26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
5!
42
43
44
45
46
47
48
49
50

Ensemble Solute Transport in 2-D Operator-Scaling Random

Fields

Nathan D. Monnig and David A. Benson
Colorado School of Mines, Golden, CO, U.S.A.

Mark M. Meerschaert
Michigan State University, East Lansing, MI, U.S.A.

1. Abstract 51

52

Motivated by field measurements of aquifer hydraulic conss
ductivity (K), recent techniques were developed to constructs
anisotropic fractal random fields, in which the scaling, oss
self-similarity parameter, varies with direction and is dess
fined by a matrix. Ensemble numerical results are analyzedr
for solute transport through these 2-D “operator-scaling’s
fractional Brownian motion (fBm) In(K) fields. Both the
longitudinal and transverse Hurst coefficients, as well as theo
“radius of isotropy” are important to both plume growtlu
rates and the timing and duration of breakthrough. It is
possible to create osfBm fields that have more “continuity’s
or stratification in the direction of transport. The effectss
on a conservative solute plume are continually faster-thanes
Fickian growth rates, highly non-Gaussian shapes, and as
heavier tail early in the breakthrough curve. Contrary ter
some analytic stochastic theories for monofractal K fieldsgs
the plume growth rates never exceed Mercado’s [1967] purelyo
stratified aquifer growth rate of plume apparent dispersivityo
proportional to mean distance. Apparent super-stratified:
growth must be the result of other demonstrable factorsz
such as initial plume size. 73
74
75

2. Introduction .

The first analytical studies of the stochastic ADE used’
finite correlation length random hydraulic conductivity (K
fields and found that plumes transition from purely stratified
growth rates to Fickian growth after traversing a number of
correlation lengths [Gelhar and Azness, 1983]. Analysis oft
reported dispersivity versus plume size suggested that reaf
plumes might not reach the Fickian limit [e.g., Welty an&
Gelhar 1989]. Fractional Brownian motion (fBm) was, ini#
tially, an attractive model for aquifer hydraulic conductivitg®
because it describes evolving heterogeneity at all scales, typigs
cal of many real-world data sets [e.g., Molz et al., 1990]. Fur#
thermore, it could explain continuous super-Fickian plumeés
growth. However, when the power spectrum (Fourier trans#
form of the correlation function) of fBm is used in the classi®
cal linearized and small-perturbation solution of the stochas
tic ADE (see Neuman, [1990] and Di Federico and Neuma#?
[1998b]), the growth rate not only can be faster than Ficke
ian, but faster than the purely stratified model theorized+
by Mercado [1967]. This faster-than-Mercado result for &
plume in a single aquifer has been used to explain the growtls
of plumes in different aquifers at different scales [Neumang
1990]. However, this finding depends on several assumptionss
on top of the typical small-perturbation assumptions ando
has not (to our knowledge) been duplicated in a numerical
experiment. Hassan et al. [1997] ran numerical transport:
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experiments in low-heterogeneity fractal fields and found, as
expected, super-Fickian growth, but the upper limit of the
growth rate was not shown. Herein we investigate whether
sustained super-Mercado growth rates may be attained by a
single or an ensemble plume, and also explore other factors
that could contribute to the apparent super-Mercado growth
described by Welty and Gelhar [1989], Neuman [1990], and
Gelhar et al. [1992].

Most previous fBm models have been defined by a Hurst
coefficient H that is independent of direction. Rajaram and
Gelhar [1995], Zhan and Wheatcraft [1996], and Di Fed-
erico et al. [1999] defined statistically anisotropic fBm in
which the strength of the correlation of the increments var-
ied smoothly around the unit circle, but the correlation de-
cay rate versus separation distance falls off with the same
power-law in all directions. The order of the power law de-
fines the scaling coefficient H. If this value does not vary
with direction in an fBm random field, we refer to it as hav-
ing isotropic scaling. This isotropic scaling is an unrealistic
assumption for granular sedimentary aquifers—it is likely
that there is more persistent correlation in the horizontal
and/or dip direction compared to the strike or vertical di-
rections. Based on analyses of four hydraulic conductivity
sets, Liu and Molz [1997a] found that the power-law scaling
can vary significantly in the horizontal and vertical direc-
tions in agreement with past findings [Hewett, 1986; Molz
and Boman, 1993, 1995]. Among others, Deshpande et al.
[1997], Tennekoon et al. [2003], Castle et al. [2004], and
Benson et al. [2006] also presented evidence of anisotropic
scaling in real-world sedimentary rock.

We use a numerical technique [Benson et al., 2006] that
can construct random fields with anisotropic scaling. Those
authors presented a generalization of classic isotropic fBm
called operator-scaling fractional Brownian motion (osfBm)
that both allowed for anisotropic scaling as well as vary-
ing degrees of directional continuity in the K structure.
The “mixing measure” or weight function has the poten-
tial to model directionality that may be closely related to
depositional patterns. This continuity can be defined by a
probability measure on the curve defined by the “radius of
isotropy” in 2-D (see Figure 1). The “radius of isotropy”
is the radius of an osfBm at which there is no anisotropic
rescaling of space (Figure 1). This radius of isotropy is a
mathematical parameter of osfBm fields that could poten-
tially be measured from observation of the convolution ker-
nel (Figure 2), which can be directly calculated from the cor-
relation function [Molz et al., 1997]. The radius of isotropy
is an important parameter of osfBm fields as it can signifi-
cantly affect the directional continuity of the fields.

Some difficulties arise when applying a numerical flow
model to fractal fields—a true fBm is scale invariant, and
has infinite correlation extent. These properties must nat-
urally be violated when simulating fBm numerically on a
finite domain, by imposing a high and low-frequency cut-
off corresponding to the grid and the domain sizes respec-
tively. Painter and Mahinthakumar [1999] and Herrick et
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al. [2002] found that prediction uncertainty is strongly afr
fected by the system size and the propagation of boundariys
conditions deep into the modeled domain. Both Ababou ards
Gelhar [1990] and Zhan and Wheatcraft [1996] argue that the;
high-frequency (small scale) cutoff is important to transpoxts
for small values of the Hurst coefficient. However, accordingy
to Di Federico and Neuman [1997] the high-frequency cut,
off does not significantly influence the properties of fractal
fields given sufficient separation between the low and high-,
frequency cutoffs.

