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1. Abstract

Motivated by field measurements of aquifer hydraulic con-5

ductivity (K), recent techniques were developed to construct6

anisotropic fractal random fields, in which the scaling, or7

self-similarity parameter, varies with direction and is de-8

fined by a matrix. Ensemble numerical results are analyzed9

for solute transport through these 2-D “operator-scaling”10

fractional Brownian motion (fBm) ln(K) fields. Both the11

longitudinal and transverse Hurst coefficients, as well as the12

“radius of isotropy” are important to both plume growth13

rates and the timing and duration of breakthrough. It is14

possible to create osfBm fields that have more “continuity”15

or stratification in the direction of transport. The effects16

on a conservative solute plume are continually faster-than-17

Fickian growth rates, highly non-Gaussian shapes, and a18

heavier tail early in the breakthrough curve. Contrary to19

some analytic stochastic theories for monofractal K fields,20

the plume growth rates never exceed Mercado’s [1967] purely21

stratified aquifer growth rate of plume apparent dispersivity22

proportional to mean distance. Apparent super-stratified23

growth must be the result of other demonstrable factors,24

such as initial plume size.25

2. Introduction

The first analytical studies of the stochastic ADE used26

finite correlation length random hydraulic conductivity (K)27

fields and found that plumes transition from purely stratified28

growth rates to Fickian growth after traversing a number of29

correlation lengths [Gelhar and Axness, 1983]. Analysis of30

reported dispersivity versus plume size suggested that real31

plumes might not reach the Fickian limit [e.g., Welty and32

Gelhar 1989]. Fractional Brownian motion (fBm) was, ini-33

tially, an attractive model for aquifer hydraulic conductivity34

because it describes evolving heterogeneity at all scales, typi-35

cal of many real-world data sets [e.g., Molz et al., 1990]. Fur-36

thermore, it could explain continuous super-Fickian plume37

growth. However, when the power spectrum (Fourier trans-38

form of the correlation function) of fBm is used in the classi-39

cal linearized and small-perturbation solution of the stochas-40

tic ADE (see Neuman, [1990] and Di Federico and Neuman41

[1998b]), the growth rate not only can be faster than Fick-42

ian, but faster than the purely stratified model theorized43

by Mercado [1967]. This faster-than-Mercado result for a44

plume in a single aquifer has been used to explain the growth45

of plumes in different aquifers at different scales [Neuman,46

1990]. However, this finding depends on several assumptions47

on top of the typical small-perturbation assumptions and48

has not (to our knowledge) been duplicated in a numerical49

experiment. Hassan et al. [1997] ran numerical transport50

Copyright 2007 by the American Geophysical Union.
0043-1397 /07/$9.00

experiments in low-heterogeneity fractal fields and found, as51

expected, super-Fickian growth, but the upper limit of the52

growth rate was not shown. Herein we investigate whether53

sustained super-Mercado growth rates may be attained by a54

single or an ensemble plume, and also explore other factors55

that could contribute to the apparent super-Mercado growth56

described by Welty and Gelhar [1989], Neuman [1990], and57

Gelhar et al. [1992].58

Most previous fBm models have been defined by a Hurst59

coefficient H that is independent of direction. Rajaram and60

Gelhar [1995], Zhan and Wheatcraft [1996], and Di Fed-61

erico et al. [1999] defined statistically anisotropic fBm in62

which the strength of the correlation of the increments var-63

ied smoothly around the unit circle, but the correlation de-64

cay rate versus separation distance falls off with the same65

power-law in all directions. The order of the power law de-66

fines the scaling coefficient H. If this value does not vary67

with direction in an fBm random field, we refer to it as hav-68

ing isotropic scaling. This isotropic scaling is an unrealistic69

assumption for granular sedimentary aquifers—it is likely70

that there is more persistent correlation in the horizontal71

and/or dip direction compared to the strike or vertical di-72

rections. Based on analyses of four hydraulic conductivity73

sets, Liu and Molz [1997a] found that the power-law scaling74

can vary significantly in the horizontal and vertical direc-75

tions in agreement with past findings [Hewett, 1986; Molz76

and Boman, 1993, 1995]. Among others, Deshpande et al.77

[1997], Tennekoon et al. [2003], Castle et al. [2004], and78

Benson et al. [2006] also presented evidence of anisotropic79

scaling in real-world sedimentary rock.80

We use a numerical technique [Benson et al., 2006] that81

can construct random fields with anisotropic scaling. Those82

authors presented a generalization of classic isotropic fBm83

called operator-scaling fractional Brownian motion (osfBm)84

that both allowed for anisotropic scaling as well as vary-85

ing degrees of directional continuity in the K structure.86

The “mixing measure” or weight function has the poten-87

tial to model directionality that may be closely related to88

depositional patterns. This continuity can be defined by a89

probability measure on the curve defined by the “radius of90

isotropy” in 2-D (see Figure 1). The “radius of isotropy”91

is the radius of an osfBm at which there is no anisotropic92

rescaling of space (Figure 1). This radius of isotropy is a93

mathematical parameter of osfBm fields that could poten-94

tially be measured from observation of the convolution ker-95

nel (Figure 2), which can be directly calculated from the cor-96

relation function [Molz et al., 1997]. The radius of isotropy97

is an important parameter of osfBm fields as it can signifi-98

cantly affect the directional continuity of the fields.99

Some difficulties arise when applying a numerical flow100

model to fractal fields—a true fBm is scale invariant, and101

has infinite correlation extent. These properties must nat-102

urally be violated when simulating fBm numerically on a103

finite domain, by imposing a high and low-frequency cut-104

off corresponding to the grid and the domain sizes respec-105

tively. Painter and Mahinthakumar [1999] and Herrick et106
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al. [2002] found that prediction uncertainty is strongly af-107

