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a b s t r a c t

We extend the particle-tracking method to simulate general multi-rate mass transfer (MRMT) equations.
Previous methods for single-rate equations used two-state Markov chains and found that the time a par-
ticle spends in the mobile state between waiting time epochs is random and exponentially distributed.
Using Bochner’s subordination technique for Markov processes, we find that the random mobile times
are still exponential for the stochastic process that corresponds to the MRMT equations. The random
times in the immobile phase have a distribution that is directly related to the memory function of the
MRMT equation. This connection allows us to interpret the MRMT memory function as the rate at which
particles of a certain age, measured by residence time in the immobile zone, exit to become mobile once
again. Because the exact distributions of mobile and immobile times are known from the MRMT equa-
tions, they can be simulated very simply and efficiently using random walks.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-rate mass transfer (MRMT) equations [11] were devel-
oped as an extension of the classical mobile/immobile equations
[33] to address a lack of fit to empirical data. The classical single-
rate, mobile/immobile model exhibits exponential decay in mobile
concentration at late time: once the bulk of the mobile plume has
washed away, the remaining immobile contaminants leak out at a
rate proportional to their concentration. Since non-exponential
breakthrough at late times is often seen, a more flexible model
was needed. This was accomplished by adding multi-rates at
which tracer moves between mobile and immobile phases [3,11],
and eventually by defining a continuum of rates in a ‘‘memory
function” [4,12]. The resulting MRMT equations can be written as
a pair of coupled deterministic partial differential equations in con-
tinuous time and space, with one time derivative term replaced by
a convolution with the memory function.

Connections between some continuum models of concentration
movement and their corresponding descriptions of the dynamics of
a single particle have long been known. Einstein [8] showed how a
particle undergoing continual discrete random walks tends to
approximate a Brownian motion. The probability density of the
Brownian motion follows a diffusion-type equation, hence a large
number of independent particles will, after sufficient time, closely

approximate the concentration profile following the advection–dif-
fusion equation. In the 1940s, Bochner [2] described a stochastic
process in which a Markov process (e.g., a Brownian motion) is
paused for random periods of time. If the random periods that a
particle waits in a motionless state are fairly well behaved (i.e., sta-
tionary), then the time that a particle is actively in motion can be
calculated. This randomization of active motion time due to pauses
is called a subordination of the original active Markovian motion
process. In mathematical terms, let AðtÞ be the position of an unin-
terrupted Brownian motion at a true elapsed time t. If the time
spent actively in motion is another random variable UðtÞ that also
depends on the true or ‘‘clock” time t, then the position of the par-
ticle is given by AðUðtÞÞ. We exploit Bochner’s subordination rela-
tionship to derive the exact stochastic process that corresponds
to the continuum MRMT equations. The stochastic process natu-
rally invites several simple and efficient numerical implementa-
tions using the particle-tracking technique.

Our model is built on a two-state (mobile versus immobile)
Markov process. This method was developed in terms of particle-
tracking algorithms [32] to extend the analytic solutions for sin-
gle-rate mass transfer in homogeneous systems embodied in the
CXTFIT code [29]. The single-rate particle-tracking model was built
to simulate kinetic sorption [32], which was shown to be equiva-
lent to single-rate mass transfer [11]. The single-rate particle-
tracking model has been used to approximate microbial filtration
and release [19], and mass transfer between fractures and porous
blocks [17]. Regarding the latter work, Haggerty and Gorelick
[11] showed that diffusion into porous volumes of various shapes
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is more accurately described by a multi-rate model, but a simple
mobile/immobile particle-tracking modeling framework that al-
lows a spectrum of rates is still lacking.

The present work can be viewed as an extension of previous sin-
gle-rate mass exchange models with several new key features.
First, any allowable spectrum of rates, defined by the continuum
memory function, can be simulated. If either the memory function
or the corresponding distribution of the waiting times are known,
the stochastic process can be simulated exactly. Second, we relax
the previous assumption of a finite mean waiting time in the
immobile phase. This describes power-law breakthrough tailing
with the same number of parameters as the single-rate model.
Third, because we derive the exact probability density function
for mobile and immobile times, the effects of an immobile zone
can be added to the solution of a mobile-only transport solution,
as long as the velocity and dispersion parameters are constant in
time and the immobile zone parameters are constant in space. In
effect, we add an analytic extension of the CXTFIT methodology
to any 3-D boundary value problem with single- or multi-rate mass
partitioning.

There is no extra computational expense of our multi-rate par-
ticle-tracking model relative to the single-rate models. Other re-
cent methods developed to simulate transport with MRMT
include continuous evaluation of mobile moments, which depend
on an approximate (and computationally expensive) evaluation
of matrix powers [27]. In this method, the probability of changing
state is continually calculated, whereas we calculate the time at
which the change must occur. Ours is an inherently efficient meth-
od that will most often be faster than random walk simulation of
the classical advection–dispersion equation, because many parti-
cles will be immobile for extended periods of time, significantly
simplifying the calculations.