FBm and its extensions are based on convolution of an’
uncorrelated random Gaussian “noise” with a kernel ¢(x
that is defined by its self-similarity. The kernel can be de
composed into two components: one that describes decafr
of weight versus distance and one that describes the pro-
portion of correlation weight in every direction. The latter
portion is called the mixing measure, which Benson et af;
[2006] applied to the function $(k), the convolution kernel
in Fourier space at any wave vector k. It is unclear exactly
how this angular dependence in Fourier space corresponds
to the true angular dependence in real space. In this paperss
we apply the mixing measure directly to the function ¢(x g
the convolution kernel in real space. In this way the effect
on the directionality in K-structure is clear. Additionally,
Benson et al. [2006] presented the results of solute trans-
port through single realizations of operator-scaling random
fields, in order to compare directly between realizations with’
shghtly different structure. However, their results cannot be
translated to the statistical behavior of the ensemble mean
transport. Ensemble results are presented for all examples
in this paper, making all results more robust and directhy:
comparable to analytic theories developed using the ergodie
hypothesis. We also investigate deviations of individual ress
alizations from the ensemble. 194

The fields used in this study have two advantages ovews
classical, isotropic fBm fields: 1) the operator-scaling fields
are described by matrix scaling values which allow diffexgs
ent scaling (or different Hurst coefficients) in different direc-
tions; and, 2) the mixing measure M () accommodates any,
discretization on the radius of isotropy, allowing completely,
user-defined directionality in K-structure. The fast Fourigg,
transform (FFT) method is used, allowing rapid generatiog,
of large fBm fields.

201
202
3. Mathematical Background

203

Here we give a brief overview of the generation and corre-
lation structure of operator-scaling random fields. Biermé é¥
al. [2007] give a more rigorous derivation of the mathemag®
ical properties of multidimensional fractional Brownian ma3%
tion (fBm) B (z). In order to describe the properties of &’
fBm, we must first define the properties of the related fraé
tional Gaussian noise (fGn) G(z, h) = Bu(z+h)—Bu(z). B®
one dimension (1-d), an {Gn is statistically invariant undé®
self-affine transformations: the random variables G(z, /)
and 7 G(z, h) have the same Gaussian distribution [Molz &
al., 1997]. The scalar H is the celebrated Hurst scaling cé13
efficient. The fGn is also statistically homogeneous: G(z, h)
has the same distribution as G(z + r, h) for any separatioi*
r.

A finite approximation of the continuous d-dimensionais
isotropic fBm can be created by multiplying the Fourier fils
ter with the scaling properties ¢(ck) = ¢~ *@(k) against zr
Gaussian white noise in the spectral representation, wheres
k is a wave vector. This relationship is satisfied by a simao
ple power law: ¢(k) = |k|~*. Multiplying by this filter ino
Fourier space defines the operation of fractional-order inte=
gration. In this isotropically scaling case in d-dimensionsz
the order of integration, A, is related to the Hurst cass
efficient, by A = H + d/2, with 0 < H < 1 [Bensom

et al., 2006]. A random field that has different scaling
rates in different directions can be generated by using a
matrix-valued rescaling of space: ¢(c®k) = ¢ A¢(k). The
matrix @ defines the deviation from the isotropic case in
which Q@ = I, the d x d identity matrix [Benson et al.,
2006]. The matrix power ¢? is defined by a Taylor series
[? =exp(Qlnc) = I+QInc+ <Q1n°) + (anc) +...]. The
scahng relation for the convolution kernel in Fourler space is
given in Benson et al. [2006]: $(c9k) = c A@(k) We can
use the Fourier inversion formula ¢(z) = 2= [ ™**¢(k)dk
to find the scaling relation in real space. We assume here
that @ is a diagonal matrix (implying orthogonal eigenvec-

tors):
1 ik-(cQz) -
72%/‘6 p(k)dk

1 iPk-x o
= 27r/e o(k)dk.

Make the substitution c?k = z, therefore k = [¢9] 7'z =
¢ 9z and dk = |c?|dz.

so(c%>=—f =259 z)] 9 dz

A ()

o(c%x)

“Qldz

271'
= e p().

Recognizing that A = H + ¢ and lcQ] = "D we ar-
rive at the scaling relation for the convolution kernel in real
space: @(cQx) = A+/2H (=@ (1) where tr() is the trace
of the matrix, or sum of the eigenvalues. In this setting, we
assume tr(Q) = d, so the scaling relationship simplifies to

(1)

Any function satisfying the scaling relationship in (1) can
be used to create an operator-scaling fBm (osfBm) B, (x) by
convolving (in a discrete Fourier transform sense) the kernel
with uncorrelated Gaussian noise: B, (x) = B(x) * ¢(x).
The convolution product will have the self-affine distribu-
tional property:

H—d/2

o(c?z) =c o(x).

