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Abstract 

Benson (1998) introduced a Fractional Advection Dispersion Equation (FADE) to 

model contaminant transport in porous media.  This equation characterizes contaminant 

plume dispersion with a fractional derivative of order 21 ≤≤ α  and has solutions that are 

heavy-tailed Levy α-stable densities.  The FADE assumes that α-stable hydraulic 

conductivity distributions, characterized by tail parameter αK, give rise to α-stable 

velocity distributions, characterized by tail parameter αv.  This work investigates whether 

this is a valid assumption. 

A computer algorithm was written to generate K fields.  The algorithm uses a 

modification of the spectral synthesis method for generating fractional Brownian motion 

(fBm).  The USGS finite difference groundwater code MODFLOW was used to calculate 

the velocity fields, and the K and v fields were analyzed to determine whether they were 

consistent with a stable PDF.  After determining that the K and v fields were consistent 

with a stable PDF, the tail parameters describing each pair of K and v fields, αlog K and 

αlog v, were measured with the Nolan (1997) Maximum Likelihood Estimator (MLE).  

The relationship between αlog K and αlog v was then determined. 

There are three conclusions of this research.  First, Mandelbrot and PP plots 

confirm that stable distributions of log K give rise to stable distributions of log v.  

Second, αlog K > αlog v.  Finally, there is a positive statistical relation between αlog K and 

αlog v. 



 

1.0  Introduction 

1.1  Hydraulic Conductivity, Velocity, and Particle Jumps 

 Equations of contaminant transport in porous media are based on assumptions 

about hydraulic conductivity.  These assumptions concern the probability density 

function (PDF) of K (Mercado, 1967; Schwartz, 1977; Smith and Schwartz, 1980, 1981a, 

1981b), stationarity of K (Gelhar et al., 1979; Gelhar and Axness, 1983), nonstationarity 

of K (Dagan, 1984), or fractal nature of K (Wheatcraft and Tyler, 1988; Neuman, 1990; 

Benson, 1998).  The reason for this emphasis on K is found in Darcy’s Law, the equation 

governing groundwater flow (e.g., Freeze and Cherry, 1979): 

hKv ∇−=
η

       (1) 

where v is average velocity of a ‘parcel’ of water, h∇  is the hydraulic gradient, η is 

porosity, and K is hydraulic conductivity.  Since field-measured values of K vary over 13 

orders of magnitude and η varies over only 1 order of magnitude (Freeze and Cherry, 

1979), differences in the velocity field are dominated by differences in the hydraulic 

conductivity field as per equation (1) (assuming the contribution of h∇  is also 

negligible1).  Note that (1) also implies a linear relation between vlog and Klog .  The 

differences in the velocity field result in plume spreading at rates faster or slower than the 

advective groundwater velocity, a macroscopic dispersion often called differential 

advection. 

                                                 
1 h∇  is inversely correlated with K and, like η, varies over a relatively small range of magnitudes in a 
typical field setting.  Determining the significance of h∇  in (1) is part of this work. 



Equation (1) is directly relevant to an equation of contaminant transport that 

assumes a heavy-tailed distribution of K: the Fractional Advection Dispersion Equation 

(FADE) (Benson, 1998, Benson et al., 2000). This paper discusses the effect of a Levy α-

stable distribution of K on the resulting velocity field with a focus on the implications for 

the FADE. 

 

1.2  Other Approaches to Contaminant Transport 

 Solute particle velocity can be thought of as a jump; a displacement of random 

magnitude that a particle undergoes in a discrete amount of time.  The Central Limit 

Theorem (CLT) of probability and statistics is used to understand the spatial distribution 

of these particles after a large number of jumps have been completed (e.g., Bear, 1972): 
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where x1, x2, x3, . . . xn are independent identically distributed (IID) random variables 

from a finite variance distribution representing particle jumps, µ is the mean jump size, σ 

is the standard deviation of the jump size, n is the number of jumps, and Z is a Gaussian 

random variable to which the sums converge.  According to equation (2), the sums of IID 

random variables from a finite variance probability distribution converge to a Gaussian 

distribution as ∞→n  (e.g., Bear, 1972).  If, then, we have several solute particles with 

jump magnitudes governed by a finite variance PDF, the accumulated particle jumps will 

converge to a Gaussian distribution by the CLT. 