2. Solute transport with multi-rate mass transfer

Mass transfer formulations of transport typically refer to a sys-
tem of deterministic equations that relate (1) the concentrations in
mobile + immobile phases to the divergence of flux in the mobile
phase and (2) the transfer of solute mass between a mobile and
one or more relatively immobile phases [6,11]. Many models have
been built that define the immobile phases as either a solid sorbed
phase in contact with mobile water [32], immobile water in pore
spaces [6] or a solid sorbed phase in contact with immobile water
[29]. Haggerty and Gorelick [11] show that all of these models are
equivalent, once the concentrations and total quantity of each
phase is properly defined. For example, a sorbed phase concentra-
tion is defined by the mass of sorbent per mass of aquifer solids,
while solute concentrations is mass of solute per volume of water.
If, and only if, the sorbed and dissolved concentrations are constant
multiples of each other (linear, instantaneous, and reversible sorp-
tion), can the sorbed concentrations in any mobile or immobile
phase be represented by the corresponding dissolved concentra-
tions, and all of the aforementioned models can be related to each
other [11]. If, on the other hand, the sorbed concentrations do not
move lock-step with the surrounding water, then the sorbed and
dissolved concentrations must be accounted for separately.

For simplicity here we simply refer to the concentrations in a
mobile and a continuum of immobile zones with different fractions
of the total porosity. The mobile porosity is denoted hM and the
sum of all immobile porosities is denoted hI . Generalizations to lin-
ear and instantaneous (following [11]) or kinetic sorption are
straightforward, however in the latter case one must separately
keep track of the aquifer solid mass contributing to sorption. Let
CTðx; tÞ denote the total resident concentration in mass per volume
of aquifer material (solid and liquid) at time t at the point x in

space, normalized so that
R

CTðx; tÞdx ¼ 1. Let CMðx; tÞ and CIðx; tÞ
denote the mobile and immobile dissolved concentrations so that
CT ¼ hMCM þ hICI . Following Schumer et al. [31] we write the
MRMT equations of contaminant transport:

@CM

@t
þ b

@CM

@t
H gðtÞ ¼ AxCM � CMðx; t ¼ 0ÞbgðtÞ;

@CI

@t
þ b

@CI

@t
H gðtÞ ¼ AxCI þ CMðx; t ¼ 0ÞgðtÞ;

ð1Þ

where the capacity coefficient b ¼ hI=hM , ‘‘H” denotes convolution,
gðtÞ is a nonnegative ‘‘memory function” that models how long par-
ticles stay in the immobile zone, and Ax is a suitable advection–dis-
persion operator defined below. For classical advection and Fickian
dispersion in the mobile phase, we may take Ax ¼ �r � ðv � DrÞ.
Eqs. (1) assume that all solute begins in the mobile phase:
CIðx; 0Þ ¼ 0, although this is easily generalized [4,31]. Multiply the
immobile equation by b, add it to the mobile equation, and then
multiply the sum by hM to get the equation for total concentration
CT ¼ hMCM þ hICI

@CT

@t
þ b

@CT

@t
H gðtÞ ¼ AxCT : ð2Þ

In order to connect the MRMT model with the subordinated Markov
process model, it is useful to consider the Fourier–Laplace trans-
form of the MRMT equations. Herein, Fourier transform (FT) pairs
are denoted f ðxÞ () f ðkÞ and Laplace transform (LT) pairs are de-
noted f ðtÞ () f ðsÞ. Recalling that the Fourier transform of the deriv-
ative ðd=dxÞf ðxÞ is ðikÞf ðkÞ, the Laplace transform of the derivative
ðd=dtÞpðtÞ is spðsÞ � pðt ¼ 0Þ, the Fourier transform of the term
Axf ðxÞ is AðkÞf ðkÞ, and the transform of a convolution is a product
of the transforms, the Fourier–Laplace transform (FLT) of (2) leads
directly to

CTðk; sÞ ¼
1þ bgðsÞ

sþ sbgðsÞ � AðkÞ : ð3Þ

Here we assume that at time t ¼ 0 the total mass CTðx; t ¼ 0Þ ¼ dðxÞ
is concentrated at the origin x ¼ 0, so that CTðk; t ¼ 0Þ ¼ 1. Similar
calculations, assuming that all particles begin in the mobile phase
at time t ¼ 0, so that CMðt ¼ 0Þ ¼ dðxÞ=hM , show that
CTðk; sÞ ¼ hMCMðk; sÞ þ hICIðk; sÞ, where

hMCMðk; sÞ ¼
1

sþ sbgðsÞ � AðkÞ and

hICIðk; sÞ ¼
bgðsÞ

sþ sbgðsÞ � AðkÞ : ð4Þ

This gives a simple decomposition into mobile and immobile parts,
in terms of the FLT. Since the total mass represented by CT is con-
served, it is clear that the mobile mass is always less than or equal
to the total injected mass. The decay rate of mobile mass (assuming
all mass initially mobile) is the inverse LT of 1=ðsþ sbgðsÞÞ.