B,(a) = ¢ B,(a) (2)
This equation specifies that the osfBm resembles itself (sta-
tistically) after a rescaling in which space is stretched more
in one direction than another. For simplicity, in this paper
we present operator-scaling fields with orthogonal eigenvec-
tors (diagonal matrix @), although this is not a require-
ment. We break the scaling function into the power-law
versus “distance” component and the radial “weights” that
define the strength of statistical dependence in any direc-
tion. For example, a simple 2-D convolution kernel that
satisfies this is:

p@) = MOferfos [ +calaaf )72 (3)
where g1 and g2 are the diagonal components of Q (qg1+¢2 =
d = 2). Constants ¢; = [R]™%% and ¢ = [R]7?/% are
defined in terms of R, the “radius of isotropy”. These con-
stants allow for the possibility that different units may be
used to measure the fields, such that the radius of isotropy
R can have any value and any length units. M () is an
arbitrary measure of the directional weight, which is user-
defined on the radius of isotropy corresponding to |x| = R

When creating the kernel, the directional weights M (6)
must be stretched anisotropically according to the matrix



225

226

227

228

-3 | 1 1 1 1 1 244
—4 -3 -2 -1 0 1 2 3 4 245
X 246
0.6
0- 06 O 0 - c 0
0 1.4 0

Figure 1. Matrix stretching (and contraction) of the
curve defined by the “radius of isotropy” (or “curve of
isotropy”), R = 1 (from Benson et al., [2006]). The
dashed line shows the mapping of the point M (6 = 7/4)
by the matrix rescaling of space ¢®z. Points on this
dashed line follow (z1,z2) = ¢?( 5, 75) for all ¢ > 0.
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Figure 2. One-dimensional transects of ¢(x)
(Hlongitudinal = 0.5, Hiransverse = 0.3, iSOtYOPiC mix-
ing measure). Intersection of the one-dimensional osfBm
transects defines the radius of isotropy R = 50. Such a
method could be used to determine the radius of isotropy
from the correlation function of a well defined data set.

Q. Figure 1 demonstrates how the geometry of the convo-
lution kernel is induced by the scaling matrix @ according

to the relationship:

(21,22) = ¢ (y1,2) (4)

for all ¢ > 0 and 1/y? + y2 = R (radius of isotropy). This
relation allows the tracing of angular sections of the curve of
isotropy that define the mixing measure into a “stretched”
space defined by the operator-scaling relationship. In other
words, for the operator-scaling relationship (2) to be ful-
filled, the weight function is stretched more in one direc-
tion than another. Therefore, the function M () specifies
weights (a discrete or continuous measure) along the curve
of isotropy |x| = R. These weights are then transferred
along curves such as the dashed line in Figure 1. It is a sim-
ple matter to separately calculate the value of the power law
portion (in (3)) at every point  and multiply the two func-
tions. In this example, the x; direction is stretched outside
of the radius of isotropy and compressed inside. Just the
opposite is true for the x2 direction. This implies that the
chosen radius of isotropy is very important to both mea-
surement and simulation of osfBm fields. This issue does
not arise in the isotropic case with a uniform rescaling of

1
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g 017 A Longitudinal
.:g o H\ungvludma\ =05
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£ 0017
g TR
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Figure 3. Ensemble dispersional analysis of a In(K)
field in the longitudinal and transverse directions, 1024 x
512 respectively. The fields were created with the braided
measure, Hlongitudinal = 057 Htransve'rse = 037 and ra-
dius of isotropy R = 1000 (explained in section 4.3). Both
directions follow the expected slope of H — 1 in log-log
space for small partitions.
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! 10 100 1000 10000

Partition Size

Figure 4. Ensemble rescaled range (R/S) analysis of a
In(K) field in the longitudinal and transverse directions,
1024 x 512 respectively. The fields were created with the
braided measure, Hiongitudinal = 0.5, Hiransverse = 0.3,
and radius of isotropy R = 1000 (explained in section
4.3). Both directions follow the expected slope of H in
log-log space for large partitions.
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space. We note that the completely general M () is a noveb
anisotropic spatial weighting even in the isotropically scals
ing case. We investigate the effect of changing the radius afs
isotropy R below. 316

317

3.1. Fast Fourier Transform Convolution 318

Numerical evaluation of a convolution integral in multi*
ple dimensions is, in general, very computationally 1nten51vé 0
For this reason, we make use of the theorem:

(5%

F @) F(B@)] = () « Bla)

Here we define the kernel ¢(z) and a d-dimensional sgs;,
quence of uncorrelated Gaussian random variables B(a:(ie
and Fourier transform F, and inverse transform F~!. The
Fast Fourier Transform (FFT) algorithm is used to effi-
ciently calculate the Fourier transforms. The FFT method
has commonly been used for artificial generation of fBm
[e.g. Hassan et al., 1997; Benson et al., 2006]; howevery
some researchers have suggested problems with this methods
of generation for fBm. Bruining et al. [1997] found thato
the Fourier transform method for generating fBm failed tsmo
produce the correct statistical properties. Bruining et ah
observed that fBm generated by the FFT method did nat»
produce the expected standard deviation of the means fay;
various partitions. This could be a result of the small size
(64 x 64) of the fields investigated. It has been noted (e.gss
Caccia et al. [1997]) that longer series (N > 1024) are negss
essary for accurate estimation of the Hurst coefficient. 35
To verify the correct fractal behavior of the operatoxs;
scaling random fields created by the FFT method, we samj,
pled the fields along the orthogonal eigenvectors. If B, (1)
is an osfBm then it must obey the scaling relation in (2) fag
all ¢ > 0. If u is an eigenvector of Q with eigenvalue gy,
then ¢?u = cu, and substituting this into (2), we havg,
By (c®u) = c? B, (u), and after a substitution r = ¢?:  ,,

345
(636
347
Therefore, in the direction of an eigenvector with eigenvaluwes
¢; (and only in this direction), a one-dimensional transect ofy
an osfBm is a self-similar fBm with scaling coefficient H/gsso
We assume that the sum of the positive eigenvalues of @
equals the Euclidean number of dimensions. 352
We use dispersional analysis and rescaled range analyss
sis applied to 1-d transects of data taken in the directions,
of the eigenvectors to estimate the Hurst coefficient(s). Thes
fields must be sampled along the eigenvectors, or traditionais
methods of H estimation are not valid. Caccia et al. [1997);
found dispersional analysis to be an accurate measure af;
the scaling behavior of fGn for smaller partition sizes (theg,
largest partition sizes typically fall off from the linear behawg,
ior in log-log space). Dispersional analysis uses the standarg,
deviation of the means for different partition sizes to quang,
tify the scaling behavior of an fGn. Dispersional analysig,
of the increments of the one-dimensional transects was useg,
to ensure the correct scaling properties of typical osfBm af;
the smaller partition sizes (Figure 3). The slope of the digs
persion statistic versus the partition size in a log-log plot ig,
H — 1 [Caccia et al., 1997].