 This approach to contaminant transport—assume particle jumps/velocities are 

governed by the CLT and related to K by Darcy’s Law—has been taken, either implicitly 



or explicitly, in equations of contaminant transport such as the Advection Dispersion 

Equation (ADE) (e.g., Bear, 1972):   

C C Cv D
t x x x
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     (3) 

where C is concentration, t is time, x is distance, v is velocity, and D is the dispersion 

coefficient. 

In order for equation (3) to accurately describe solute transport, equation (2) must 

describe particle movement, so the PDF of the x1, x2, x3, . . . xn in equation (2) must be a 

finite variance distribution.  Therefore, by equation (1), K should follow a finite variance 

distribution.  Freeze (1975) provided evidence that supported approximating K with a 

finite variance PDF—log normal.  Therefore, the finite variance requirement in (2) was 

satisfied, and equation (3) was thought to be a valid equation for contaminant transport.   

The result of the finite variance assumption is that the concentration profile of a 

solute plume is Gaussian (Bear, 1961) and plume variance will grow like t 1 / 2
 (Bear, 

1979).  Several field studies of macroscopic solute dispersion have indicated, however, 

that plumes are highly non-Gaussian (Freyberg (1986) and Adams and Gelhar (1992)), 

and plume variance grows faster than t 1/2 (Mercado (1967), Pickens and Grisak (1981), 

Benson et al. (2001)), called super-Fickian dispersion.   

Painter (1996a, 1996b), Benson et al. (2001), and Liu and Molz (1997) have 

presented evidence for approximation of K with an infinite variance PDF, which suggests 

that a theorem other than equation (2) is appropriate for describing solute migration. 

 

1.3 The Fractional Advection Dispersion Equation 

1.3.1  Levy’s α-stable densities 



An understanding of the FADE requires an understanding of Levy’s α-stable 

densities.  These densities belong to a class of probability distributions distinguished 

from one another by a tail parameter, α, where 2α0 ≤< .  They have the characteristic of 

‘heavy tails,’ where the tail parameter α describes the ‘heaviness’ of the tails.  Heavy-

tailed distributions exhibit power law decay in the tails of the distribution (as compared 

to, for example, exponential decay in the tails of a Gaussian distribution).  Letting f (x) 

indicate the PDF of a Levy distribution, power law decay can be expressed as: 

( ) α−−

∞→
= 1lim Cxxf

x
     (4) 

where C is a constant and x is a random variable.   

Figure 1 shows Levy’s α-stable densities on both arithmetic and log-log axes for 

several values of α.  The special case of the Gaussian, α = 2, is also shown.  Note that as 

α approaches 1, the mass in the PDF shifts from the body of the distribution to the tails, 

signifying a higher probability of extreme events.  As α approaches 2, the mass of the 

PDF shifts from the tails of the distribution to the body, signifying a lower probability of 

extreme events.   

 When α < 2, Levy α-stable distributions have infinite variance; when α < 1, the 

distributions do not have a defined mean.  Infinite variance means that the variance of a 

sample does not converge as the sample size approaches infinity  (e.g., Schumer et al., 

2001).   

Closed-form expressions for Levy’s α-stable densities do not exist except in three 

special cases: α = 2 (Gaussian), α = 1 (Cauchy), and α = ½ (Levy).  Stable distributions 

are therefore described by their characteristic function, φ(k), which is the Fourier 



transform of the PDF.  The characteristic function is (using the S(α, β, γ, δ; 0) 

parameterization of Nolan, 2002): 
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where X is a random variable with density f(x), 1−=i , and the sign function is: 
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Note that the change of the variable x to k indicates transformation to Fourier 

space.  The characteristic function for the case α = 1 is slightly different and is omitted 

here. 

 

1.3.2  The FADE 

 The FADE uses Levy’s α-stable densities to overcome limitations of the ADE by 

allowing (1) growth in plume variance faster than t ½ and (2) plumes with non-Gaussian 

concentration profiles.  In 1D, the FADE is (e.g., Benson, 1998): 
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where C is concentration, t is time, v is advective velocity, x is distance, D is a constant 

diffusion coefficient, and p and q are related to the skew of the Levy density.  Note that 

(7) collapses into the traditional ADE when α = 2 since p + q = 1 and ( )2
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The FADE assumes that particle jumps are governed by a PDF with infinite 

variance.  These densities are governed by a generalization of the CLT called the 



Generalized Central Limit Theorem (GCLT).  We illustrate the GCLT by considering IID 

random variables, x1, x2, x3, . . . xn, from a Levy α-stable distribution (e.g., Samorodnitsky 

and Taqqu, 1994): 
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where µ is the population mean, σ is the population standard deviation, n is the number 

of samples in the population, and Z is a Levy α-stable random variable to which the sums 

converge.   