3. The stochastic mobile/immobile model

The model we envision is a particle that travels a random path
while mobile, with intervening visits to a immobile state. This state
can include sorption or diffusion into an essentially zero-velocity
region. Define each epoch in the mobile state by the random vari-
able M and the intervening waiting times in the immobile state by
W. The density function of the waiting times is denoted by wWðtÞ.

Bochner’s formula [2,9] requires that the motion process AðtÞ is
Markovian. Denote by aðx; tÞ the probability density of the where-
abouts of AðtÞ, and it is well known that aðx; tÞ follows the Fokker–
Planck (Cauchy) equation:

@

@t
aðx; tÞ ¼ Axaðx; tÞ; ð5Þ
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where Ax is an advection–dispersion operator, also called a genera-
tor. For classical advection and dispersion, take AðtÞ to be a Brown-
ian motion with drift, and then the generator is Ax ¼ �r � ðv � DrÞ.
The dispersion operator may be of fractional order for more general
Lévy processes [9,20,30]. The Fourier transform solution of (5) for a
particle starting at the origin is aðk; tÞ ¼ etAðkÞ.

3.1. The operational time process

Several methods may be used to define the time spent in the
mobile phase between immobile periods. The process UðtÞ is also
called the ‘‘operational time,” since it accounts for the random
amount of time that a particle ‘‘operates” or participates in the mo-
tion process. The density of UðtÞ is denoted by hðu; tÞ and measures
the amount of random time U associated with any deterministic
clock time t. See [21,22] for more details.

In general, much more is know about the time spent in the
immobile phase than time in the mobile phase. For example, the res-
idence time distributions for particles diffusing into differently-
sized low-permeability objects can be calculated [11]. Furthermore,
the memory function gðtÞ in (1) can be approximated based on the
thickness distribution of fine-grained sediments [37]. Therefore,
we use a duality relationship between the waiting times and the
resulting time in motion. The average duration of the mobile periods
must be defined relative to the time spent in the immobile zones,
since this ultimately defines the ‘‘capacity coefficient,” and hence
the relative mass in mobile versus immobile zones.

Define the capacity coefficient b by the ratio of expected time in
the immobile versus mobile zones. For simplicity here we assume a
finite mean waiting time—this is relaxed in the Appendix. If the ex-
pected time in each immobile period is finite and equal to
E½W� ¼ 1=k, then the expected time in the mobile phase between
each immobilization is E½M� ¼ 1=bk. Because a mobile particle fol-
lows a memoryless Markov process, the time in the mobile phase is
exponential. Now E½W�=E½M� ¼ b, and since the exponential rate
parameter is the inverse of the mean, we have PðM > tÞ ¼ e�bkt .
The process which records the state of a particle (mobile or immo-
bile) is called an alternating two-state Markov renewal process
(e.g., [5]). The general ergodic theory of such processes shows that
the steady-state mobile probability is pM , and the steady-state
immobile probability is pI , where

pM ¼
EMi

EMi þ EWi
¼ 1=bk

1=bkþ 1=k
¼ 1

1þ b
and

pI ¼
EWi

EMi þ EWi
¼ 1=k

1=bkþ 1=k
¼ b

1þ b
:

Now we must calculate the relationship between the ‘‘clock time” t
since a particle leaves the origin x ¼ 0 at t ¼ 0, and the operational
time UðtÞ that a particle spends in motion. A simple way to do this is
to first consider the random clock time TðuÞ which has passed in
terms of a deterministic operational time u. Once we understand
the model for TðuÞ, we can easily compute the statistics of its in-
verse process UðtÞ. Fig. 1 illustrates the link between U and T. Sup-
pose that a particle begins in the mobile phase. Each mobile time Mi

is followed by a time Wi in the immobile phase. Let NðuÞ count the
number of exits from the mobile phase experienced by operational
time u, i.e., the number of immobilizations. Then the total clock
time TðuÞ which corresponds to u units of time in the mobile phase
is the random sum

TðuÞ ¼ uþW1 þ � � � þWNðuÞ:

The Poisson process NðuÞ has distribution

PðNðuÞ ¼ nÞ ¼ expð�ubkÞ ukbð Þn=n!

The relationship between the clock time and mobile time simply
sums the conditional probability over any number of jumps

PðTðuÞ 6 tÞ ¼
X1
n¼0

PðTðuÞ 6 tjNðuÞ ¼ nÞPðNðuÞ ¼ nÞ:

Differentiating each term with respect to t to get the density func-
tion, then taking the Laplace transform t ! s and inserting the con-
ditioning probabilities from the Poisson process, we have the
density of TðuÞ, denoted lðs;uÞ, of the clock time for any given mo-
bile time u:

lðs;uÞ ¼ e�su
X1
n¼0

wW ðsÞ½ �n e�ubk ubkð Þn

n!
¼ e�sue�ubkeubkwW ðsÞ

¼ e�sue�ubkð1�wW ðsÞÞ: ð6Þ

Note that the formula for lðs;uÞ is simply the standard formula for
the Laplace transform of a compound Poisson random variable,
shifted by u, because the immobile time W1 þ � � � þWNðuÞ is a com-
pound Poisson random variable.

