000, 2001, 2002]. In this paper, we
develop a parsimonious MIM model with fractal retention
times to describe this behavior.

[3] Haggerty and Gorelick [1995] adopted a model that
combines a number of kinetic rates, reasoning that diffu-
sion into, and out of, different sized domains will take
place at different effective rates. The model is nonlocal in
time, reflecting the fact that the immobile phase acts as a
filter on the ‘‘signal’’ in the mobile phase. Especially
interesting is Haggerty et al.’s [2000] fractal, or power
law, distribution of rates. If a classical, single rate model is
adopted to describe these tests, it takes on the same sort of
scaling property in time that has long been noticed in
space: as the timescale of a test grows, the coefficients on
the time operators must be adjusted to match the test. Just
as an ‘‘effective’’ dispersivity coefficient on a second-order
dispersion term is thought to grow with a plume’s length
scale [e.g., Neuman, 1995], an ‘‘effective’’ rate coefficient
must shrink with the timescale of the test [Haggerty et al.,
2000]. On the other hand, a model with a fractional
dispersion derivative possesses scale invariance [Benson
et al., 2000a] and a model with a constant dispersion
coefficient may be able to describe the data from all spatial
scales. In the present study we consider a fractal (power
law) distribution of rate coefficients that is scale invariant
in time and leads to a fractional time derivative in the
transport equation. Haggerty et al. [2000, 2001, 2002]
truncated the fractal distribution of rates to preserve the
existence of moments; however, the introduction of the
cutoffs is not clearly necessary or implied.
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[4] In a different (Lagrangian) setting, an extension of the
classical random walk model allows a particle to stop for
random amounts of time along its trajectory. This general
process is called a continuous time random walk (CTRW).
A CTRW may or may not converge to a Brownian motion.
Schumer [2002] and Dentz and Berkowitz [2003] take
different approaches to show that the Lagrangian random
walk model is equivalent to the continuum mobile/immobile
equation in the same way that Brownian motion is equiv-
alent to the diffusion equation. The importance of the
equivalence of the CTRW to the MIM is that a great deal
is known about the limit processes of the CTRW. The
CTRW converges toward a limit that corresponds to a
MIM continuum model. The convergence is a property that
is useful when making long-term predictions.
[5] A key to the comparison of the Lagrangian and

Eulerian methods is that governing equations can be gener-
ated for the evolution of the concentration profile in both the
mobile and immobile phases (and therefore the total resident
concentration). This allows us to distinguish between the
very different breakthrough curves for total versus mobile
concentration. Most research on CTRW does not make this
distinction since it is thought that the particle can be
‘‘observed’’ whether it is mobile or not. However, in a
hydrologic setting, we may only be able to measure the
solute when it is in a mobile phase, since samples are
typically drawn preferentially from mobile water (e.g.,
groundwater wells, grab samples from a stream). The dis-
tinction between mobile and total concentration (or the
probabilistic location of a particle in either phase) also
allows an analysis of the changes in total mobile mass,
which depends on the initial condition in both phases. The
single-rate MIM equation predicts an exponential approach
to an asymptotic state where the mobile mass remains a
constant positive fraction of the injected mass [Goltz and
Roberts, 1987; Harvey and Gorelick, 2000]. Tracer tests at
the Macrodispersion Experiment (MADE) site show a con-
tinual decrease in mass recovery [Adams and Gelhar, 1992;
Boggs and Adams, 1992; Harvey and Gorelick, 2000]. The
decrease follows a power law, which points to a fractal
distribution of rate coefficients.
[6] In this study, we generalize classical MIM transport

theory and determine the conditions under which the MIM
transport equations conserve mass, i.e., describe total
(mobile + immobile) solute transport. We also examine the
mobile transport equation and determine whenmass recovery
is incomplete. When the memory function of the mobile/
immobile equations follows a power law, a fractional time
derivative of order 0 < g � 1 appears in the governing
transport equation. These transport equations govern the long
time limits of continuous time randomwalk (CTRW)models,
implying a probabilistic interpretation of theMIM advection-
dispersion equations (ADEs).We find that the solutions to the
mobile/immobile fractional-in-time transport equations are
integral transforms of the ‘‘conservative’’ solution to an
integer order (in time) counterpart in which no immobile
phase is present. This ‘‘conservative’’ solution may come
from any sort of time-homogeneous boundary value problem
including one from a multidimensional, numerical solver.
Finally, we discuss key features of tracer tests that the
fractional-in-time mobile solute transport model can predict.