In terms of solute migration, if particle jumps are governed by an infinite variance 

PDF, the distribution of particles in space after a large number of jumps follows an 

infinite variance distribution and plumes grow like t 1/α (i.e., much faster than ADE 

growth) (Schumer et al., 2001). The FADE has successfully modeled non Gaussian 

plumes at the Cape Cod site using α = 1.8 (Benson et al., 2000) and the MADE site in 

Columbus, MS, using α = 1.1 (Benson et al., 2001).   

 

1.4  K and the FADE 

The FADE, then, (1) allows for super-Fickian dispersion and (2) by 

approximating contaminant plumes with a Levy α-stable distribution, can approximate 

plumes observed in the field that are non Gaussian (Benson et al., 2001).  The obvious 

question, however, is what is the mechanism that gives rise to particle jumps that follow a 

Levy α-stable distribution?  Recalling that particle jumps are related to velocity, equation 

(1) suggests spatial variabililty of hydraulic conductivity as a mechanism assuming 

that h∇  does not change the PDF of K.  This work investigates whether or not spatial 



variabililty of K could be a mechanism for heavy-tailed particle jumps by generating K 

fields with a Levy α-stable distribution of log K and comparing them to the PDF of the 

resultant velocity fields. 

This work sets out to answer two questions:  

(1) Does a Levy α-stable probability distribution of log K give rise to a Levy α-

stable probability distribution of log velocity as suggested by equation (1)?  

To answer this question, we examine whether the log K and resulting log v 

distributions (a) exhibit power law tails and (b) can be fit to a stable 

distribution. 

(2) What is the relationship between the tail parameter describing the velocity 

distribution, αlog v, and that describing the conductivity distribution, αlog K?  If 

a given αlog K results in a certain αlog v, we could measure αlog K in the field 

and, pending work on the relationship between αlog v and α, the order of the 

fractional dispersion derivative in the FADE, use it as an estimate of α.  To 

answer this question, we use box plots and scatter plots to compare αlog K and 

αlog v. 

 

2.0  Previous Work 

 The application of Levy α-stable densities to hydraulic conductivity distributions 

has seen some use in the past.  Painter (1996a; 1996b) and Liu and Molz (1997) have 

presented evidence that increments in log K are consistent with a stable distribution.  

Benson et al. (2001) has shown that increments in raw K are consistent with a shifted 

Pareto distribution (see equation 9) at the Macrodispersion Analysis site (MADE) in 



Columbus, MS.  Painter (2001) reexamines some of his earlier data sets and concludes 

that stable distribution in log K overestimates extreme values of K.  Meerschaert et al. 

(2004) suggests an alternative Laplace or double exponential model for log K.  

Determination of the PDF of K remains an area of active research. 

 Herrick et al. (2003) investigated the same questions posed in this research using 

a shifted Pareto distribution as the PDF of K in conductivity fields.  The shifted Pareto is 

a heavy-tailed distribution where:  

( ) ( ) α−+=> sxxXP      (9) 

Their study examined K and v statistics over the ensemble of n = 100 K fields for two 

values of αK: αK = 1.1 and αK = 1.8.  They found that (1) Pareto distributions of K give 

rise to Pareto distributions of velocity (i.e., K is a mechanism for heavy-tailed velocity 

distributions) and (2) that heavy-tailed K fields give rise to lighter-tailed velocity fields, 

which they attribute to the inverse correlation between K and h∇ .  The latter result is 

important because it would suggest that h∇  affects the PDF of v in equation (1). 

This study seeks to expand on the work of Herrick et al. (2003) by examining the 

correlation between αlog K and αlog v on an individual, field-by-field basis in light of the 

complexity found by Herrick et al. (2003).  In addition, this study uses a different PDF 

for K (i.e., log-stable instead of shifted Pareto) and a different algorithm to generate K 

fields.  These differences allow us to evaluate whether the method of K field simulation 

affects the results.  