3.2. The waiting time process and differential time operators as
generators

Because TðuÞ is an infinitely divisible process whose density
lðt;uÞ has LT e�uLðsÞ, a general theory [22] shows that the process
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Fig. 1. (a,b) Unit cells representing mobile and immobile (grey) phases. Doubling
the number of immobile regions halves the expected time in the mobile phase
between sticking events. (c) Accounting for the mobile as well as the immobile
phase induces a drift (with slope 1) relating the operational (mobile) time and real
(clock) time. For every second of operational time, the clock has ticked one second
plus any random time in the immobile phase. (d) A re-ordering of the events (place
all time in motion up front and all waits at the end) shows that the clock time is
greater than the operational time by a number of random waits. For finite mean
waiting and mobile times, the average ratio of mobile to total clock time is
1=ð1þ bÞ.
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u ¼ UðtÞ, which is the smallest u > 0 such that TðuÞ > t, is exactly
the inverse to TðuÞ: TðuÞP t is identical to UðtÞ 6 u. To make an
analogy in discrete terms, the event {number of jumps by time
t P n} is the same as the event {time of the nth jump 6 t}. For
example, if at least three jumps have occurred by a time of
1 min, then the time of the third jump had to have occurred before,
or exactly at, 1 min, and vice versa (Fig. 1c). The density of the in-
verse process UðtÞ can be computed using the density of TðuÞ,
because

PðUðtÞ 6 uÞ ¼ PðTðuÞP tÞ ¼ 1�
Z t

0
lðs;uÞds;

so that the density hðu; tÞ of UðtÞ is given by

hðu; tÞ ¼ d
du

PðUðtÞ 6 uÞ ¼ � d
du

Z t

0
lðs; uÞds

with Laplace transforms

hðu; sÞ ¼ �1
s

d
du

lðs;uÞ ¼ � d
du

1
s

e�uLðsÞ ¼ 1
s

LðsÞe�uLðsÞ: ð7Þ

Clearly ðd=duÞhðu; sÞ ¼ �LðsÞhðu; sÞ with initial condition
hðu ¼ 0; sÞ ¼ LðsÞ=s. Letting Lthðu; tÞ be the inverse LT of LðsÞhðu; sÞ,
and inverting the LT, leads to the governing equation

@

@u
hðu; tÞ ¼ �Lthðu; tÞ; hðu ¼ 0; tÞ ¼ h0ðtÞ; ð8Þ

where h0ðtÞ has LT LðsÞ=s.
Now, because TðuÞ is an infinitely divisible process [9] whose

density has LT lðs;uÞ ¼ e�uLðsÞ with LðsÞ ¼ sþ bk 1� wW ðsÞð Þ, as con-
sidered in Section 3.1, the formula (7) shows that the inverse pro-
cess UðtÞ has a density hðu; tÞ with LT

hðu; sÞ ¼ 1þ bkð1� wWðsÞÞ=sð Þe�us�ubk 1�wW ðsÞð Þ:

3.3. The subordinated process

A particle that may spend time in an immobile state will travel a
path AðUðtÞÞ, since it only travels while mobile. Hence the non-
Markovian subordinated process AðUðtÞÞ describes the motion of
a tracer particle that transitions from mobile to immobile phases,
and its density qðx; tÞ solves a space–time governing equation that
we may now develop. We call AðUðtÞÞ the stochastic mobile/immo-
bile (SMIM) process. The density qðx; tÞ of AðUðtÞÞ can be found by a
simple conditioning argument

qðx; tÞ ¼
Z 1

0
aðx;uÞhðu; tÞdu: ð9Þ

The first term aðx; uÞ models particle motion in linear time and the
second term hðu; tÞ adjusts for the time a particle is actively in mo-
tion. Taking LT and FT in (9) we get

qðk; sÞ ¼
Z 1

0
euAðkÞ 1

s
LðsÞe�uLðsÞdu ¼

1
s LðsÞ

LðsÞ � AðkÞ ð10Þ

and then we can invert the LT and FT to get the governing equation

ðLt � AxÞqðx; tÞ ¼ dðxÞh0ðtÞ: ð11Þ

The FLT qðk; sÞ of the SMIM process density is given by (10), with
LðsÞ ¼ sþ bk 1� wWðsÞð Þ. It is now possible to equate the SMIM
probability density qðx; tÞ with solutions of the deterministic MRMT
equation (2) for total flow. Indeed, the FLT (3) of the deterministic
MRMT total concentration, CTðk; sÞ, is exactly the same as the FLT
(10) of the SMIM process density, qðk; sÞ, if we equate LðsÞ ¼
sþ bk 1� wWðsÞð Þ ¼ sþ sbgðsÞ. Hence the uniqueness principle for
FLT implies that CTðx; tÞ ¼ qðx; tÞ if we use the memory function
gðtÞ with Laplace transform gðsÞ ¼ k 1� wWðsÞð Þ=s. This shows that