2. Generalization of Classical Mobile/Immobile
Transport Theory

[7] Mobile/immobile formulations equate the divergence
of advective and dispersive flux of a mobile phase to the
change in concentration in both the mobile and immobile
zones (Cm (x, t) and Cim (x, t), respectively), due to some
partitioning between the phases [Coats and Smith, 1964]:

@Cm

@t
þ b

@Cim

@t
¼ L xð ÞCm; ð1Þ

where, for example, in the classical 1-D case L xð Þ ¼
�v @

@x þ D @2

@x2 , v is average linear velocity, and D is a
dispersion coefficient. We will not model chemical sorption
in this study, so the mobile/immobile capacity coefficient can
be defined by b ¼ qim

qm
, where qm and qim are porosity in the

mobile and immobile zones [Coats and Smith, 1964].
Haggerty and Gorelick [1995] point out that b is more
accurately defined as the ratio of mass in the immobile and
mobile phases at equilibrium. This distinction becomes more
important when we describe a process that does not reach
equilibrium. The relationship between Cm and Cim is
typically given by one or more coupled mass transfer
equations [van Genuchten and Wierenga, 1976; Haggerty
and Gorelick, 1995]. Haggerty and Gorelick [1995]
demonstrate that many of the mobile/immobile and multirate
mass transfer equations are related to the linear none-
quilibrium mass transfer equation:

@Cim

@t
¼ w Cm � Cimð Þ; ð2Þ

where w is a first-order rate coefficient. The solution to (2) is

Cim ¼ we�wt*Cm þ Cim x; 0ð Þe�wt; ð3Þ

where * denotes convolution: Cm x; tð Þ*we�wt ¼
R t
0
Cm

ðx; t � tÞwe�wtdt. In this context, it is apparent that the
immobile zone is acting as a filter [Debnath, 1995]. It takes
an input function Cm and spreads it according to a
convolution with an exponential filter function f (t) = we�wt.
Equation (3) also models the decay (release) of an initial
immobile phase according to the same exponential form.
[8] By taking the derivative of (3) with respect to time,

we find the linear nonequilibrium mass transfer equation (2)
in an alternate form:

@Cim

@t
¼ we�wt*

@Cm

@t
þ we�wt Cm x; 0ð Þ � Cim x; 0ð Þð Þ: ð4Þ

While equations (2) and (4) are equivalent, the latter
provides additional information about the evolution of
immobile concentration. First, we find that the initial
conditions in each phase affect @Cim

@t for all time. We also
see that f (t) = we�wt is the ‘‘memory function’’ used by
Carrera et al. [1997] and Haggerty et al. [2000]. Both
studies demonstrate that the memory function f (t) can take
many forms. In general,

@Cim

@t
¼ f tð Þ* @Cm

@t
þ f tð Þ Cm x; 0ð Þ � Cim x; 0ð Þð Þ: ð5Þ
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Placing the general mass transfer equation (5) in the
conservation of mass equation (1), we have the mobile
solute transport equation with general initial condition in
both phases:

@Cm

@t
þ b

@Cm

@t
*f tð Þ ¼ L xð ÞCm � b Cm x; 0ð Þ � Cim x; 0ð Þð Þf tð Þ:

ð6Þ

The mass in the mobile phase will increase, decrease, or
remain constant, depending on the difference in the initial
conditions (i.e., the last term of (6)). If the initial
concentration is higher in the mobile phase, it will ‘‘leak’’
into the immobile phase and mobile solute mass will
decrease. In general, the initial condition in the immobile
zone cannot be ignored.
[9] In a typical tracer test, the solute is placed into the

mobile zone, and the immobile zone is initially clean. As a
result, most analytical and numerical studies use the initial
conditions Cm(x, 0) = Cm,0(x) > 0 and Cm(x, 0) = 0 as we
will for the remainder of this study. With a clean initial
immobile phase, the mobile solute transport equation (6)
becomes:

@Cm

@t
þ b

@Cm

@t
*f tð Þ ¼ L xð ÞCm � bCm;0 xð Þf tð Þ: ð7Þ

While mobile concentration is measured in groundwater or
soil column effluent samples, measurements of total
(mobile+immobile) concentration Ctot are obtained from
core samples or other techniques that measure solute in all
phases (e.g., time domain reflectometry). To complete our
development, we derive the equation for the evolution of
immobile solute Cim and the evolution of Ctot. Solving (5)
for Cm and @Cm

@t and substituting them in (1) yields the
immobile solute transport equation:

@Cim

@t
þ b

@Cim

@t
*f tð Þ ¼ L xð ÞCim þ Cm;0 xð Þf tð Þ: ð8Þ

Although advection and dispersion do not occur in the
immobile zone, immobile solute evolution is affected by
flux in the mobile zone, resulting in an immobile flux term.
Note that we have maintained the assumption of a clean
initial condition in the immobile zone: a different equation
arises when the initial immobile zone concentration is
nonzero.
[10] To obtain the equation describing the transport of

total solute Ctot, multiply the immobile transport equation (8)
by b, add the resulting equation to the mobile transport
equation (7), and use

Ctot ¼ qmCm þ qimCim ð9Þ

or 1
qm
Ctot ¼ Cm þ bCim [Jury et al., 1991, p. 230; Sardin et

al., 1991], so that

@Ctot

@t
þ b

@Ctot

@t
*f tð Þ ¼ L xð ÞCtot ;Ctot x; 0ð Þ ¼ qmCm;0 xð Þ: ð10Þ

3. Rate of Mass Decline in the Mobile Phase

[11] The total mobile mass with time, Mm(t) in any phase
can be computed by integrating the concentration over

space to obtain the zeroth spatial moment: Mm(t) =R
qmCm(x, t)dx. Multiplying through in the mobile solute

transport equation (7) by qm and integrating over space
yields:

@Mm

@t
þ b

@Mm

@t
*f tð Þ ¼ �bMm;0 f tð Þ: ð11Þ

Using the Laplace transform ~f (s) =
R
0
1e�stf (t)dt to solve for

the mobile mass Mm leads to:

~Mm sð Þ ¼ Mm;0

s 1þ b~f sð Þ
� � ; ð12Þ

where Mm,0 denotes the initial mobile mass. It is clear that
the mobile transport equation does not conserve mass
unless, trivially, b or ~f (s) = 0. For example, Goltz and
Roberts [1987] show if f (t) = we�wt, then Mm tð Þ ¼
Mm;0

1þb 1þ be�w 1þbð Þt� �
. Solute mass is transferred from the

mobile to immobile phase with time, and the amount of
mass recovered from monitoring wells that preferentially
sample the mobile phase decreases.
[12] Total solute mass with time is calculated by integrat-

ing (10) over space and noting that the resulting equation
@Mtot

@t þ b @Mtot

@t *f tð Þ ¼ 0; Mtot x; 0ð Þ ¼ qmMm;0 xð Þ has con-
stant solution Mm,tot(t) = Mm,0. Total solute mass is constant
with time and equal to the initial mass. Equation (10), with
any memory function, preserves the property of mass-
conservative transport.

4. A Power Law Memory Function f (t) and the
Fractional-in-Time ADE

[13] Power law late time breakthrough curves (BTCs)
have been observed during tracer tests in fractured granite
and dolomite [Becker and Shapiro, 2000; Haggerty et al.,
2001; McKenna et al., 2001]; in saturated and unsaturated
column experiments [Farrell and Reinhard, 1994; Werth et
al., 1997; Callahan et al., 2000]; and in surface water flows
[Kirchner et al., 2000, 2001; Haggerty et al., 2002]. The
power law tails are associated with power law decline of
mobile solute mass [Farrell and Reinhard, 1994], and
attributed to a power law decay in the probability density
function describing random waiting times in the immobile
zone or a power law memory function f (t) [Haggerty et al.,
2000; Scher et al., 2002; Dentz and Berkowitz, 2003;
Schumer, 2002]. If we let f tð Þ ¼ t�g

� 1�gð Þ , where �(�) is the
Gamma function, then by definition,

@Cm x; tð Þ
@t

*f tð Þ ¼ @gCm x; tð Þ
@tg

ð13Þ

is a Caputo fractional derivative of order g [Mainardi, 1997;
Samko et al., 1993]. Using (13) in (7), (8), and (10) results
in fractional-in-time ADEs describing total solute transport:

@Ctot

@t
þ b

@gCtot

@tg
¼ L xð ÞCtot; Ctot x; 0ð Þ ¼ qmCm;0 xð Þ; ð14Þ

mobile solute transport:

@Cm

@t
þ b

@gCm

@tg
¼ L xð ÞCm � bCm;0 xð Þ t�g

� 1� gð Þ ;

Cm x; 0ð Þ ¼ Cm;0 xð Þ;
ð15Þ
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and immobile solute transport:

@Cim

@t
þ b

@gCim

@tg
¼ L xð ÞCim þ Cm;0 xð Þ t�g

� 1� gð Þ ; Cim x; 0ð Þ ¼ 0:

ð16Þ

Solutions to these fractional-in-time PDEs exist only when
g � 1 [Schumer, 2002].
[14] The use of fractional-in-time ADEs to model mobile/

immobile anomalous solute transport is motivated by four
factors: (1) the equations govern the limits of well known
stochastic processes, (2) fractional-in-time ADEs describe a
combination of first order mass transfer models and reduce
to known mobile/immobile equations in the integer order
case, (3) the equations have tractable solutions that model
the significant features of solute plume evolution in time
and space, and (4) the equations are parsimonious, with no
more parameters than the classical MIM model. These
topics are discussed in the following sections.
4.1. Fractional-in-Time ADEs, Fractional-in-Space
ADEs, and Continuous Time Random Walks

[15] The link between the diffusion equation and random
walks has long been understood [e.g., Hille and Phillips,
1957]. A Gaussian density is the Green’s function solution
to the ADE, which describes the location of a particle
undergoing Brownian motion. When walks are generalized
to allow very large random trajectories that are heavy tailed,
the generalized central limit theorem leads to an ADE with a
spatially fractional derivative in the dispersive term [e.g.,
Benson et al., 2000a; Meerschaert et al., 1999; Schumer et
al., 2003]. In the vernacular of this study, a random variable
X whose distribution function is approximately a power law
for large values (Prob[X > x] 	 x�a) is called ‘‘heavy
tailed.’’ The Green’s function solutions to fractional-in-
space ADEs are stable probability densities: skewed to bell-
shaped density curves with heavy, power law tails
[Samorodnitsky and Taqqu, 1994]. Fractional-in-space
ADEs have been used to describe faster-than-Fickian
growth rate, skewness, and heavy leading edges of
conservative plumes in heterogeneous aquifers [Benson et
al., 2000b, 2001]. These authors did not consider partition-
ing to an immobile phase, which may partially explain
discrepancies with the field data [Lu et al., 2002].
[16] A more general framework for the study of particle