As with dispersional analysis, rescaled range analysis in-
volves calculating a local statistic for each partition size.
The rescaled range (R/S) statistic is the range of the valss
ues in the partition divided by the standard deviation of tlees
values in the partition. Mandelbrot [1969b] found rescaledo
range analysis to be a robust measure of long-run statisticah
dependence. R/S analysis serves as a compliment to dispesz
sional analysis, since it is most reliable for larger partitioss
sizes [Caccia et al., 1997]. In log-log space, the slope of tlues
rescaled range statistic versus partition size should equal thes
Hurst coefficient along each eigenvector (Figure 4). 376

322

By(ru) = TH/qle(u)

For all ensemble simulations presented, 100 realizations
were generated, each with a different “random” input
Gaussian noise. The 2-D input noise and the convolution
kernel were 2048 x 1024 arrays. The noise and the kernel
were both transformed via FFT, multiplied together, then
inverse transformed to create the convolution as described
in the previous section. The middle 1/4 of each field was
subsampled for transport simulation (in order to minimize
periodic effects from the FFT) leaving a field with dimen-
sions 1024 by 512 cells. It is typical to subsample the fields
when synthetically generating an fBm. Lu et al. [2003] also
found it necessary to subsample fields created by the succes-
sive random additions (SRA) method due to irregularities
near the boundaries of the domain.

4. Transport Simulation Results

MODFLOW was used to solve for the velocity field as-
suming an average hydraulic gradient across the fields of
0.01, with no-flow boundaries at the top and bottom of the
field. Using LaBolle et al.’s [1996] particle tracking code,
100,000 particles were released in each field, spaced evenly
between points 128 and 384 along the high head side of the
fields to avoid lateral boundary effects on transport (giving a
total of 10,000,000 particles for each ensemble of 100 realiza-
tions). The local dispersion and diffusion were set to zero to
most closely match the analytical assumptions of Di Federico
and Neuman [1998b]: Benson et al. [2006] found that small
local dispersivities did not appreciably change the growth
rates of single plumes; however, Hassan et al. [1997] found
that fairly large local dispersivity noticeably changed the
plume shapes. Kapoor and Gelhar [1994b] showed that al-
though local dispersion is important to the destruction of the
spatial variance of concentration in heterogeneous aquifers,
local dispersion does not appreciably affect the longitudinal
spatial second moment or the macrodispersivity. For this
study, we modeled purely advective transport as we were
most interested in testing analytic predictions of longitudi-
nal macrodispersivity in fractal fields. The effect of local
dispersion on individual and ensemble plumes is part of an
ongoing study.

We monitored the plume evolution at logarithmic time
steps to observe growth across many scales, as well as the
earliest and latest breakthrough. Particle breakthrough
rates were recorded, as well as longitudinal concentration
profiles, computed by summing the particles in each trans-
verse row of cells at each time step. Additionally, the
first and second longitudinal moments of the plumes were
recorded and used to calculate apparent dispersivity («r,) of
the ensemble plumes, calculated using the formula 2ar =
d(VAR(X))/dX, where X are the particle positions, and
VAR(X) is the variance of the particle positions in the lon-
gitudinal direction, calculated at each time step by the par-
ticle tracking code. First differences of VAR(X) were used
to approximate the derivative. Transverse dispersion was
not addressed as the main goal of this paper is a compari-
son with analytic predictions of longitudinal dispersivity in
fractal fields.

4.1. Transport in Isotropic fBm Fields

Beginning with a simple case, we explored the effects of
the Hurst coefficient on transport in purely isotropic fBm
fields (uniform mixing measure M(0) = ;= with Q = T,
the identity matrix). The K fields were adjusted to be
lognormally distributed with mean and standard deviations
tin(x) = 0 and o1y(x) = 1.5. For small mean travel dis-
tances, the observed ensemble average dispersivity (relative
or effective dispersivity) follows ballistic growth: a super-
position of advective transport in a stratified conductivity
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field, characterized by a linear growth of apparent disper-
sivity with mean travel distance (Figure 5). In each case,
(H = 0.2,0.5, and 0.8), the dispersivity drops to sublinear
(but still super-Fickian) growth at larger mean travel dis-
tances. Counter-intuitively, the In(K) field with the least
persistence (H = 0.2) engendered greater spreading rates
at the earliest time. We attribute this result to the greater
small-scale heterogeneities at lower H (due to less correla-
tion). The initial width of the plume samples more hetero-
geneity for smaller H due to less correlation in the K field,
which results in more dispersion at early times. At larger
mean travel distances, the growth of effective dispersivity
versus mean distance also follows a power law, with a lower
exponent for a lower value of H. It is logical that lower
H should lead to less dispersivity at large travel distances,
due to less correlation and less large-scale heterogeneities.
At long travel distances our results agree qualitatively with
Kemblowski and Wen’s [1993] and Zhan and Wheatcraft’s
[1996] calculations for fractal stratified aquifers that disper-
sion should decrease for smaller Hurst coefficients. These
papers predicted roughly linear growth of dispersivity ver-
sus mean travel distance, which falls off from linear growth
and approaches a constant (Fickian) value as the travel dis-
tance approaches the maximum length scale (Lmaz). Our
plume mean distances do not approach the largest wave-
length, which is larger than the domain size. However, for
a lower Hurst coefficient, their analyses predict an earlier
transition to sub-linear growth, which we also observe.