the MRMT total concentration is the probability density of the
SMIM model if and only if

gðtÞ ¼ kPðW > tÞ: ð12Þ

This shows that the memory function gðtÞ is just the probability of
waiting in the immobile zone longer than t time units, multiplied by
the rate k at which particles exit the immobile phase. Another view
is that the memory function gðtÞ is the probability of waiting time
greater than t normalized by the mean waiting time 1=k. As noted
by Haggerty and Gorelick [11], in the special case that the waiting
times are exponential, the probability density of the time in each
immobile zone is equal to the memory function:
wWðtÞ ¼ gðtÞ ¼ ke�kt . This will not generally be true. We also note
that gðtÞ must be a probability density, sinceR1

0 PðW > tÞdt ¼ EðWÞ ¼ 1=k, and because PðW > tÞ decreases
monotonically, so must gðtÞ. This gives a concrete interpretation
of the MRMT memory function in terms of particle motion. We also
note that, using the deterministic MRMT decomposition (4) along
with the FLT equivalence, the FLT equations

qMðk; sÞ ¼
1

sþ bk 1� wWðsÞð Þ � AðkÞ ;

qIðk; sÞ ¼
1
s
� bk 1� wWðsÞð Þ
sþ bk 1� wW ðsÞð Þ � AðkÞ

ð13Þ

partition the SMIM process particle concentration into mobile and
immobile phases because qM þ qI ¼ q in (10). Hence
qMðx; tÞ ¼ hMCMðx; tÞ is the mobile concentration, and
qIðx; tÞ ¼ hICIðx; tÞ is the immobile concentration. It is important to
note that qM and qI are the portions of the total probabilities for a
particle to occur at some point, hence these are related to the con-
centration in total (solid and liquid) aquifer material and must be
adjusted by porosities to be equated to CM and CI. In the Appendix
we show how to extend (12) to a fractal memory function that cor-
responds to an infinite mean random waiting time W. Finally, if one
is only interested in the solution of the mobile equation, using the
identity 1=b ¼

R
e�ubdu, the first line of (13) becomes

qMðk; sÞ ¼
Z

e�uAðkÞe�us�ubk 1�wW ðsÞð Þdu

¼
Z

e�uAðkÞlðs; uÞdu;

qMðx; tÞ ¼
Z

aðx;uÞlðt; uÞdu:

ð14Þ

4. Remarks on simulation

Because we have identified the exact non-Markovian SMIM pro-
cess whose densities solve the MRMT equations, one can obtain
numerical solutions to the MRMT equations via particle tracking.
Particle-tracking methods are computationally superior to the
other standard numerical methods for large flow systems [14,34].
Particle tracking is also the only known method that can simulate
multiscaling anomalous dispersion [36], in which multidimen-
sional plume scaling rates are different in each coordinate. Markov-
ian random walk schemes have been developed recently [35] to
solve the space fractional advection–dispersion equations, where
the solute experiences nonlocal dispersion in space. For mobile/
immobile flow, where particles are also delayed in time, a non-
Markovian random walk is needed to simulate transport [38].
Recent research [13,26] has given detailed elucidations, objective
reviews, and extensive evaluations of random walk methods. A
walker (particle) moves in the mobile phase and waits in the
immobile phase based on given jump and waiting time densities.
This mimics the solute transport through various velocity zones
encountered in typical heterogeneous material. By appropriately
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assigning the jump size and waiting time for each particle during
each jump, the resulting particle number densities approx-
imate qðx; tÞ; qMðx; tÞ, and qIðx; tÞ, hence the transport equations (1)
and (2).

There are several particle-tracking methods that can be used to
simulate mobile/immobile transport. In general, these fall into
space- or time-domain techniques. The latter one chooses a speci-
fied distance of travel and calculates the random time required to
make the journey given some mean advection, random dispersion,
and immobilization [7,25]. This method is extremely well-suited to
generating breakthrough curves at a fixed arrival plane, but does
not provide information about the spatial distribution of concen-
tration (snapshots), or the relative masses in mobile versus immo-
bile phases. The velocity is either assumed relatively constant
between specified distances, or is represented by a random vari-
able. Painter et al. [25] give a detailed discussion of implementa-
tion and possible future extensions.

The other broad class of particle tracking uses user-defined
transport times and moves particles random distances according
to the local advection and dispersion values. This space-domain
method has been well studied in the case of transport with or
without single-rate mass transfer [14,15,23,28,32]. Two subsets
of the space-domain method are most useful for multi-rate mass
transfer: the small time-step and the time sample path methods.
The small time-step method is best when (1) the user wishes to
know the whereabouts of particles at a great number of times,
for example, to construct a breakthrough curve, or (2) when the
mobile transport parameters vary greatly along sample paths so
that the advective and dispersive random displacements are al-
ready being calculated very often [15,16]. The time sample path
method does not impose a minimum time-step and is most effi-
cient when output is desired at a few fixed clock times; however,
the immobilization properties (b and gðtÞ) must remain constant
over the path of a particle.