motion is the CTRW or renewal reward process. A CTRW
can be defined as the sum of random particle motions that
require a random amount of time to complete [Montroll and
Weiss, 1965; Scher and Lax, 1973; see also the numerous
references in the comprehensive review by Metzler and
Klafter, 2000]. CTRWs are useful models of solute transport
in aquifers; a particle can move through the aquifer with
groundwater or be motionless due to sorption or immobile
zones [e.g., Berkowitz and Scher, 1995; Benson, 1998;
Berkowitz et al., 2001]. When random waiting times have
finite mean and are independent of particle trajectory length,
CTRWs lead to the same mass-conservative PDEs as their
corresponding classical random walks [Kotulski, 1995;
Whitt, 2001]. However, CTRWs with power law, infinite
mean immobile periods are governed in the long time limit
by fractional-in-time PDEs [Barkai et al., 2000; Compte,
1996; Meerschaert et al., 2002a, 2002b]. The equivalence
of the mobile/immobile and certain CTRW models was

recently established by Schumer [2002] and Dentz and
Berkowitz [2003].

4.2. Relation of Fractional-in-Time ADEs With
Classical (Integer Order) ADEs

[17] When the fractional time derivative is of order g = 1,
representing instantaneous, reversible mass transfer, the
fractional-in-time ADE describing total solute transport
(14) reduces to:

1þ bð Þ@Ctot

@t
¼ L xð ÞCtot ; Ctot x; 0ð Þ ¼ qmCm;0 xð Þ; ð17Þ

resulting in a linear retardation factor r = 1 + b. The mobile
solute time-fractional ADE (15) reduces to

1þ bð Þ@Cm

@t
¼ L xð ÞCm � bCm;0 xð Þd tð Þ; ð18Þ

since lim
g!1

t�g

� 1�gð Þ ¼ d tð Þ [Saichev and Zaslavsky, 1997], where
d( ) is a Dirac delta function. The mobile mass after injection,
Mm(t) = Mm,0/(1 + b), is a constant fraction of the injected
mass.
[18] Dimensional analysis in (14) shows that b has units

[Tg�1], which reduces to a dimensionless b when g = 1. The
first-order in time equation (18) predicts constant mobile
mass with time; it describes an instantaneous mass transfer
process. The single rate MIM model describes an
exponential approach to the equilibrium state. In both
cases, the capacity coefficient b has the traditional definition
of the ratio of immobile mass to mobile mass at equilibrium
[Haggerty and Gorelick, 1995]. When g < 1 the fractional-
in-time model predicts continual transfer of plume mass
from the mobile to the immobile phase. Mass transfer
between phases never reaches equilibrium because solute
continues to encounter new zones (however small) of clean
aquifer. We refer to the conceptual model of multirate
diffusion into immobile zones described by Cunningham et
al. [1997], Haggerty and Gorelick [1995], and Haggerty et
al. [2001] which describes diffusion into immobile matrix
blocks of various sizes with unique rate coefficients. Under
the fractal model, solute encounters more of the immobile
zone porosity with time resulting in an apparent scaling of
the immobile porosity to mobile porosity ratio and a
capacity coefficient whose units scale with time.

4.3. Late Time Approximations

[19] Haggerty et al. [2000] state that a late time equation
applies when concentration change is more heavily
dependent on exchange between the mobile and immobile
zones than by advective travel time. Although the
fractional-in-time mobile/immobile ADEs have explicit
solutions at all times (see section 5), we present the late
time approximation to the mobile solute fractional ADE
because its solution has properties that are easy to identify
in field data.
[20] As t ! 1 (or s ! 0), the term @C

@t þ b @gC
@tg (with

Laplace transform s~C(x, s) � C0 + bsg~C(x, s) � bsg�1C0)
converges to b @gC

@tg when 0 < g � 1 because sg ! 0 slower
than s. Then the late time equation corresponding with the
total solute transport equation (14) is:

b
@gCtot

@tg
¼ L xð ÞCtot; Ctot x; 0ð Þ ¼ Cm;0 xð Þ ð19Þ
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while the late time mobile solute transport equation is:

b
@gCm

@tg
¼ L xð ÞCm � bCm;0 xð Þ t�g

� 1� gð Þ ; Cm x; 0ð Þ ¼ Cm;0 xð Þ:

ð20Þ

Since s ! 0 corresponds to t ! 1, the ratio of the two
terms bsg and s gives an indication of the time at which the
late time approximation can be used. The dimensionless
number bt1�g is a measure of the relative magnitude of the
two operators for large time, and we empirically have found
that this number should greater than 3 (i.e., t > (3/b)1/1�g)
for the late time approximation to be used.