Neuman [1995], Rajaram and Gelhar [1995], and Di Fed-
erico and Neuman [1998b] predict the spreading of plumes i
isotropic fractal K-fields similar to those in our experimentsss
Their predictions are based only on the Hurst coefficient i
the longitudinal direction. Di Federico and Neuman [19981j
predict that a plume traveling in a fractal field with no fraést
tal cutoff will exhibit permanently pre-asymptotic growth;
with a longitudinal macrodispersivity (ar) that evolves aé®
cording to ay, X ™28 for mean travel distance X and lon>'
gitudinal Hurst coefficient H. Rajaram and Gelhar [199%32
predict that plume growth in an fBm K-field will exhibit
a macrodispersivity according to a; o« X from a two-
particle, relative dispersion approach. Di Federico and Neu-
man predict that if the plume growth exceeds the fractal
cutoff (the plume is no longer continually sampling larges
scales of heterogeneity) then there will be a transition t&
a Fickian growth rate (ar = const.). Mercado [1967] dé¥
scribes a perfectly stratified model with no mixing betweelf*
layers. This ballistic motion will exhibit linear growth of ape
parent macrodispersivity verses travel distance (ap o X ):zj

Our results for isotropic fBm fields show a much weaker,
dependence on H than the predictions for growth of
macrodispersivity (ar) by Rajaram and Gelhar [1995], who
predicted a growth of macrodispersivity following the rela-
tion ez < X*™. None of the plumes approach Di Federico
and Neuman’s [1998b] prediction of super-linear and perma-
nent pre-asymptotic growth, ar, « X'*22. The observed
ensemble average plume growth agrees qualitatively with
the predictions by Rajaram and Gelhar [1995] that anom-
alous dispersion is limited to linear or sublinear growth of
dispersivity.

In addition to longitudinal plume dispersion, we also in-
vestigated the longitudinal dispersivity of plume centroids
(Figure 5). The dispersivity of plume centroids grows lin-
early in fBm fields. For larger Hurst coefficients, the dis-
persivity grows at a faster (but still linear) rate. We can
therefore infer that there is more uncertainty in plume lo-
cation in fractal fields with higher Hurst coefficients. For
higher values of the Hurst coefficient a larger portion of
the total ensemble dispersivity is a result of the dispersiv-
ity of the plume centroids, indicating more realization-to-
realization variability. Lower values of the Hurst coefficient

100

—O— H=0.2 Ensemble Avg
—— H=0.5 Ensemble Avg
—2— H=0.8 Ensemble Avg
— Mercado

Fickian |~~~ Fickian
---------- —4— H=0.2 Centroids
—®— H=0.5 Centroids
—&— H=0.8 Centroids

0.1 T T 1
100 1000

Mean Distance (cells)

Apparent Dispersivity (L)

Figure 5. Apparent dispersivity versus mean travel dis-
tance for several values of the Hurst coefficient in the
purely isotropic case (constant mixing measure with no
matrix rescaling). Results are plotted for both the en-
semble average plume dispersivity (effective dispersivity)
and the dispersivity of the plume centroids.

describe fields with more small scale heterogeneity and less
realization-to-realization variability. As a result, more of the
ensemble dispersivity is a result of the spreading of individ-
ual plumes for lower Hurst coefficients. The dispersivity of
the ensemble plume is equal to the sum of the effective dis-
persivity and the dispersivity of the plume centroids. The
behavior of the ensemble plume dispersivity was found to
be very similar to that of the effective dispersivity (ensem-
ble average dispersivity) as the dispersivity of the plume
centroids is much smaller than the effective dispersivity.

4.2. Effects of the Mixing Measure

The mixing measure specifies the strength of correlation
in any direction. In essence this amounts to a prefactor on
the power law correlation in any direction. Most previous re-
search (numerical and analytical) has focused on the effect of
the scaling exponent on growth rate. To explore the effects
of different mixing measures, or weight functions M (0), en-
semble simulations were run with 2-D random osfBm fields.
Typical values of the Hurst coefficients were used: 0.5 in
the horizontal (direction of transport) and 0.3 in the verti-
cal or transverse direction. Although there is a great deal

100 200 300

400 500 600 700 800 900

Figure 6. One realization of an osfBm with
Hlongitudinal - 077 Htransverse - 097 elliptical mixing
measure, R = 50

1000
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Figure 7. Anisotropic mixing measures presented by Benson et al. [2006]: a) “braided stream” b)
“downstream” c) “elliptical”. M () is discretized into 20 sections on the radius of isotropy.

Figure 8. Log(K) fields with identical scaling behavior (Hiongitudinal = 0.5, Hiransverse = 0.3, elliptical

mixing measure) but varying radius of isotropy (R).

of variability in measured values of H from boreholes and.
other methods (see Benson et al. [2006] for a review ofs
many of the site investigations) these values for the horizonss
tal and vertical Hurst coefficients appear to be reasonables;
middle-of-the-road values. The K fields were adjusted tgs
be lognormally distributed with mean and standard deviag,
tions fiyn(x) = 0 and 0y (x) = 1.5. Ensemble results for the,
“braided stream”, “downstream”, “elliptical”, (see Figurg,
7) and uniform measure (M (0) = 1/27) (all from Benson ¢,
al. [2006]) were compared. The “braided stream” measurg,
was constructed from a histogram of stream channel diregg,
tions. The “downstream” measure is only the downstrear,
components of the braided stream measure. The “elliptical_
measure is a classical elliptical set of weights with the major,
axis aligned with the direction of transport.

The effects of these mixing measures on the breakthrough
and dispersion are fairly predictable, and are not shown in

a) R =1000, b) R =100, c) R=10,d) R=1

any plots. The braided and downstream measures create
K-fields with continuity that resembles the braided stream
which is the origin for the measure. The elliptical measure
produces a somewhat smoother continuity in the hydraulic
conductivity field (Figure 6). The uniform measure is the
only one that produces a significantly different K-field, due
to the much greater weight in the transverse direction. In
general, more weight in the longitudinal direction creates
more continuity in the structure of the K-field, leading to
earlier breakthrough, and increased dispersivity vs. mean
travel distance. The effects of the mixing measure were ob-
served to be small in comparison to the effects of the orthog-
onal Hurst coefficients, and the chosen radius of isotropy,
discussed immediately.