 

3.0  Methods of Research 

3.1  Introduction 



It is not practical to study the relationship between αlog K and αlog v in a field-

setting due to the large number of K and velocity fields that must be tested to achieve a 

statistically significant result.  Therefore, we used a Monte Carlo method in which a 

computer algorithm generates many K field realizations; the corresponding velocity fields 

are then computed using the USGS finite difference computer code MODFLOW 

(McDonald and Harbaugh, 1988, 1996, 2000).  Statistical analysis was done on the input 

and output from each Monte Carlo trial (i.e., estimation of αlog K and αlog v) and 

comparisons between input statistics and output statistics were made.  These steps are 

outlined in depth below. 

 

3.2  Algorithm for K field generation 

 K fields were generated with an algorithm that is a modification of the method for 

spectral synthesis of fractional Brownian motion fields (fBm) (Saupe, 1988; Brewer and 

Wheatcraft, 1994).  Spectral synthesis is based on the Fourier series, the discrete form of 

which is (e.g., Weaver, 1983): 
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where Ak and Bk are the pure cosine (real) and sine (imaginary) contents, respectively, ωk 

is frequency, and k is the wave number (k = 0, 1, . . . N-1).  The spectral synthesis method 

chooses the real and imaginary parts of the Fourier series, Ak and Bk, in Fourier space 

from a Gaussian probability distribution.  The phase term in (10), xkπω2 , is chosen from 

a uniform distribution on [0, 2π].  Equation (10) is then multiplied by a filtering function:  
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where H is the Hurst parameter.  The Hurst parameter determines correlation 

characteristics of the fBm.  If H = 0.5, increments in the fBm are independent.  If 

5.00 <≤ H , increments are negatively correlated (antipersistence), if 0.15.0 ≤< H , 

increments are positively correlated (persistence) (Samorodnitsky and Taqqu, 1994).  The 

discrete inverse Fourier transform is then taken of the product of (10) and (11) to create a 

spatially-varying fBm with values that follow a Gaussian distribution.  The fBm field is 

then log-transformed to avoid negative values of K. 

 The Saupe (1988) fBm algorithm applies a Gaussian pdf in Fourier space to 

generate the Fourier coefficients.  The fBm is obtained by taking the inverse Fourier 

transform. Our plan was to modify this algorithm to produce fractional Levy motion 

(fLm) by replacing the Gaussian pdf with a Levy-stable pdf. However it’s not that simple.  

It turns out that the Saupe algorithm only works with a Gaussian because the Gaussian is 

applied in Fourier space.  When the inverse Fourier transform is applied, the real space 

fBm is correct because the Fourier transform of a Gaussian noise is another Gaussian 

noise. 

As a result, our fLm algorithm is considerably different that the original Saupe 

(1988) and Brewer and Wheatcraft (1994) fBm algorithm.  Our modification of the 

spectral synthesis method generates random numbers from a Levy α-stable distribution in 

the spatial domain, takes the Fourier transform to find the corresponding Ak and Bk in the 

Fourier domain, performs the filtering process using the same power law filter, and takes 

the inverse Fourier transform to convert back to the spatial domain.  The resultant field is 

log-transformed to avoid negative values of K. 



The modified algorithm’s K fields were verified in two ways: first, a Rescaled 

Range (R/S) analysis (Mandelbrot and Wallis, 1969; Turcotte, 1997) of the resultant 

fields confirmed that they were Long Range Dependent (LRD) with respect to the Hurst 

parameter, and second, Mandelbrot plots (Mandelbrot, 1963) confirmed that increments 

in log K exhibit power law decay in the tails.  The K fields simulated in this study are 

therefore LRD and exhibit a stable distribution of log K characterized by tail parameter 

αlog K.   

 

3.3  K field properties 

 The K fields in this study are 3-dimensional and consisted of 665,640 nodes: 129 

nodes in the x and y directions and 40 nodes in the z direction.  The K fields are 

anisotropic, with correlation lengths in the x direction being 10 times greater than those in 

the y and z directions.  A value of H = 0.2, in the domain of antipersistence, was applied 

in the x, y, and z directions.  This Hurst parameter is consistent with values reported in the 

literature (e.g., Painter 1996a; 1996b).  We generated 100 K fields for four values of αlog K  

(αlog K = 0.8, 1.1, 1.4, and 1.7).   