fected by the system size and the propagation of boundary108

conditions deep into the modeled domain. Both Ababou and109

Gelhar [1990] and Zhan and Wheatcraft [1996] argue that the110

high-frequency (small scale) cutoff is important to transport111

for small values of the Hurst coefficient. However, according112

to Di Federico and Neuman [1997] the high-frequency cut-113

off does not significantly influence the properties of fractal114

fields given sufficient separation between the low and high-115

frequency cutoffs.116

FBm and its extensions are based on convolution of an117

uncorrelated random Gaussian “noise” with a kernel ϕ(x)118

that is defined by its self-similarity. The kernel can be de-119

composed into two components: one that describes decay120

of weight versus distance and one that describes the pro-121

portion of correlation weight in every direction. The latter122

portion is called the mixing measure, which Benson et al.123

[2006] applied to the function ϕ̂(k), the convolution kernel124

in Fourier space at any wave vector k. It is unclear exactly125

how this angular dependence in Fourier space corresponds126

to the true angular dependence in real space. In this paper,127

we apply the mixing measure directly to the function ϕ(x),128

the convolution kernel in real space. In this way the effect129

on the directionality in K-structure is clear. Additionally,130

Benson et al. [2006] presented the results of solute trans-131

port through single realizations of operator-scaling random132

fields, in order to compare directly between realizations with133

slightly different structure. However, their results cannot be134

translated to the statistical behavior of the ensemble mean135

transport. Ensemble results are presented for all examples136

in this paper, making all results more robust and directly137

comparable to analytic theories developed using the ergodic138

hypothesis. We also investigate deviations of individual re-139

alizations from the ensemble.140

The fields used in this study have two advantages over141

classical, isotropic fBm fields: 1) the operator-scaling fields142

are described by matrix scaling values which allow differ-143

ent scaling (or different Hurst coefficients) in different direc-144

tions; and, 2) the mixing measure M(θ) accommodates any145

discretization on the radius of isotropy, allowing completely146

user-defined directionality in K-structure. The fast Fourier147

transform (FFT) method is used, allowing rapid generation148

of large fBm fields.149

3. Mathematical Background

Here we give a brief overview of the generation and corre-150

lation structure of operator-scaling random fields. Biermé et151

al. [2007] give a more rigorous derivation of the mathemat-152

ical properties of multidimensional fractional Brownian mo-153

tion (fBm) BH(x). In order to describe the properties of an154

fBm, we must first define the properties of the related frac-155

tional Gaussian noise (fGn) G(x, h) = BH(x+h)−BH(x). In156

one dimension (1-d), an fGn is statistically invariant under157

self-affine transformations: the random variables G(x, rh)158

and rHG(x, h) have the same Gaussian distribution [Molz et159

al., 1997]. The scalar H is the celebrated Hurst scaling co-160

efficient. The fGn is also statistically homogeneous: G(x, h)161

has the same distribution as G(x + r, h) for any separation162

r.163

A finite approximation of the continuous d-dimensional164

isotropic fBm can be created by multiplying the Fourier fil-165

ter with the scaling properties ϕ̂(ck) = c−Aϕ̂(k) against a166

Gaussian white noise in the spectral representation, where167

k is a wave vector. This relationship is satisfied by a sim-168

ple power law: ϕ̂(k) = |k|−A. Multiplying by this filter in169

Fourier space defines the operation of fractional-order inte-170

gration. In this isotropically scaling case in d-dimensions,171