The small time-step method simply chooses a random mobile
time for each particle. A small, constant time-step is chosen that
is much smaller than both the mean mobile and immobile times.
Each particle is moved until its mobile time is exceeded by the
elapsed time, at which point the particle is assigned (added to
the elapsed time) a random immobile time according to the
desired distribution. Specifically, the mobile times are exponen-
tial with mean 1=bk, where 1=k is the mean waiting time
(or scale factor for infinite mean, see the Appendix), and the
distribution of waiting times follows either (12) or (A.3). When
the elapsed time exceeds the immobile time for a particle, it is
assigned a new exponential mobile time and begin moving.
The whereabouts and phase of all particles can be output at
any time-step.

Depending on the value of 1=bk, the time-steps may be very
small. Hence we also suggest an indirect approach that decouples
the time and motion processes, using the fact that the non-Mar-
kovian operational time process UðtÞ is the inverse of a Markov
process TðuÞ. Essentially one first simulates, for each particle, the
total amount of operational time U that will occur for a real time
t, then moves each particle according to the mobile-only equation
as if U was the real time for that particle. To obtain each particle’s
value of mobile time U, simulate the waiting time process
TðuÞ ¼ M1 þW1 þM2 þW2 þ � � � þMn þWn until the desired clock
time t is reached noting whether the final term is Mn or Wn. The
amount of mobile time is U ¼

P
Mn, and the final phase of the par-

ticle is mobile if the final term is Mn and immobile if the final term
is Wn (Fig. 1c). Then simulate each particle’s advection–dispersion
process AðUÞ. This method assumes that the retention properties
that determine each M and W are homogeneous. A similar method
for particle tracking, based on operational time, was recently
implemented [18].

5. Examples

Next we discuss some specific examples, to illustrate how the
general SMIM model relates to many previous conceptualizations
of solute transport with partitioning to an immobile phase. In each
case, the small time-step method outlined above was used to
determine the phase of each particle. To emphasize the effects of
mass transfer, we choose a 1-d domain with constant velocity
and hydrodynamic dispersion. The advective and dispersive mo-
tion of the particles was simulated using standard methods (e.g.,
[15]).

5.1. Linear retardation

For the simplest case, suppose that each mobile time Mi is
accompanied by a constant multiple b of this time in the immobile
state, and also suppose that the particle motion process AðtÞ is a
Brownian motion with drift, so that AðtÞ is normal with mean vt
and variance 2Dt. The particle motion generator in 1-d is then
Ax ¼ �v@=@xþ D@2=@x2. The density of TðuÞ is calculated by count-
ing the time in each phase: each motion plus wait accumulates
clock time of uþ bu for every mobile time u. Therefore,
TðuÞ ¼ uþ bu, and the clock time continuously evolves with the
operational time. The density of TðuÞ is lðt;uÞ ¼ dðt � ð1þ bÞuÞ.
The inverse or operational time process is UðtÞ ¼ t=ð1þ bÞ with
density hðu; tÞ ¼ d u� t

1þb

� �
with LT hðu; sÞ ¼ ð1þ bÞe�su�sbu. By (7),

the evolution operator of the surrogate time is
Lt ¼ ð1þ bÞ@=@t; h0ðtÞ ¼ ð1þ bÞdðtÞ. The quantity 1þ b is com-
monly called the retardation R, and the transport equation for
the total concentration (11) is given in more easily identified units:
R@=@t þ v@=@x� D@2=@x2
� �

qðx; tÞ ¼ RdðxÞdðtÞ. Thus the retardation
factor can be defined in terms of time fraction spent in mobile
phase in exactly the same way that it is traditionally defined as
the mass fraction in the mobile phase [1]:
R ¼ uþub

u ¼
hþqKd

h ¼ 1þ qKd=h. The solution of the transport equation
for mobile solute (14) is

hMCMðx; tÞ ¼ qMðx; tÞ ¼
Z 1

0
aðx;uÞlðt;uÞdu

¼
Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDu
p e

� x�vuð Þ2
4Du dðt � RuÞdu ¼ 1=Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDt=R
p e

� x�vt=Rð Þ2
4Dt=R ;

in agreement with standard methods [1]. While a particle-tracking
technique with mobile periods separated by immobile periods is
clearly not the most efficient way to solve this equation, we show
the match of the particle tracking to analytic solutions in Fig. 2a.
Linear retardation adds one parameter to the classical ADE.