 

3.4  v field properties 

A head gradient of 003.0=∇h , consistent with the gradient at the MADE site 

(Boggs et al., 1992) was applied to the flow model.  The upgradient and downgradient 

edges of the flow model were set as constant head boundaries while the lateral faces were 

set as no flow boundaries (Figure 2).   



The finite difference groundwater code MODFLOW (McDonald and Harbaugh, 

1988; 1996; 2000) solved the steady state groundwater flow equation for the head field 

(e.g., Bear, 1972): 
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Since the flow conditions are at steady state, and mass into a grid cell should equal the 

mass out of a cell, the solver minimizes the mass balance error in and out of the cells.  

The cell by cell flow terms are then extracted from the MODFLOW solution and 

converted from mass flux to velocity.  Flow in the longitudinal direction (i.e., the 

component of flow exiting the Front Right Face of the MODFLOW solution) was 

analyzed in this study. 

 The global mass balance (i.e., mass error over the entire flow domain) for each 

Monte Carlo trial was calculated by MODFLOW, and a program was written to calculate 

the local mass balance (i.e., mass error in flow between cells).  The Pre Conditioned 

Gradient solver (PCG2) gave fast, accurate solutions (defined as a global mass balance of 

0 % and local mass balances that did not exceed 0.5%). 

 

3.5  Tail Parameter Estimation and Statistical comparison 

Mandelbrot plots and PP plots were used to establish that the log K and log v 

distributions were consistent with Levy α-stable distributions.  The Nolan (1997) 

Maximum Likelihood Estimator was then used to obtain αlog K and αlog v, the tail 

parameters describing the hydraulic conductivity and velocity distributions.  Velocities 

from nodes within 15 nodes of the upgradient and downgradient constant head 



boundaries were excluded from tail parameter estimation in order to avoid interference 

from constant head boundaries. 

Finally, the results were plotted in scatter plots and box plots, and regression 

analysis was performed to discern a relationship between αlog K and αlog v. 

 

4.0  Results 

4.1  Relationship between the K PDF and the v PDF 

 Results of this research are presented as follows:  First we outline the results of 

Mandelbrot plots of log K and log v to determine if they exhibit power law decay in their 

tails, a characteristic of stable distributions (Samorodnitsky and Taqqu, 1994).  Second, 

we outline the results of PP plots of log K and log v to determine the goodness of fit to a 

stable distribution.  We then present the results of the Nolan (1997) MLE estimator, used 

to estimate αlog K and αlog v.  Finally, the tail parameters describing the log K and log v 

distributions are then compared on box plots and scatter plots in order to determine the 

relationship between the two. 

 

4.1.1  Mandelbrot Plots 

 Mandelbrot plots establish whether or not the tails of a data set have tails that 

decay like a power law.  Take, for example, a power law distribution: 

 ( ) α−

∞→
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x
lim        (13) 

Mandelbrot (1963) points out that by taking logs of both sides of (13) we have: 

( ) ( ) ( )xCxXP logloglog α−=>        (14) 



Therefore, a plot of P(X>x) vs. x on log-log axes is a straight line of slope -α if there is 

some value in the ordered data set, D, above which distribution behaves like a power law. 

 Mandelbrot plots were made for all 400 K fields.  Figure 3 shows Mandelbrot 

plots of a typical K field from the αlog K = 1.1 batch of Monte Carlo trials.  Figure 3(a) is a 

Mandelbrot plot of increments in raw K.  Raw K curves concave upward for extreme 

increments in K.  This behavior is consistent with a log-stable distribution of raw K and is 

to be expected for a stable distribution of log K (Samorodonitsky and Taqqu, 1994).  This 

behavior was evident in all Mandelbrot plots of K fields examined.  In Figure 3(b), 

increments in log K plot in a straight line corresponding to αlog K = 1.539, thereby 

indicating power law behavior in log K.  The K fields generated in this study; therefore, 

exhibit power law decay of log K in their tails. 