the order of integration, A, is related to the Hurst co-172

efficient, by A = H + d/2, with 0 < H < 1 [Benson173

et al., 2006]. A random field that has different scaling174

rates in different directions can be generated by using a175

matrix-valued rescaling of space: ϕ̂(cQk) = c−Aϕ̂(k). The176

matrix Q defines the deviation from the isotropic case in177

which Q = I, the d × d identity matrix [Benson et al.,178

2006]. The matrix power cQ is defined by a Taylor series179

[cQ = exp(Q ln c) = I +Q ln c+ (Q ln c)2

2!
+ (Q ln c)3

3!
+ ...]. The180

scaling relation for the convolution kernel in Fourier space is181

given in Benson et al. [2006]: ϕ̂(cQk) = c−Aϕ̂(k). We can182

use the Fourier inversion formula ϕ(x) = 1
2π

�
eik·xϕ̂(k)dk183

to find the scaling relation in real space. We assume here184

that Q is a diagonal matrix (implying orthogonal eigenvec-185

tors):186

ϕ(cQ
x) =

1

2π

�
eik·(cQx)ϕ̂(k)dk

=
1

2π

�
eicQk·xϕ̂(k)dk.

187

Make the substitution cQk = z, therefore k = [cQ]−1z =188

c−Qz and dk = |c−Q|dz.189

ϕ(cQ
x) =

1

2π

�
eiz·xϕ̂(c−Q

z)|c−Q|dz

=
1

2π

�
eiz·xcAϕ̂(z)|c−Q|dz

= cA|c−Q|ϕ(x).

190

Recognizing that A = H + d
2

and |c−Q| = ctr(−Q) we ar-191

rive at the scaling relation for the convolution kernel in real192

space: ϕ(cQx) = cH+d/2+tr(−Q)ϕ(x) where tr() is the trace193

of the matrix, or sum of the eigenvalues. In this setting, we194

assume tr(Q) = d, so the scaling relationship simplifies to195

ϕ(cQ
x) = cH−d/2ϕ(x). (1)196

Any function satisfying the scaling relationship in (1) can197

be used to create an operator-scaling fBm (osfBm) Bϕ(x) by198

convolving (in a discrete Fourier transform sense) the kernel199

with uncorrelated Gaussian noise: Bϕ(x) = B(x) ? ϕ(x).200

The convolution product will have the self-affine distribu-201

tional property:202

Bϕ(cQ
x) = cHBϕ(x) (2)203

This equation specifies that the osfBm resembles itself (sta-204

tistically) after a rescaling in which space is stretched more205

in one direction than another. For simplicity, in this paper206

we present operator-scaling fields with orthogonal eigenvec-207

tors (diagonal matrix Q), although this is not a require-208

ment. We break the scaling function into the power-law209

versus “distance” component and the radial “weights” that210

define the strength of statistical dependence in any direc-211

tion. For example, a simple 2-D convolution kernel that212

satisfies this is:213

ϕ(x) = M(θ)[c1|x1|
2/q1 + c2|x2|

2/q2 ](H−1)/2 (3)214

where q1 and q2 are the diagonal components of Q (q1+q2 =215

d = 2). Constants c1 = [R]−2/q1 and c2 = [R]−2/q2 are216

defined in terms of R, the “radius of isotropy”. These con-217

stants allow for the possibility that different units may be218

used to measure the fields, such that the radius of isotropy219

R can have any value and any length units. M(θ) is an220

arbitrary measure of the directional weight, which is user-221

defined on the radius of isotropy corresponding to |x| = R.222

When creating the kernel, the directional weights M(θ)223

must be stretched anisotropically according to the matrix224
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Figure 1. Matrix stretching (and contraction) of the
curve defined by the “radius of isotropy” (or “curve of
isotropy”), R = 1 (from Benson et al., [2006]). The
dashed line shows the mapping of the point M(θ = π/4)
by the matrix rescaling of space cQx. Points on this
dashed line follow (x1, x2) = cQ( 1

√

2
, 1
√

2
) for all c ≥ 0.
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Figure 2. One-dimensional transects of ϕ(x)
(Hlongitudinal = 0.5, Htransverse = 0.3, isotropic mix-
ing measure). Intersection of the one-dimensional osfBm
transects defines the radius of isotropy R = 50. Such a
method could be used to determine the radius of isotropy
from the correlation function of a well defined data set.