5. Solutions to Fractional-in-Time ADEs

[21] We present the Green’s function solutions (C(x, 0) =
d(x)) to the fractional-in-time mobile/immobile ADEs
(derived in Appendix A), noting that the solutions to
equations with any initial condition can be obtained through
convolution with the Green’s function solution. The
solutions to fractional-in-time ADEs are integral transforms
of the solution of a corresponding ‘‘conservative’’ ADE
cconserv(x, t) in which no immobile zone is present, e.g., the
classical ADE

@cconserv x;tð Þ
@t ¼ L xð Þcconserv x; tð Þ. For example, if

fluorescent dye and a large number of oranges were placed
in a stream, the oranges would be ‘‘conservative’’ since they
cannot penetrate the hyporheic zone. If the dye encountered
fractal immobile zones beneath the river, the transport
solution would be given by a transform of the ‘‘oranges’’
solution. The same transforms apply whether mobile flux is
Fickian L xð Þ ¼ �v @

@x þ D @2

@x2 and cconserv(x, t) is Gaussian
(Figure 1), super-Fickian L xð Þ ¼ �v @

@x þ D @a

@xa , with 0 <
a < 2 and a-stable cconserv(x, t) (Figure 2), or takes any other
form in d dimensions. The solution to the mobile solute
transport fractional ADE (15) is:

Cm x; tð Þ ¼
Z t

0

gg
t � u

buð Þ1=g

 !
buð Þ�1=g

cconserv x; uð Þdu: ð21Þ

(Appendix A) where gg(t) is the stable subordinator, whose
Laplace transform is e�sg [see Feller, 1971]. The stable
subordinator is the density of a heavy tailed random variable
that explicitly accounts for the random amount of time spent
in the immobile phase. It can be computed using the efficient
methods of Nolan [1998]. The solutions to the immobile
solute and late time mobile solute fractional ADEs are

Cim x; tð Þ¼1

g

Z t

0

gg
t � u

buð Þ1=g

 !
buð Þ �1�gð Þ=g

t � uð Þcconserv x; uð Þdu; and

ð22Þ

Cm;late x; tð Þ ¼
Z1
0

gg
t

buð Þ1=g

 !
buð Þ�1=g

cconserv x; uð Þdu: ð23Þ

Use (9) to solve for total solute concentration. Since
cconserv(x, t) can be the solution to any time-homogeneous
boundary value problem in 1-, 2-, or 3-D, the solutions to
numerical simulations such as MT3D or particle tracking
codes can be transformed using (21) to incorporate the
effects of immobile zones or kinetic sorption on solute
transport. Mathcad sheets that contain these solutions are
available from the authors.
[22] Note that gg(t) is a probability density, so that

decreasing the scale parameter results in

lim
b!0

gg
t � u

buð Þ1=g

 !
buð Þ�1=g¼ d t � uð Þ;

and when b = 0 we recover the untransformed Green’s
function solution of

@cconserv x;tð Þ
@t ¼ L xð Þcconserv x; tð Þ in every

Figure 1. Spatial snapshots, at t = 20, of the solution to the
unretarded (no immobile phase) classical ADE, along with
the total mass, immobile mass, and mobile mass of the
retarded (transformed) solutions. ADE parameters are v = 1
and D ¼ 0:1. The fractional time derivative is order g = 0.3
and b = 0.1 in the retarded transport equations. See color
version of this figure in the HTML.

Figure 2. Spatial snapshots, at t = 20, of the unretarded
(no immobile phase), skewed, 1.5-stable solution to a
spatially fractional ADE with v = 1 and D ¼ 0:1, a = 1.5,
along with the total mass, immobile mass, and mobile mass
of the retarded (transformed) solutions. In the retarded
transport equations, the capacity coefficient is b = 0.1 and
the order of the fractional time derivative is g = 0.3. See
color version of this figure in the HTML.
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case. In other words, the solution to the mobile fractional
ADE (21) with b = 0 is Cm(x, t) = cconserv(x, t).

6. Model Properties and Application

[23] The integral solutions to fractional-in-time ADEs
described in section 5 were used to generate the plume
snapshots and breakthrough curves shown in this section. A
Mathcad worksheet that generates the curves can be
obtained from the authors.
6.1. Mobile Mass Decline

[24] Use ~f (s) = sg�1 in the general mobile mass decay
equation (12) to find that mass decay predicted by the
mobile fractional-in-time ADE (15) is

~Mm sð Þ ¼ Mm;0

sþ bsg
: ð24Þ

with inverse transform (see Appendix A for details):

Mm tð Þ ¼ Mm;0

Z t

0

gg
t � u

buð Þ1=g

 !
buð Þ�1=g

du: ð25Þ

As t becomes large (or s ! 0) mobile mass decays (for late
time) according to ~Mm sð Þ 	 Mm;0

bsg , with inverse transform

Mm tð Þ 	 Mm;0
tg�1

b� gð Þ : ð26Þ

[25] When b = 1 and the order of the fractional derivative
is g = 0.5, mass transfer predicted by the mobile solute
transport equation is close to the late time solution after
roughly 10 time units. A larger immobile capacity coeffi-
cient b requires less time for convergence (Figure 3).
[26] The MADE site tests, described by Adams and

Gelhar [1992], Boggs and Adams [1992], Boggs et al.
[1992], and Rehfeldt et al. [1992], were performed in the
saturated zone of a highly heterogeneous alluvial aquifer to
validate solute transport models. Analytical equations based
on CTRW [Berkowitz and Scher, 1998] or that use only
fractional space derivatives [Baeumer et al., 2001; Benson
et al., 2001] have been shown to fit normalized data (mass
adjusted to equal unity at each snapshot) from the bromide
or tritium tracer tests but do not reproduce mass transfer
with time. Although no multidimensional fractional model
[Meerschaert et al, 1999; Schumer et al., 2003] has been
applied to the MADE site data, the discrepancy between
nonnormalized data and 3-D models [Lu et al., 2002] might