5.2. Exponential immobile times and single-rate mass transfer

Assume immobile waiting times are exponentially distributed
wWðtÞ ¼ ke�kt and that transport in the mobile phase is classical
advection/dispersion with generator Ax. The LT of the waiting times
is wWðsÞ ¼ k=ðkþ sÞ, so the waiting time process TðuÞ has a density
with Laplace transform lðs;uÞ ¼ e�uLðsÞ with LðsÞ ¼ sþ bks=ðsþ kÞ
and temporal generator @=@t þ b@=@t H ke�kt . Therefore, the differ-
ential equation for the density of the mobile SMIM process is

@=@t þ b@=@t H ke�kt � Ax
� �

qM ¼ dðxÞke�kt:

Because hMCM ¼ qM , the mobile phase equation for the MRMT when
CT ¼ dðxÞ is, in agreement with standard methods [11]

@CM

@t
þ b

@CM

@t
H ke�kt ¼ AxðCMÞ þ

dðxÞ
h

ke�kt :

The memory function is gðtÞ ¼ ke�kt , and the jump intensity (Appen-
dix) is /ðtÞ ¼ k � ke�kt . Now

536 D.A. Benson, M.M. Meerschaert / Advances in Water Resources 32 (2009) 532–539



Author's personal copy

lðs;uÞ ¼ e�sue�ubk 1� k
kþsð Þ ¼ e�sue�ubk s

kþsð Þ: ð15Þ

We note that the inverse of f̂ ðsÞ ¼ e1=s is given by
f ðtÞ ¼ dðtÞ þ I1 2

ffiffi
t
p� �

=
ffiffi
t
p

, where I1 is the first-order modified Bessel
function of the first kind. It follows that the real-space representa-
tion of (15) is, for 0 < u < t,

lðu; tÞ ¼ e�bku�kðt�uÞ dðt � uÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
ubk2

t � u

s
I1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ubk2ðt � uÞ

q� �0
@

1
A; ð16Þ

which can be used in (14) to calculate the effects of single-rate mass
transfer (exponential waiting times) on any appropriate time-
homogeneous solution to a mobile-only aðx; tÞ. This equation was
used as an analytic solution to compare our particle-tracking model
(Fig. 2b). The immobile concentration is given by a convolution of
the mobile solution (4). See also [29]. The multidimensional aðx; tÞ
in (14) could come from any source, including analytic solutions
or numerical models like MODPATH, MT3D, or RWHet, as long as
the transport parameters do not change in time. In this sense, the
analytic solutions (9) and (14) extend the methods of the popular
code CXTFIT [29] to any time-homogeneous boundary value prob-
lem solved analytically or numerically. On the other hand, the exact
stochastic process is given by exponential mobile and immobile
times, with rates bk and k, respectively, so that a simple, efficient,
and accurate particle-tracking method can be used to simulate
the mobile/immobile transport (Fig. 2b). Furthermore, it is a simple
matter to extend these results to arbitrary waiting time densities as
shown in the next example. Single-rate mass transfer adds two
parameters to the classical ADE.

Linear retardation and single-rate mass transfer are now seen as
very similar: both have exponential mobile times and exponential
waiting times. In single-rate mass transfer, the mobile and inter-
vening waits are uncorrelated, while they are perfectly correlated
in linear retardation.

5.3. Power-law, infinite-mean waiting times

In the case of power-law waiting times in the immobile zone,
where the jump intensity /ðtÞ ¼ ct�c�1=Cð1� cÞ for some
0 < c < 1 (Appendix), the memory function gðtÞ ¼ t�c=Cð1� cÞ is
the inverse Laplace transform of gðsÞ ¼ sc�1. The convolutions in
(1) and (2) are fractional derivatives in time of order c, recovering
the fractal mobile/immobile model [31]. The memory function
gives the exact rate at which immobile particles, which have rested
for at least t time units, are re-entering the mobile phase. In the
case of a classical space generator Ax ¼ �v@=@xþ D@2=@x2, analyt-
ical solutions of the fractal mobile/immobile equation for total flow
can be obtained from (9) with aðx;uÞ ¼ 4pDuð Þ�1=2 exp
�ðx� vuÞ2=ð4DuÞ
� �

the classical ADE solution, as in Section 5.1,
and hðu; tÞ ¼

R t
0 t � yð Þ�clðy;uÞdy where lðt;uÞ ¼ u�1=cS u�1=ct

� �
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Fig. 2. Solutions for 1-d classical advection and dispersion with various forms of
mass transfer: (a) linear retardation, (b) single-rate mass transfer, and (c) power-
law mass transfer rates. In all cases, the transport parameters are
v ¼ 1;D ¼ 0:5; t ¼ 40 and CMðt ¼ 0Þ ¼ dðx� 10Þ. Symbols are histograms of mobile,
immobile, and total particles after tracking 20,000 initially mobile particles; curves
are corresponding analytic solutions. In (a), k ¼ 10, b ¼ 0:5, so R ¼ 1þ b ¼ 1:5. In
(b), the single-rate mass transfer parameters are b ¼ 0:5 and k ¼ 0:1. In (c), mass
transfer parameters are b ¼ 0:03 and c ¼ 0:5.
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Fig. 3. Fit of the fractal MIM model to measured breakthrough [10] of Rhodamine
WT after a transport distance of 306.4 m in a 2nd-order mountain stream. Figure
from [31].
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the probability density of a c-stable subordinator, the inverse La-
place transform of lðs;uÞ ¼ e�usc . The function SðtÞ ¼ lðt;1Þ can be
efficiently calculated using widely available numerical codes [24].
As well, the particle-tracking method uses exponential mobile
times and power-law immobile times, matching the analytic meth-
ods [31] in all phases. The fractal MRMT adds two parameters to
the classical ADE.