Q. Figure 1 demonstrates how the geometry of the convo-225

lution kernel is induced by the scaling matrix Q according226

to the relationship:227

(x1, x2) = cQ(y1, y2) (4)228

for all c ≥ 0 and � y2
1 + y2

2 = R (radius of isotropy). This229

relation allows the tracing of angular sections of the curve of230

isotropy that define the mixing measure into a “stretched”231

space defined by the operator-scaling relationship. In other232

words, for the operator-scaling relationship (2) to be ful-233

filled, the weight function is stretched more in one direc-234

tion than another. Therefore, the function M(θ) specifies235

weights (a discrete or continuous measure) along the curve236

of isotropy |x| = R. These weights are then transferred237

along curves such as the dashed line in Figure 1. It is a sim-238

ple matter to separately calculate the value of the power law239

portion (in (3)) at every point x and multiply the two func-240

tions. In this example, the x1 direction is stretched outside241

of the radius of isotropy and compressed inside. Just the242

opposite is true for the x2 direction. This implies that the243

chosen radius of isotropy is very important to both mea-244

surement and simulation of osfBm fields. This issue does245

not arise in the isotropic case with a uniform rescaling of246
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512 respectively. The fields were created with the braided
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space. We note that the completely general M(θ) is a novel247

anisotropic spatial weighting even in the isotropically scal-248

ing case. We investigate the effect of changing the radius of249

isotropy R below.250

3.1. Fast Fourier Transform Convolution

Numerical evaluation of a convolution integral in multi-251

ple dimensions is, in general, very computationally intensive.252

For this reason, we make use of the theorem:253

254

F−1[F(ϕ(x))F(B(x))] = ϕ(x) ? B(x) (5)255

Here we define the kernel ϕ(x) and a d-dimensional se-256

quence of uncorrelated Gaussian random variables B(x),257

and Fourier transform F , and inverse transform F−1. The258

Fast Fourier Transform (FFT) algorithm is used to effi-259

ciently calculate the Fourier transforms. The FFT method260

has commonly been used for artificial generation of fBm261

[e.g. Hassan et al., 1997; Benson et al., 2006]; however,262

some researchers have suggested problems with this method263

of generation for fBm. Bruining et al. [1997] found that264

the Fourier transform method for generating fBm failed to265

produce the correct statistical properties. Bruining et al.266

observed that fBm generated by the FFT method did not267

produce the expected standard deviation of the means for268

various partitions. This could be a result of the small size269

(64 × 64) of the fields investigated. It has been noted (e.g.,270

Caccia et al. [1997]) that longer series (N ≥ 1024) are nec-271

essary for accurate estimation of the Hurst coefficient.272

To verify the correct fractal behavior of the operator-273

scaling random fields created by the FFT method, we sam-274

pled the fields along the orthogonal eigenvectors. If Bϕ(x)275

is an osfBm then it must obey the scaling relation in (2) for276

all c > 0. If u is an eigenvector of Q with eigenvalue q1277

then cQu = cq1u, and substituting this into (2), we have278

Bϕ(cq1u) = cHBϕ(u), and after a substitution r = cq1 :279

Bϕ(ru) = rH/q1Bϕ(u) (6)280

Therefore, in the direction of an eigenvector with eigenvalue281

qi (and only in this direction), a one-dimensional transect of282

an osfBm is a self-similar fBm with scaling coefficient H/qi.283

We assume that the sum of the positive eigenvalues of Q284

equals the Euclidean number of dimensions.285

We use dispersional analysis and rescaled range analy-286

sis applied to 1-d transects of data taken in the directions287

of the eigenvectors to estimate the Hurst coefficient(s). The288

fields must be sampled along the eigenvectors, or traditional289

methods of H estimation are not valid. Caccia et al. [1997]290

found dispersional analysis to be an accurate measure of291

the scaling behavior of fGn for smaller partition sizes (the292

largest partition sizes typically fall off from the linear behav-293

ior in log-log space). Dispersional analysis uses the standard294

deviation of the means for different partition sizes to quan-295

tify the scaling behavior of an fGn. Dispersional analysis296

of the increments of the one-dimensional transects was used297

to ensure the correct scaling properties of typical osfBm at298

the smaller partition sizes (Figure 3). The slope of the dis-299

persion statistic versus the partition size in a log-log plot is300

H − 1 [Caccia et al., 1997].301