4.3. Effects of Radius of Isotropy
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In the case of anisotropic matrix rescaling (osfBm), ther
chosen radius of isotropy (R) is extremely important. Tlses
weighting function is rescaled according to Figure 1. As s
result, for the same Hiongitudinal and Hiransverse We Mayo
observe very different correlation structures depending om
whether we are inside or outside of the radius of isotropy
(Figure 8). 533

In studies that investigate the anisotropic scaling of thes
properties of sedimentary rocks [e.g. Hewett, 1986; Castls
et al., 2004; Liu and Molz, 1997a; Molz and Boman, 19933
1995; Tennekoon et al., 2003] the typical assumption has,
been that determining the scaling behavior, or Hurst coefss
ficients, in orthogonal directions (assumed to be the eigens
vectors of H) is sufficient to describe the structure of thao
aquifer. However, fields with the same orthogonal Hurst cen
efficients may describe extremely different correlation strugs
tures at scales smaller or larger than the radius of isotropys
(Figure 8). These unique correlation structures also signifs
icantly affect plume growth (Figures 9 and 10). Visual ings
spection of the osfBm fields (Fig. 8) demonstrates that mangs
of the possible osfBm fields do not resemble typical aquifes;
hydraulic conductivity. However, some appear to represenis
many of the features of say, braided stream systems, withy,
narrow windows of directional continuity, bifurcating highs,
K zones, and long-range continuity of both high- and low- £,
units (Figure 6). 552

Methods for determining the radius of isotropy from real;
data may be developed. In Figure 2 we see one-dimensionagd,
transects of (), which can be directly calculated from theg
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Figure 9. Effective dispersivity versus mean travel dis-
tance for ensemble plumes in Log(K) fields with identical
SC&ling behavior (Hlongitudinal = 057 Htransverse = 031
elliptical mixing measure) but varying radius of isotropy
(R). The analytic growth rates predicted by Di Federico
and Neuman (D-F&N) [1998b], Mercado [1967], and Ra-
jaram and Gelhar (R&G) [1995] are also plotted.

auto-correlation function [Molz et al., 1997] which can be es-
timated for a real data set. With a uniform mixing measure,
we observe the radius of isotropy, R = 50, at the intersection
of the two transects (Figure 2). A non-uniform mixing mea-
sure could complicate such observations. Future research
could develop more advanced methods for experimental de-
termination of the radius of isotropy in osfBm fields.

The effective longitudinal dispersivity appears to be lim-
ited to linear or sublinear growth with respect to mean travel
distance for all osfBm fields (Fig. 9). The magnitudes of o,
at any mean travel distance range over nearly an order-of-
magnitude, but none exceed linear growth. For most of the
simulations, we do not plot values of ay beyond a mean
travel distance of approximately 100 cells. The plots are cut
off as soon as the first leading particles reach the domain
boundary at x1 = 1024, since the plume variance can no
longer be accurately calculated. In the ensemble case, the
leading particles may have traveled as much as an order-of-
magnitude farther than the plume centroid. Even though
the 0y, (k) was fairly small at 1.5, the ensemble plumes are
highly non-Gaussian (Figure 11) and cannot be modeled by
a classical, local, second-order, advection-dispersion equa-
tion.

Similar to the case of classical isotropic fBm fields, the
plume centroid dispersivity was found to be limited to lin-
ear growth with mean centroid displacement. The slope of
the linear growth is dependent on the correlation structure
and therefore depends on the orthogonal Hurst coefficients
as well as the unit circle radius.

Benson et al. [2006] made observations concerning the
effects of the transverse Hurst coefficient on plume growth.
The authors found that higher transverse Hurst coefficients
created more continuity in the K fields, which led to faster
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| —2—R =100
—%—R =1000
= = = = Arithmetic Mean
. Breakthrough
g 10 — = = Geometric Mean
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Figure 10. Normalized breakthrough curves for ensem-
ble plumes in In(K) fields with identical scaling behavior
(Hlongitudinal = 0.5, Hiransverse = 0.3, eﬂiptical miXng
measure) but varying radius of isotropy (R). The arith-
metic mean and geometric mean breakthrough times are
also plotted. The arithmetic mean hydraulic conductiv-
ity is simply the average of all the K values in the field.
The geometric mean is the nth root of n numbers—the
geometric mean K is smaller than the arithmetic mean
K, which leads to a later geometric mean breakthrough.
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plume growth. The added complication of the effects ofs
the radius of isotropy make such a general observation ins
possible. Nonetheless, we do observe that 1) both the transs
verse and longitudinal Hurst coefficients as well as the radiuss
of isotropy are important to transport, and 2) all ensems#
ble transport in 2-d osfBm fields is limited to sub-Mercadas
growth rates. 579
580

581

5. Comparison with Analytic Predictions .,
583

None of the plumes (in either the classical isotropic case as
the anisotropic operator-scaling case) demonstrate asympss
totic or Fickian-type growth (Figures 5 and 9), a result thats
agrees with the analytic theories, as the plume size never exesr
ceeds the scale of the largest heterogeneities present. All ofs
the ensemble results exhibit primarily Mercado-type plunses
590
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Figure 11. Semi-log plot of ensemble longitudinal plume
profile (insert: plume profile in real space). We see a
plume shape has a very fast leading edge that is highly
non-Gaussian for this case with Hiongitudinat = 0.7,
Hiransverse = 0.9, elliptical measure, R = 50 (same as
Figure 6). The K-fields were constructed with fi;,,(xy =0
and oy,(x) = 1.5. The leading edge of the ensemble
plume decays slower than the Gaussian at approximately
an exponential rate.
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Figure 12. Apparent dispersivity for 20 individual

plume realizations. No individual plumes exhibit sus-
tained super-Mercado growth rates.

growth. None of the results follow Di Federico and Neuman’s
permanently pre-asymptotic growth. Simulations were con-
ducted with various longitudinal and transverse Hurst co-
efficients (results are not shown for brevity). These ensem-
ble results also demonstrated primarily Mercado-type plume
growth. In all of the experiments conducted, the ensem-
ble average plume growth through the osfBm log(K) fields
does not exceed Mercado’s stratified result. This includes
cases in which o0y, (k) is reduced to 0.01 to better coincide
with small perturbation requirements of the analytic theo-
ries. In addition to the ensemble results, an examination of
the growth rates of individual realizations gave very similar
results (Figure 12). None of the individual plumes sustain
super-Mercado growth, and none of the plumes converge to
a Fickian regime.