This model (Fig. 3) was used [31] to fit the heavy-tailed Rhoda-
mine WT transport in a 2nd-order stream described by [10]. In this
case, motion in the stream itself is described by the classical ADE
with v ¼ 0:12 m= s and D ¼ 0:2 m2=s, while dye particles that
move into the hyporheic zone are held relatively motionless for
power-law random times with c ¼ 0:3 and b ¼ 0:0023 s�0:7.

6. Conclusions

The deterministic multi-rate mass transfer (MRMT) equations
for modeling contaminant transport govern a subordinated
Markov process with a mobile and an immobile state. We con-
structed a continuously evolving stochastic mobile/immobile
(SMIM) process whose probability densities solve the mobile,
immobile, and total concentration in the MRMT model. The link
between the deterministic MRMT and SMIM models is made by
requiring a particle to experience random times in the mobile state
between immobile epochs. The mobile times are exponentially dis-
tributed. The memory function gðtÞ in the MRMT is identified as
proportional to the probability that a particle remains in the
immobile state for a period greater than time t. It is also the rate
at which particles, trapped in the immobile zone for a time greater
than t, become mobile. Two simple algorithms are developed for
coding the SMIM process into particle tracking codes. Several
applications of the stochastic model illustrate the utility of the
method and the link to previous continuum models of solute
transport.

Appendix A. Extended MIM model

For some applications, the SMIM model of Section 3.1 is not suf-
ficiently general. A more general model may be obtained by relax-
ing our assumptions on the waiting time variables and their scaling
limit. Expand the Laplace symbol of the waiting time process TðuÞ
in the form

LðsÞ ¼ sþ bk 1� wW ðsÞð Þ ¼ sþ b
Z 1

0
ð1� e�stÞ/ðtÞdt;

where /ðtÞ ¼ kwWðtÞ is called the jump intensity of the compound
Poisson process PðuÞ ¼W1 þ � � � þWNðuÞ. Specifically, the number
of jumps of size a 6 t 6 b by operational time u > 0 is a Poisson ran-
dom variable with mean u

R b
a /ðtÞdt. Note that the total number of

jumps of any size (take a ¼ 0 and b ¼ 1) by operational time u is
simply NðuÞ, a Poisson random variable with mean ku. In the general
case, the jump intensity can increase to infinity as t ! 0, so long as
the technical condition

R 1
0 t/ðtÞdt <1 is met. For example, heavy

tailed waiting times with PðWi > tÞ � t�c in the immobile zone lead
to a jump intensity /ðtÞ ¼ ct�c�1 for 0 < c < 1. Then the Laplace
symbol LðsÞ ¼ sþ bLWðsÞ where

LW ðsÞ ¼
Z 1

0
1� e�st
� �

/ðtÞdt ðA:1Þ

for some jump intensity /ðtÞ. Then TðuÞ ¼ uþWðuÞ where the den-
sity lWðt; uÞ of the immobile waiting time process WðuÞ has Laplace
transform lWðs;uÞ ¼ e�ubLW ðsÞ. In the extended SMIM model, the FLT
qðk; sÞ of the SMIM process density is again given by (10), with
LðsÞ ¼ sþ bLWðsÞ. Then we arrive at the same equivalence between
the SMIM and MRMT models, with CTðx; tÞ ¼ qðx; tÞ, if we equate

LðsÞ ¼ sþ bLWðsÞ ¼ sþ sbgðsÞ. Now the memory function has a more
general interpretation

gðsÞ ¼ 1
s

Z 1

0
1� e�ssð Þ/ðsÞds ¼

Z 1

0

Z s

0
e�st dt/ðsÞds

¼
Z 1

0
e�st

Z 1

t
/ðsÞdsdt: ðA:2Þ

Inverting the LT shows that

gðtÞ ¼ UðtÞ ¼
Z 1

t
/ðsÞds ðA:3Þ

the tail integral of the jump intensity. Note that UðtÞ is the rate of
particle jumps out of the immobile zone, for particles that have re-
mained immobile for at least t times units, and that (A.3) reduces to
(12) if /ðtÞ ¼ kwWðtÞ. Generally speaking, since MRMT equations
convolve the time derivative of concentration with the time integral
of the jump intensity, a simple integration by parts converts those
terms to a more physically meaningful convolution of concentration
with jump intensity, which conveys that particles wait for a time s
in the immobile zone, and then release.
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