As with dispersional analysis, rescaled range analysis in-302

volves calculating a local statistic for each partition size.303

The rescaled range (R/S) statistic is the range of the val-304

ues in the partition divided by the standard deviation of the305

values in the partition. Mandelbrot [1969b] found rescaled306

range analysis to be a robust measure of long-run statistical307

dependence. R/S analysis serves as a compliment to disper-308

sional analysis, since it is most reliable for larger partition309

sizes [Caccia et al., 1997]. In log-log space, the slope of the310

rescaled range statistic versus partition size should equal the311

Hurst coefficient along each eigenvector (Figure 4).312

For all ensemble simulations presented, 100 realizations313

were generated, each with a different “random” input314

Gaussian noise. The 2-D input noise and the convolution315

kernel were 2048 × 1024 arrays. The noise and the kernel316

were both transformed via FFT, multiplied together, then317

inverse transformed to create the convolution as described318

in the previous section. The middle 1/4 of each field was319

subsampled for transport simulation (in order to minimize320

periodic effects from the FFT) leaving a field with dimen-321

sions 1024 by 512 cells. It is typical to subsample the fields322

when synthetically generating an fBm. Lu et al. [2003] also323

found it necessary to subsample fields created by the succes-324

sive random additions (SRA) method due to irregularities325

near the boundaries of the domain.326

4. Transport Simulation Results

MODFLOW was used to solve for the velocity field as-327

suming an average hydraulic gradient across the fields of328

0.01, with no-flow boundaries at the top and bottom of the329

field. Using LaBolle et al.’s [1996] particle tracking code,330

100,000 particles were released in each field, spaced evenly331

between points 128 and 384 along the high head side of the332

fields to avoid lateral boundary effects on transport (giving a333

total of 10,000,000 particles for each ensemble of 100 realiza-334

tions). The local dispersion and diffusion were set to zero to335

most closely match the analytical assumptions of Di Federico336

and Neuman [1998b]: Benson et al. [2006] found that small337

local dispersivities did not appreciably change the growth338

rates of single plumes; however, Hassan et al. [1997] found339

that fairly large local dispersivity noticeably changed the340

plume shapes. Kapoor and Gelhar [1994b] showed that al-341

though local dispersion is important to the destruction of the342

spatial variance of concentration in heterogeneous aquifers,343

local dispersion does not appreciably affect the longitudinal344

spatial second moment or the macrodispersivity. For this345

study, we modeled purely advective transport as we were346

most interested in testing analytic predictions of longitudi-347

nal macrodispersivity in fractal fields. The effect of local348

dispersion on individual and ensemble plumes is part of an349

ongoing study.350

We monitored the plume evolution at logarithmic time351

steps to observe growth across many scales, as well as the352

earliest and latest breakthrough. Particle breakthrough353

rates were recorded, as well as longitudinal concentration354

profiles, computed by summing the particles in each trans-355

verse row of cells at each time step. Additionally, the356

first and second longitudinal moments of the plumes were357

recorded and used to calculate apparent dispersivity (αL) of358

the ensemble plumes, calculated using the formula 2αL =359

d(V AR(X))/dX̄, where X are the particle positions, and360

V AR(X) is the variance of the particle positions in the lon-361

gitudinal direction, calculated at each time step by the par-362

ticle tracking code. First differences of V AR(X) were used363

to approximate the derivative. Transverse dispersion was364

not addressed as the main goal of this paper is a compari-365

son with analytic predictions of longitudinal dispersivity in366

fractal fields.367

4.1. Transport in Isotropic fBm Fields

Beginning with a simple case, we explored the effects of368

the Hurst coefficient on transport in purely isotropic fBm369

fields (uniform mixing measure M(θ) = 1
2π

with Q = I,370

the identity matrix). The K fields were adjusted to be371

lognormally distributed with mean and standard deviations372

µln(K) = 0 and σln(K) = 1.5. For small mean travel dis-373

tances, the observed ensemble average dispersivity (relative374

or effective dispersivity) follows ballistic growth: a super-375

position of advective transport in a stratified conductivity376
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field, characterized by a linear growth of apparent disper-377