 Mandelbrot plots were also made for all 400 velocity fields.  Figure 4 shows 

Mandelbrot plots of the velocity fields from the same batch of αlog K = 1.1 Monte Carlo 

trials.  Figure 4(a) is a Mandelbrot plot of raw v.  The extreme values of v curve concave 

upward from the straight line fit and the distribution is consistent with a log-stable 

distribution.  Figure 4(b) is a Mandelbrot plot of log v and exhibits straight-line power 

law decay, indicating that log v is characterized by power law decay in the tails.  This 

behavior was evident in all Mandelbrot plots of v fields examined.  The v fields generated 

in this study, therefore, exhibit power law decay of log v in their tails.  We remark that 

the straight line fits in Figures 3(a) and 4(a) for raw K and v might also appear adequate 

to some scientists.  This illustrates the difficulty of tail estimation in general, and perhaps 

it explains why some investigators believe the raw field data has power law tails, while 

others believe that the log transformed data has a power law tail. 



    

4.1.2  PP Plots 

 A PP plot graphically measures the goodness of fit of real data to a probability 

distribution.  It consists of two data series: the cumulative probability vs. the expected 

cumulative probability for the observed data (circles in Figure 5) and the cumulative 

probability vs. the expected cumulative probability for the best fit probability distribution 

(solid line in Figure 5).  Note that for the best fit probability distribution, cumulative 

probability equals expected cumulative probability, and the result is a straight line of 

slope = 1.  PP plots were constructed using a program written by Nolan (1997) that (1) 

calculates the best fit stable parameters for the observed data set (i.e., log K or log v) and 

(2) constructs a plot of the data showing the fit between the distribution of the observed 

data and the best fit distribution suggested by the MLE. 

 Figure 5(a) is a PP plot of log K from a typical K field from the αK = 0.8 batch of 

Monte Carlo simulations. This plot indicates log K closely follows a stable distribution 

with α = 1.1 and β = 0.006.  Figure 5(b) shows a PP plot of log v from the v field 

corresponding to the K field in Figure 5(a).  Log v is well-approximated by a stable 

distribution with α = 1.1 and β = 0.006, but in the tails of the distribution the observed 

cumulative probability is greater than the expected cumulative probability, indicating that 

the tails of the log v distribution are heavier than the best fit stable law would predict.  

The extreme tails of the observed data do curve back to the best fit line for the most 

extreme fractiles, though.  PP plots of log K and log v indicate that stable distributions of 

log K give rise to stable distributions of log v. 

 



4.1.3  Mandelbrot and PP Plot Discussion 

 Mandelbrot plots show that log K distributions with power law decay in their tails 

give rise to log v distributions with power law decay in their tails.  PP plots show that 

stable distributions of log K give rise to stable distributions of log v.  Taken together, 

these results suggest that a stable distribution of hydraulic conductivity gives rise to a 

stable distribution of velocity, and h∇ in equation (1) does not affect the stability of v 

given a Levy α-stable PDF of K. 

This study, combined with the work of Herrick et al. (2003), provides convincing 

evidence that satisfies a central assumption of the FADE—infinite variance distributions 

(i.e., stable or heavy-tailed) of conductivity give rise to infinite variance distributions 

(i.e., stable or heavy-tailed) of velocity.  In addition, an infinite variance distribution of v 

given an infinite variance distribution of K is not contingent on K being approximated as 

stable or K being approximated as a power law—both types of infinite variance K 

distributions give rise to an infinite variance velocity distribution.  

 

4.2 Relationship between αlog K and αlog v 

 Now that it has been shown that stable log K fields give rise to stable log v fields, 

we can determine the relationship, if any, between αlog K to αlog v, the tail parameters 

describing each distribution.  Both box plots and scatter plots were used in this 

comparison.  

 

4.2.1  Box Plots 



 Box plots compare αlog K to αlog v over the ensemble of Monte Carlo trials.  Figure 

6 is a box plot that shows the population statistics of αlog K and αlog v as estimated by the 

Nolan (1997) MLE.  The x axis indicates the αlog K of the Monte Carlo batch of 

experiments.  The statistics from Figure 6 are presented in Table 1. 

 The interquartile range of values returned by the Nolan (1997) MLE is notably 

small, indicating high precision in the estimator.  This plot shows that, over the ensemble, 

heavy-tailed hydraulic conductivity fields give rise to heavier-tailed velocity fields (i.e., 

αlog K > αlog v).  This result is opposite of that reported in Herrick et al. (2003).  This may 

be due to the fact that a different simulation methodology was used to generate our K 

fields, or perhaps because we used a different method for tail estimation. This issue is 

discussed further in section 5. 