Figure 3. The mobile solute fractional ADE predicts that mass decline converges toMm(t) = tg
�1

/(b�(g))
with time: (a) convergence for various g when b = 1 and (b) effect of varying b when g = 0.3.
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partially be explained by the fractional mass transfer shown
in this study. Harvey and Gorelick [2000] approximate
the MADE site mass decay (using Mm tð Þ ¼ 1

1:48 1þð
6e

�0:0046 1þ6ð Þ
1:48 tÞ; see Figure 4) and transport using a classical

first-order MIM model. Their model reproduces the plume
skewness, but not the heavy (power law) leading edges of
the plume or the power law decay of mobile mass. The rate
of measured mobile mass decline from the MADE-1
bromide plume is well modeled by a fractional time
derivative of order g = 0.33 and fractal immobile capacity
of b = 0.08 d�0.67 (Figure 4). The mass decline is close to
the late time solution after the second monitoring period at
79 days, as the observed mobile mass fraction decays
according to Mm(t) � 25t�0.67.
[27] Mass recovery estimates in two conservative tracer

tests performed at the MADE site initially exceed the
injected mass [Adams and Gelhar, 1992; Boggs et al.,
1993] and then decrease according to a power law. While
Adams and Gelhar [1992] attributed the early overestimate
of mass to experimental error, others attribute it to
preferential sampling of the high conductivity areas in
which solute is concentrated at early time [e.g., Boggs and
Adams, 1992]. The ‘‘overrecovery’’ is due to preferential
sampling of the mobile zones where the solute is initially
placed, while the calculation of mass reported by Adams
and Gelhar [1992] is based on an assumption of uniform
distribution. Harvey and Gorelick [2000] support this
hypothesis and argue that the transport processes that lead
to this bias are significant and should be represented in a
transport model. Harvey and Gorelick [2000] fit parameters
that predict an apparent initial recovery (extrapolated to t = 0)
of 4.7 times the original mass. The fractal fitting (Figure 4)
predicts an apparent mass fraction at t = 0 of 5.0.

6.2. Breakthrough Curves

[28] Power law late time breakthrough curves (BTC) are
the most notable feature of solute transport subject to heavy
tailed waiting times due to the immobilization of solute.

Researchers have shown the power law BTC that result
from both power law and gamma (itself a heavy tailed but
not scale invariant function) distributions of rate coefficients
[Connaughton et al., 1993; Werth et al., 1997; Haggerty et
al., 2000]. The analytical solution to the total solute
fractional ADE (14) demonstrates that the slope of its log-
log late time breakthrough curve is �g, where g is the order
of the fractional time derivative (Figure 5). The immobile
solute breakthrough curve has the same log-log slope as the
total solute breakthrough curve, but the log-log slope of the
mobile solute breakthrough curve (Figure 5) is steeper
(�g�1).
[29] The late time BTCs for the MADE site were not

measured. Instead we use the power law BTCs that have
been observed in tracer tests of overland streamflow

Figure 5. Log-log breakthrough curves, at x = 5, of the
unretarded solution to the ADE and the solutions to the
total, mobile, and immobile time-fractional ADEs. All
parameters are the same as in Figure 1. See color version of
this figure in the HTML.

Figure 4. Linear and log-log plots of the observed fraction of injected mass from the MADE-1 bromide
plume (circles) compared with a single-rate MIM (dashed line) and the fractal MIM (solid line) models.
The fractional time derivative is order g = 0.33 and fractal capacity coefficient b = 0.08 d�0.67. The initial
mobile fraction, due primarily to sampling bias, is 5.0 and 4.7 for the fractal and single rate (exponential)
models [Harvey and Gorelick, 2000]. Also shown on the log-log plot is the late time approximation
(dotted line) given by equation (26).
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[Haggerty et al., 2002] to test our model. Similar behavior
in the spectra of chloride time series at watershed outlets
was described by Kirchner et al. [2000, 2001] and Scher et
al. [2002]. Haggerty et al. [2002] conducted a tracer test in
a second-order mountain stream. They show that the
hyporheic zone contains a large range of flow paths, and
that the breakthrough of dye tracer 306.4 m downstream
from the release point exhibits a power law tail. Haggerty et
al. [2002] successfully model the breakthrough with a
truncated power law memory function. We hypothesize that
the fractional time derivative (which uses a nontruncated
power law kernel) will model the breakthrough with fewer
parameters. We assume that the dye moving within the
stream channel is well mixed at a distance of 306 m (peak
arrival time of 2600 s) and follows the classical Fickian
ADE, so the fractional mobile equation is

@Cm

@t
þ b

@gCm

@tg
¼ �v

@Cm

@x
þ D

@2Cm

@x2
� bCm;0d xð Þ t�g

� 1� gð Þ ;