sivity with mean travel distance (Figure 5). In each case,378

(H = 0.2, 0.5, and 0.8), the dispersivity drops to sublinear379

(but still super-Fickian) growth at larger mean travel dis-380

tances. Counter-intuitively, the ln(K) field with the least381

persistence (H = 0.2) engendered greater spreading rates382

at the earliest time. We attribute this result to the greater383

small-scale heterogeneities at lower H (due to less correla-384

tion). The initial width of the plume samples more hetero-385

geneity for smaller H due to less correlation in the K field,386

which results in more dispersion at early times. At larger387

mean travel distances, the growth of effective dispersivity388

versus mean distance also follows a power law, with a lower389

exponent for a lower value of H. It is logical that lower390

H should lead to less dispersivity at large travel distances,391

due to less correlation and less large-scale heterogeneities.392

At long travel distances our results agree qualitatively with393

Kemblowski and Wen’s [1993] and Zhan and Wheatcraft’s394

[1996] calculations for fractal stratified aquifers that disper-395

sion should decrease for smaller Hurst coefficients. These396

papers predicted roughly linear growth of dispersivity ver-397

sus mean travel distance, which falls off from linear growth398

and approaches a constant (Fickian) value as the travel dis-399

tance approaches the maximum length scale (Lmax). Our400

plume mean distances do not approach the largest wave-401

length, which is larger than the domain size. However, for402

a lower Hurst coefficient, their analyses predict an earlier403

transition to sub-linear growth, which we also observe.404

Neuman [1995], Rajaram and Gelhar [1995], and Di Fed-405

erico and Neuman [1998b] predict the spreading of plumes in406

isotropic fractal K-fields similar to those in our experiments.407

Their predictions are based only on the Hurst coefficient in408

the longitudinal direction. Di Federico and Neuman [1998b]409

predict that a plume traveling in a fractal field with no frac-410

tal cutoff will exhibit permanently pre-asymptotic growth,411

with a longitudinal macrodispersivity (αL) that evolves ac-412

cording to αL ∝ X̄1+2H for mean travel distance X̄ and lon-413

gitudinal Hurst coefficient H. Rajaram and Gelhar [1995]414

predict that plume growth in an fBm K-field will exhibit415

a macrodispersivity according to αL ∝ X̄H from a two-416

particle, relative dispersion approach. Di Federico and Neu-417

man predict that if the plume growth exceeds the fractal418

cutoff (the plume is no longer continually sampling larger419

scales of heterogeneity) then there will be a transition to420

a Fickian growth rate (αL = const.). Mercado [1967] de-421

scribes a perfectly stratified model with no mixing between422

layers. This ballistic motion will exhibit linear growth of ap-423

parent macrodispersivity verses travel distance (αL ∝ X̄).424

Our results for isotropic fBm fields show a much weaker425

dependence on H than the predictions for growth of426

macrodispersivity (αL) by Rajaram and Gelhar [1995], who427

predicted a growth of macrodispersivity following the rela-428

tion αL ∝ X̄H . None of the plumes approach Di Federico429

and Neuman’s [1998b] prediction of super-linear and perma-430

nent pre-asymptotic growth, αL ∝ X̄1+2H . The observed431

ensemble average plume growth agrees qualitatively with432

the predictions by Rajaram and Gelhar [1995] that anom-433

alous dispersion is limited to linear or sublinear growth of434

dispersivity.435

In addition to longitudinal plume dispersion, we also in-436

vestigated the longitudinal dispersivity of plume centroids437

(Figure 5). The dispersivity of plume centroids grows lin-438

early in fBm fields. For larger Hurst coefficients, the dis-439

persivity grows at a faster (but still linear) rate. We can440

therefore infer that there is more uncertainty in plume lo-441

cation in fractal fields with higher Hurst coefficients. For442

higher values of the Hurst coefficient a larger portion of443

the total ensemble dispersivity is a result of the dispersiv-444

ity of the plume centroids, indicating more realization-to-445

realization variability. Lower values of the Hurst coefficient446
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Figure 5. Apparent dispersivity versus mean travel dis-
tance for several values of the Hurst coefficient in the
purely isotropic case (constant mixing measure with no
matrix rescaling). Results are plotted for both the en-
semble average plume dispersivity (effective dispersivity)
and the dispersivity of the plume centroids.