Berkowitz et al. [2006] briefly discuss analytic results for
transport in fields with large correlation lengths, includ-
ing the “racetrack” model (a perfectly stratified aquifer).
Although these fields demonstrate super-Fickian plume
growth, Berkowitz et al. [2006] point out that it cannot
be considered anomalous transport as it is merely a super-
position of normal transport in each layer. In the case of
purely advective transport in a stratified aquifer, dispersiv-
ity should grow with X, similar to our results. Matheron
and de Marsily [1980] found that dispersivity grows with
/2 in the presence of diffusion between layers. Since the
long-range continuity inherent in our osfBm fields clearly
engenders very stratified flow, we might expect Matheron
and de Marsily’s result if local diffusion or dispersion is in-
cluded in our simulations; however, this has not yet been
investigated.
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Figure 13. The effect of initial transverse plume dimen-
sions on effective dispersion. Ensemble transport through
purely isotropic fBm fields (H = 0.25) is investigated
to best explore the validity of Neuman’s [1990] universal
scaling theory. When we “observe” effective dispersiv-
ity at a mean travel distance proportional to the initial
plume width (black dots), we can see Neuman’s appar-
ent super-Mercado growth, although all individual and
ensemble plume growth is limited to Mercado’s linear
growth.
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In an elegant attempt to synthesize a universal dispersivn
ity relationship, Neuman [1990] presented a plot of apparemnt:
longitudinal dispersivity versus scale of study from separates
sites, demonstrating fractal behavior where oy o X128z
estimating H = 0.25 from the empirical fit to the datas
Our simulations suggest that no single site will create supes
Mercado growth, so the question remains—why do multipber
plumes exhibit the “super-Mercado” growth? One possibids
ity is the effect of initial plume size on longitudinal plunse
dispersion. Both transverse and longitudinal plume sizeo
have an effect on dispersion in fractal fields (Figure 13). Iaa
Figure 13 we have plotted effective dispersivity for plumes?
of varying initial width. Isotropic fBm fields were use®s
(H = 0.25) to investigate the validity of Neuman’s [1996{
universal scaling theory. “Observations” of apparent dispef&s
sivity are made (large black dots) at mean travel distancés
proportional to the initial plume sizes. These imaginary “ol§7
servations” are based on the conjecture that smaller initi&
plumes will not travel as far before natural attenuation &#
dilution will reduce them to undetectable levels. In shor%®
larger initial plumes travel farther. In core and lab-scalé
tests this is unavoidable. Therefore, dispersivity measuré?
ments at small scales are likely a result of smaller initi&
plume sizes, and dispersivity measurements at larger travét*
distances are likely coming from larger initial plumes. Wheif®
dispersivity is observed for various plume sizes when tIfé&
mean travel distance is some proportion of the initial plunf&’
width, then a super-Mercado relation is observed (Figufé®
13). This effect of initial plume size on apparent dispef?
sivity could give the appearance of a super-linear growt’
of apparent dispersivity as observed by Welty and Gelhd?
[1989], Neuman [1990] and Gelhar et al. [1992], although’
no individual or ensemble plume will actually exhibit suclt’
growth. Similar behavior was observed in anisotropic OSfBI;IZl:

fields as well.
706

707

6. Discussion 708
709

A key assumption in the derivations by Neuman [1996]

is that a fractal K-field produces a fractal velocity fieldu
As a particle moves within a stream tube, it is assumed toe
always have a chance of encountering higher velocity zoness
accelerating plume growth. However, if stream tubes are des
fined by a predominantly layered geometry, then they wills
have a fixed flux and cannot proportionately increase veloess
ity through areas of higher K without violating conservationr
of mass requirements. On the other hand, our numerical ress
sults may be skewed due to the far-reaching influence of tlveo
artificial boundaries. These effects are typically assumedo
to be negligible [e.g. Hassan et al., 1997]. To explore tlret
possibility of significant boundary effects we conducted sevz
eral ensemble simulations with sequentially smaller domais
sizes. The results of these simulations matched the large
domain size simulations, suggesting that boundary effect®
are minimal. 726
Some analytic solutions have been proposed for the reld?”
tion between transverse plume size and effective dispersion.
Dagan [1994] emphasizes that any heterogeneities smaller
than the size of the plume will contribute to dispersion,
while larger scale heterogeneities will only affect uncertainty,
in the location of the plume. Dagan [1994] predicts that the,
effective dispersion will grow with [“ for transverse plumg,
dimension [. Some preliminary results indicate a weaker des
pendence of dispersion on transverse plume dimension. If we,
compare dispersivities for various plume sizes at the sanyes
travel distance in Figure 13 we observe a relationship closes.
to a o< 195, At larger mean travel distance, the dispersivitys
data for smaller initial plumes becomes much more irreguss
lar (and is not shown), indicating that larger ensemble sets;
are needed for smaller plumes. Because the smaller initiads

ensemble plumes are very uncertain, it may be extremely
difficult to predict the growth of small plumes in fractal hy-
draulic conductivity fields.