 

4.2.2  Scatter Plots 

 Scatter plots are used to obtain an individual, trial by trial comparison between 

αlog K and αlog v.  Figure 7 shows a scatter plot of αlog K vs. αlog v for the 400 K and velocity 

fields in this study.  This plot indicates that αlog K and αlog v are positively correlated and, 

as indicated by the slope of the regression line, exhibit a near 1:1 linear relationship.  The 

empirical relationship between αlog K and αlog v determined by the least squares regression 

line is: 

( ) 6426.0167.1 loglog −= Kv αα      (15) 

Therefore, if we had a field-measured value of αlog K, we could calculate the resulting αlog 

v  by using equation (15).  However, a different relation was observed in the work of 

Herrick et al. (2003).   



 

4.2.3  Conclusions for Relationship 

 This study finds that heavy-tailed K fields give rise to heavier-tailed velocity 

fields, a different result than that of Herrick et al. (2003).  Scatter plots show that αlog K 

and αlog v are positively correlated and linearly related.  A field measured value of αlog K 

could be used as an estimate of αlog v using equation (15).  However, we believe that 

additional research is necessary to validate the relation between these two parameters.  

For example, the slope of the linear relation may depend on the Hurst coefficient of the 

hydraulic conductivity field. 

 

 

5.0  Discussion 

 This research has two conclusions.  First, a stable log K distribution gives rise to a 

stable log v distribution.  Second, an empirical relationship between αlog K and αlog v, 

given in equation (15), was found.  Therefore, αlog K can be used as an a priori estimator 

of αlog v. 

 The discrepancy between the work of Herrick et al. (2003) and this work 

concerning the relationship between the tail parameter describing the K distribution and 

that describing the v distribution begs the question, what is the true relationship between 

the two?  A priori, before examining the work in this study or that of Herrick et al. 

(2003), it may be tempting to conclude that the tail parameter describing the velocity 

distribution would be identical to that describing the conductivity distribution (i.e., αlog K 

= αlog v  or αK = αv).  However, this study found that heavy-tailed conductivity fields give 



rise to heavier-tailed velocity fields (i.e., αlog K > αlog v), which is the opposite the work of 

Herrick et al. (2003), who found that heavy-tailed conductivity fields give rise to lighter-

tailed velocity fields (i.e., αK < αv). 

 One possible explanation for this difference is the method used in each study to 

generate K fields.  Herrick et al. (2003) simulates raw K as a shifted Pareto distribution 

and this study simulates raw K as a log-stable distribution.  A significant difference 

between the two distributions is that a log-stable distribution has more extreme values 

relative to the population mean than a heavy-tailed distribution (Samorodonitsky and 

Taqqu, 1994).  Therefore, the K fields generated in this study are characterized by values 

of K that are much larger in magnitude than those in Herrick et al. (2003) relative to the 

population mean.  Since these K values are spatially correlated, they tend to occur in the 

same location.   

The result of highly correlated large K values is a field with several ‘channels’ of 

high K.  Figure 8 shows a sample K field from the αlog K = 1.7 batch of Monte Carlo 

experiments with several ‘channels’ of high K.  The resultant velocity field also exhibits 

these channels.  These channels become preferential flowpaths for water similar to those 

that would be found in a fluvial geologic setting. 

 The effect of channeling has been studied in other work.  Trefry et al. (2003) 

simulates K fields and studies the velocity fields and contaminant dispersion.  Raw K is 

simulated as log normal.  As the variance in log K, σ2
ln K, increases, the velocity fields 

exhibit exponential to power law tails.  Essentially, Trefry et al. (2003) reports an 

amplification of the velocity field caused by large values of K relative to the population 

mean that are more common as σ2
ln K becomes large.  In this study, that amplification 



would be manifest as a lower αlog v, indicating more extreme velocities relative to the 

population mean. 