Cim x; 0ð Þ ¼ 0: ð27Þ

Haggerty et al. [2002] do not report the mean velocity and
dispersion parameters for particles that cannot move out of
the stream, so these are left as fitting parameters. An
interesting validation exercise would be to simultaneously
release large neutral-buoyancy particles to eliminate the
fitting of v and D. The order of the fractional derivative is
given by the late time slope of the BTC, which is
approximately g = 0.3. Plots of the BTC in log-log and
real space show excellent fits (Figure 6) with values of
b = 0.0023 secg�1, v = 0.12 m/sec, and D ¼ 0:2 m2=sec,
given the initial condition Mm,0 = 0.48 gm/m � d(x).We also
show the solution to the classical ADE for a tracer that
could not move out of the advective channel flow (b = 0).
Since the mobile transport equation requires g � 1, it is only
applicable to data with mobile solute late time BTC slope
between �1 and �2. If the slope is steeper than 	t�2, a
different model is required. The fractional-in-time model
predicts 89% mass recovery compared with a measured
mass recovery of 77% (Haggerty, personal communication,
2002).

6.3. Spatial Snapshots

[30] When the Gaussian solution to an ADE is transformed
to obtain the total solute fractional-in-time ADE, mass is
conserved but retarded (Figure 1). The corresponding solu-
tion to the mobile solute fractional-in-time ADE is close to
that of the total solute ADE at its leading edge, but progres-
sively diverges upstream, where some solute is immobilized
(Figure 1).
6.3.1. Combination With Heavy Tailed cconserv(x, t)
[31] Transport equations with fractional space derivatives

have been shown to model super-Fickian dispersion result-
ing from infinite-variance particle motion lengths [e.g.,
Benson, 1998; 2000; Gorenflo and Mainardi, 1998;
Schumer et al., 2001, 2003]. A key feature of the super-
Fickian model is heavy tailed leading edges. The slope, on a
log-log plot, of the leading edge of the immobile, mobile,
and total solute plumes are equal to that of the correspond-
ing integer-order in time, no immobile zone diffusion
equation cconserv(x, t) (Figure 7). Theoretically, the slope of

Figure 6. Breakthrough (arrival) of fluorescent dye
306.4 m downstream of the injection point in a mountain
stream. See color version of this figure in the HTML.

Figure 7. Log-log snapshot, corresponding to Figure 2, at
t = 20, for the unretarded solution to the fractional-in-space
ADE and transformed mobile, immobile, and total solute
solutions. See color version of this figure in the HTML.

Figure 8. Increasing the capacity coefficient b decreases
the mobile mass of the plume and affects the skewness. See
color version of this figure in the HTML.
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the leading edges approach �1�a, where a is the order of
the spatial derivative [Benson, 1998].
6.3.2. Skewness
[32] In addition to decreasing the mobile mass for a

given snapshot, increasing b more strongly retards the
solute in the mobile phase solution (Figure 8). Large values
of b result in a positively skewed plume snapshot as the
majority of the mass is held behind the average ground-
water velocity. However, small values of b result in a
negatively skewed snapshot with a leading edge that decays
exponentially as only small amounts of mass are held
behind the peak (Figure 8). This means that for small
values of b, i.e., small fractions of immobile porosity,
heavy tailed leading edges can only result from heavy
tailed particle motion lengths and fractional space deriva-
tives. They cannot simply be a result of heavy tailed
waiting times [see also Meerschaert et al., 2002b].
For example, at the MADE site, where we estimate b =
0.08 days�0.67, heavy tailed waiting times are not sufficient
to produce power law leading edges and we suspect that a

combination of mobile mass decay and heavy (power law)
leading edges can only be described by a fractional-in-time
and space mobile solute ADE.

7. Discussion

[33] Integro-differential equations that contain convolu-
tion filters are nonlocal [Cushman and Ginn, 1993;
Muralidhar, 1993]. Concentration change at a single point
in an aquifer governed by fractional-in-space ADEs is a
function of the concentration at all points in the aquifer
[Schumer et al., 2001]. fractional-in-time ADEs have
memory of the time that solute mass arrives at a given
location and releases it accordingly. When the waiting time
densities of CTRWs have infinite mean, the limiting
equations govern fractal time processes [Hilfer and Anton,
1995; Mandelbrot, 1982] and predict plumes that have
power law or fractal scaling at late time. The fractional-in-
time and space ADE that governs total solute transport at

Figure 9. MADE-1 bromide snapshot 3 (day 179) scaled in time by Cm(x, t) = tg�1t�g/aCm(t
�g/ax, 1)

with g = 0.33 and a = 0.9 (lines) compared with test data in the final four snapshots (solid circles).
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late time (19) with L xð Þ ¼ D @aC
@xa has the convenient space

time scaling property [Meerschaert et al., 2002a]:

Ctot x; tð Þ ¼ t�g=aCtot t�g=ax; 1
� �

; ð28Þ

and the late time mobile solute transport equation (20), with
this space-fractional L(x) was empirically determined to
scale as:

Cm;late x; tð Þ ¼ tg�1t�g=aCm t�g=ax; 1
� �

; ð29Þ

which is similar to the scaling of the total solute transport
equation (28) but accounts for mass transfer. This scaling is
evident in the MADE-1 bromide plume. A 1-D plot of
distance versus concentration was generated by taking the
maximum concentration within 3 m of the center line of the
plume. Snapshot 3 (day 126) scaled in time by (29) using
g = 0.33 (from the mass decline data in Figure 4) and a =
0.9 [see Benson et al., 2001; Baeumer et al., 2001] yields a
close fit to the data for days 202, 279, 370, and 503
(Figure 9). Knowledge of the scaling properties alone
allows prediction of plume evolution from a single spatial
snapshot. This scaling property implies that aquifer
heterogeneities act as a fractal filter in space and aquifer
immobile zones act as a fractal filter in time.
[34] Simulations of the MADE tracer tests have looked at

either heavy tailed motion in 1-D [Benson et al., 2001;
Baeumer et al., 2001] or partitioning to an immobile phase
[Berkowitz and Scher, 1995; Zheng and Jiao, 1998; Feehley
et al., 2000; Harvey and Gorelick, 2000]. An uncalibrated
3-D simulation [Lu et al., 2002] was performed with a
model that assumes fractional dispersion in the direction of
flow and classical dispersion in the remaining coordinates.
The authors of that study point to discrepancies between the
simulated and measured plumes, and suggest that a model
with a spatially varying velocity field could give a better fit.
These simplified studies have provided additional insight
into transport processes in highly heterogeneous aquifers
but have come up short on providing a comprehensive
model of transport. Moment analysis [Meerschaert et al.,
2001] and numerical simulation [Grabasnjak, 2003] support
heavy tailed, super-Fickian motion in multiple directions.
The present study supports heavy tailed partitioning
(section 6.1). Both processes can be combined in a field-
scale transport equation [Schumer et al., 2003] with
semianalytic solutions via the subordination integral (21).
While no analytic solution can reproduce every nuance of
an actual plume, we might expect the fractional approach to
capture the essential plume features such as multidimen-
sional skewness, variable scaling rates, the decline of
mobile mass, and power law breakthrough tails. These
features arise due to the combined effects of very rapid
transport and very long retention times.

8. Conclusions

[35] 1. Total solute transport equations have constant
mass with time, while mobile solute transport equations
with power law waiting times continually lose mass, since
progressively more mass moves out of the mobile zone into
the initially clean immobile zone.

[36] 2. Fractional-in-time equations arise when the parti-
cle waiting times follow a power law.
[37] 3. The solutions to total, mobile, and immobile

solute fractional-in-time ADEs are integral transforms of
the solution to the corresponding unretarded ADE or
fractional-in-space ADE. The transforms are easy to com-
pute and can be performed on the output from analytic or
numerical solutions to conservative transport equations that
do not model an immobile zone.
[38] 4. A fractional-in-time mobile solute ADE models

the power law mass loss in the mobile phase (converging to
tg�1

b� gð Þ for late time) and power law late time breakthrough
curves observed in field plumes. The tails of mobile solute
breakthrough curves decay as t�g�1 while the tails of total
solute breakthrough curves decay as t�g. A fractional-in-
time and space equation can also replicate super-Fickian
growth and heavy tailed leading plume edges.
[39] 5. Noninteger order fractional time derivatives and

fractional space derivatives lead to PDEs that are nonlocal
in time and space. At late time, fractional ADEs have fractal
scaling properties that allow prediction of plume evolution
without estimation of the velocity, dispersion, or capacity
coefficient.

Appendix A: The Green’s Function Solutions to
Fractional-in-Time ADEs

[40] To solve the mobile solute fractional-in-time ADE
(15) take its Fourier-Laplace transform:

~̂Cm k; sð Þ ¼ 1

sþ bsg � L̂ kð Þ

(where the overhat denotes Fourier and tilde denotes
Laplace transform), and use 1

b
¼
R1
0 e�budu to find

~̂Cm k; sð Þ ¼
Z1
0

e� sþbsgð ÞueL̂ kð Þudu: ðA1Þ

We follow the method for solving Cauchy problems of
Baeumer and Meerschaert [2001]. Start with a transport
equation where there is no immobile phase, for example, the
classical ADE

@cconserv x;tð Þ
@t ¼ L xð Þcconserv x; tð Þ. The Green’s

function solution is the probability density cconserv(x, t) with
Fourier transform F cconserv x; tð Þf g ¼ eL̂ kð Þt. Also note the
following Laplace transforms:

L t�g=� 1� gð Þf g ¼ sg�1;

L
@gC

@tg

	 

¼ L

@C

@t
*

t�g

� 1� gð Þ

	 

¼ sg ~C sð Þ � C0 xð Þsg�1;

and

L H t � uð Þgg
t � u

buð Þ1=g

 !
buð Þ�1=g

( )
¼ e� sþbsgð Þu;

where H ( ) is the Heaviside function and gg(t) is a stable
density with scaling parameter 0 < g < 1 (known as a stable
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subordinator) so that L gg tð Þ
 �

¼ e�sg [Hille and Phillips,
1957; Baeumer et al., 2001]. Then (30) becomes

~Cm x; sð Þ ¼
Z1
0

L H t � uð Þgg
t � u

buð Þ1=g

 !
buð Þ�1=g

( )
cconserv x; uð Þdu;

and inverse Laplace transform immediately leads to (21).
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