In all the simulations presented here we have neglected
local dispersion, and modeled purely advective transport, in
order to most closely match the analytic theories we wished
to test. Nonetheless, the inclusion of significant local dis-
persion could appreciably change plume behavior. Kapoor
and Gelhar [1994a, 1994b] and Kapoor and Kitanidis [1998]
observed that local dispersion is the only process that leads
to the destruction of concentration variance (or the spatial
fluctuations in concentration). In our ensemble plumes we
do not see a significant concentration variance (Figure 11).
Furthermore, the plumes do not converge to a Gaussian, so
that classical analytic theories about concentration variance
may not apply. Further research involving the addition of
local dispersion will be a valuable addition to the present re-
search. In particular, local dispersion could have significant
effects on the evolution of single-realization plumes, since
particles will be less restricted to stream tubes.

Modeling real-world flow and transport problems with
fractal fields is a difficult task given the extensive charac-
terization necessary as well as the inherent uncertainty in
the model. Similar to the present work, most research has
attempted to characterize the average behavior across an en-
semble of possible realizations [Molz et al., 2004]. The ability
to condition these fields given measured values of conductiv-
ity could vastly improve the practical utility of the model.

The simulations presented in this paper may also be gen-
eralized to 3-d. All the operator scaling properties as well
as the mixing measure can easily be generalized to allow for
another degree of freedom. The only significant issue will
be computational capabilities, as an additional dimension
adds to the computations many fold. It could prove useful
to explore the use of block scale dispersivity, presented in
Liuw and Molz [1997b] to reduce the grid size in 3-d. Liu
and Molz [1997b] found that fractal behavior could be mod-
eled by using a coarser grid and representing smaller-scale
heterogeneities by increased local-scale dispersivities. Our
finding that the dispersivity is, to first order, approximately
linear with mean distance would easily apply to the grid
scale. Unfortunately, the transport is highly non-Gaussian
so the practical limits of upscaling are unknown. This con-
cept could be tested in 2-d, and if found to be an accurate
alternative, could be applied to 3-d operator-scaling fields.

The mixing measures here assume some underlying con-
nection between fractal behavior of depositional surface wa-
ter systems (such as braided streams) and the underlying
aquifers. This could be a possible (and simple) method for
quantifying the statistical dependence structure of aquifers
without the need for invasive characterization across a wide-
range of scales. Sapozhnikov and Foufoula-Georgiou [1996]
present a straightforward method for determining the fractal
dimension of braided streams based on aerial photographs.
Investigation into the relation between the surface and sub-
surface manifestations of fractal behavior could be extremely
valuable.

7. Conclusions

e The growth of longitudinal dispersivity versus mean
travel distance is limited to linear rates for both individual
and ensemble plume growth in 2-d classical isotropic fBm
fields. For smaller values of the Hurst coefficient the in-
crease in apparent dispersivity falls off from linear growth
at larger travel distances, but remains super-Fickian.

e The mixing measure M (6) has a less significant impact
on plume evolution when compared with the effects of vari-
ation in the transverse Hurst coefficient.

e Accurate predictions of flow and transport cannot be
made based upon a single value of the longitudinal Hurst
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coefficient due to the strong effects of the transverse Hursto
coefficient as well as the radius of isotropy. 781

e The matrix stretching of the convolution kernel accordsz
ing to the anisotropy of the orthogonal Hurst coefficients
has a very significant impact on the continuity of high- an@
low-K material within the aquifer. This stretching is heav-
ily dependent on the radius of isotropy. Fields described
by the exact same scaling matrix @ as well as mixing mea-
sure M (0) may demonstrate different correlation st]ruc‘curgg,5
based upon the chosen radius of isotropy.

e Because there is no fractal cutoff in our fBm fields, non,g7
of the individual plumes transition to Fickian or asymptotigs
growth, but always remain in a pre-asymptotic state. 789

e In all of the cases investigated (including individuad
and ensemble simulations) the plumes demonstrate nearky
Mercado-type growth (apparent dispersivity proportionad
to mean travel distance). Results indicate that Mercadwes
plume growth cannot be exceeded in 2-d operator-scaling
fBm fields. 795

e In both fBm and osfBm fields, dispersivity of the plunfé&
centroids is limited to linear growth with mean centroid dig¥”
placement. In fBm fields with large Hurst coefficients a sig®®
nificant portion of ensemble dispersivity is a result of dif¥’
persivity of individual plume centroids. For lower values &f°
the Hurst coefficient, ensemble dispersivity is dominated baol
spreading of 1nd1v1dual plumes, dispersivity of the centronfé
being much less important to the ensemble spreading. s04

o Neuman’s [1990] observation of super-linear growth qf
apparent dispersivity with scale of study can be explaineg
by the effect of initial plume size on transport. We hypothgg,
size that initially larger plumes tend to persist longer and axg,
typically observed at larger travel distances. If we “observeio
apparent dispersivity at mean travel distances proportional
to initial plume width, we can reproduce Neuman’s [1996}
super-linear growth, although all individual and ensembke
plumes are limited to linear growth of apparent dispersivit§s

814
815

8. Notation a16

817
ar, — longitudinal dispersivity [L]. 818
A — scalar order of fractional integration. 819
B(dz) — uncorrelated (white) Gaussian noise. 820

Br(xz) - isotropic fractional Brownian motion. :2
B, (x) — (operator) fractional random field. o2
d — number of dimensions. 824
fBm — fractional Brownian motion. 825
G(xz,h) - fractional Gaussian noise, with increments %
H — scalar Hurst coefficient. z;
I — identity matrix. 820
k ~ wave vector [L™]. 830
K — hydraulic conductivity [LT™!]. 831
M(0) — measure of directional weight within ¢(x).
osfBm — operator-scaling fractional Brownian motiogi
Q — deviations from isotropy matrix. 635
R — radius of isotropy. 836
VAR(X) -
X — mean particle longitudinal travel distance. %
Hin(K) — mean of the In(K) field. zzz
Oin(K) — standard deviation of the In(K) field. oal
0
o(x) — scaling (convolution) kernel. 843
844
845
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