 In conclusion, whether one approximates raw K as stable or log K as stable affects 

the relationship between the tail parameter describing the K distribution and that 

describing the v distribution.  An important question, therefore, is which distribution, 

stable or log stable, is a better approximation of K in a typical field setting?  Work by 

Painter (2001) suggests that approximating raw K as stable is more appropriate since log 

stable distributions overestimate extreme values of K.  The work of Trefry (2003), 

however, suggests that approximating log K as stable is more appropriate to create the 

preferential flow paths observed in typical field settings.  Meerschaert et al. (2004) 

suggest an alternative Laplace model for log K, which is consistent with the assumption 

that K has power law probability tails.  Another question concerns the role of the Hurst 

parameter.  Can the Hurst parameter be manipulated to generate K fields consistent with 

the PDF of K suggested by Painter (2001) and the channeling of K detailed by Trefry et 

al. (2003)?  These questions deserve attention in future research. 
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FIGURE 1:  Plots of symmetric stable densities.  Shown above are plots of the probability density function 
(PDF) on arithmetic axes.  Below are plots on log-log axes showing power law decay of the tails.  Note that 
the case of α = 2 is the Gaussian.  When α < 2, the distribution ‘allows’ for more extreme events.  Taken 
from Benson (1998). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
FIGURE 2.  Conceptual rendering of the flow model used in this study.  The domain is 
64.5m x 64.5m x 10m consisting of 665,640 nodes of dimension 0.5m x 0.5m x 0.25m.  
An upgradient head, hu, of 60.195 m and a downgradient head, hd, of 60.0 m are constant 
head boundaries.  The lateral and bottom face of the flow domain are no-flow boundaries. 
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FIGURE 3. (a) Mandelbrot plot of raw K for a realization with αlog K = 1.1, H = 0.2, and anisotropy Kx = 
10, Ky = Kz = 1.  The concave upward curvature of the tail indicates that raw K is consistent with a log 
stable distribution.  (b)  Mandelbrot plot of the same realization where log K is shown.  The power law 
decay of the upper tail is consistent with a stable distribution of log K.  These plots confirm that raw K is 
consistent with a log stable distribution and log K is consistent with a stable distribution, as is expected. 
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FIGURE 4. (a) Mandelbrot plot of raw v from the αlog K = 1.1 Monte Carlo simulations.  The concave 
upward curvature of the tail indicates that raw v is is consistent with a log stable distribution..  (b)  
Mandelbrot plot of log v from the αlog K = 1.1 Monte Carlo simulations. The power law decay of the upper 
tail is consistent with a stable distribution of log v.   
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FIGURE 5a.  PP plot of increments in log K (circles) against a best fit stable distribution with α = 1.1 and 
β = 0.006 (solid black line) suggested by the Nolan (1997) MLE.  Log K is well-fit by a stable distribution.  
This data is from a Monte Carlo trial with αlog K = 0.8.  N = 1000 data points. 
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FIGURE 5b.  PP plot of increments in log v (circles) against a best fit stable distribution with α = 0.97 and 
β = -0.079 (solid black line) suggested by the Nolan (1997) MLE.  Log v is well-approximated by a stable 
distribution.  This data is from a Monte Carlo trial with αlog K = 0.8.  N = 1000 data points. 
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Figure 6.  Box plot showing results of the Nolan (1997) MLE.  This estimator predicts that heavy-tailed 
hydraulic conductivity fields characterized by tail parameter αlog K give rise to heavier-tailed velocity fields 
with a lower tail parameter αlog V. 
 
 
TABLE 1.  Results of Nolan (1997) Maximum Likelihood Estimator 

 Kh    Vh    

 αlog K = 

0.8 

αlog K = 

1.1 

αlog K = 

1.4 

αlog K = 

1.7 

αlog K = 

0.8 

αlog K = 

1.1 

αlog K = 

1.4 

αlog K = 

1.7 

Maximum 1.38 1.42 1.58 1.78 1.02 1.06 1.29 1.67 

Upper 25th 1.26 1.35 1.52 1.74 0.84 0.93 1.13 1.48 

Median 1.21 1.31 1.49 1.73 0.77 0.89 1.06 1.42 

Lower 25th 1.16 1.27 1.47 1.71 0.72 0.82 1.00 1.33 

Minimum 1.02 1.18 1.40 1.66 0.58 0.69 0.80 1.11 

Int. Q. Range .011 0.08 0.05 0.03 0.13 0.11 0.14 0.16 

K v

Comparison of αlog K and αlog V based 
on the Nolan (1997) MLE  



 

FIGURE 7.  Scatter plot of αK vs. αV based on the results of the Nolan (1997) MLE.  The equation for the 
regression line (black) is given in the upper left hand corner of the plot, and the 1:1 fit is shown in gray.  
This estimator predicts that the relationship between αlog K and αlog V is almost 1:1.  This plot is based on  
N = 400 Monte Carlo realizations of K. 
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