describe fields with more small scale heterogeneity and less447

realization-to-realization variability. As a result, more of the448

ensemble dispersivity is a result of the spreading of individ-449

ual plumes for lower Hurst coefficients. The dispersivity of450

the ensemble plume is equal to the sum of the effective dis-451

persivity and the dispersivity of the plume centroids. The452

behavior of the ensemble plume dispersivity was found to453

be very similar to that of the effective dispersivity (ensem-454

ble average dispersivity) as the dispersivity of the plume455

centroids is much smaller than the effective dispersivity.456

4.2. Effects of the Mixing Measure

The mixing measure specifies the strength of correlation457

in any direction. In essence this amounts to a prefactor on458

the power law correlation in any direction. Most previous re-459

search (numerical and analytical) has focused on the effect of460

the scaling exponent on growth rate. To explore the effects461

of different mixing measures, or weight functions M(θ), en-462

semble simulations were run with 2-D random osfBm fields.463

Typical values of the Hurst coefficients were used: 0.5 in464

the horizontal (direction of transport) and 0.3 in the verti-465

cal or transverse direction. Although there is a great deal466

Figure 6. One realization of an osfBm with
Hlongitudinal = 0.7, Htransverse = 0.9, elliptical mixing
measure, R = 50
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Figure 7. Anisotropic mixing measures presented by Benson et al. [2006]: a) “braided stream” b)
“downstream” c) “elliptical”. M(θ) is discretized into 20 sections on the radius of isotropy.

Figure 8. Log(K) fields with identical scaling behavior (Hlongitudinal = 0.5, Htransverse = 0.3, elliptical
mixing measure) but varying radius of isotropy (R). a) R = 1000, b) R = 100, c) R = 10, d) R = 1

of variability in measured values of H from boreholes and467

other methods (see Benson et al. [2006] for a review of468

many of the site investigations) these values for the horizon-469

tal and vertical Hurst coefficients appear to be reasonable,470

middle-of-the-road values. The K fields were adjusted to471

be lognormally distributed with mean and standard devia-472

tions µln(K) = 0 and σln(K) = 1.5. Ensemble results for the473

“braided stream”, “downstream”, “elliptical”, (see Figure474

7) and uniform measure (M(θ) = 1/2π) (all from Benson et475

al. [2006]) were compared. The “braided stream” measure476

was constructed from a histogram of stream channel direc-477

tions. The “downstream” measure is only the downstream478

components of the braided stream measure. The “elliptical”479

measure is a classical elliptical set of weights with the major480

axis aligned with the direction of transport.481

The effects of these mixing measures on the breakthrough482

and dispersion are fairly predictable, and are not shown in483

any plots. The braided and downstream measures create484

K-fields with continuity that resembles the braided stream485

which is the origin for the measure. The elliptical measure486

produces a somewhat smoother continuity in the hydraulic487

conductivity field (Figure 6). The uniform measure is the488

only one that produces a significantly different K-field, due489

to the much greater weight in the transverse direction. In490

general, more weight in the longitudinal direction creates491

more continuity in the structure of the K-field, leading to492

earlier breakthrough, and increased dispersivity vs. mean493

travel distance. The effects of the mixing measure were ob-494

served to be small in comparison to the effects of the orthog-495

onal Hurst coefficients, and the chosen radius of isotropy,496

discussed immediately.497

4.3. Effects of Radius of Isotropy
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In the case of anisotropic matrix rescaling (osfBm), the498

chosen radius of isotropy (R) is extremely important. The499

weighting function is rescaled according to Figure 1. As a500

result, for the same Hlongitudinal and Htransverse we may501

observe very different correlation structures depending on502

whether we are inside or outside of the radius of isotropy503

(Figure 8).504

In studies that investigate the anisotropic scaling of the505

properties of sedimentary rocks [e.g. Hewett, 1986; Castle506

et al., 2004; Liu and Molz, 1997a; Molz and Boman, 1993,507

1995; Tennekoon et al., 2003] the typical assumption has508

been that determining the scaling behavior, or Hurst coef-509

ficients, in orthogonal directions (assumed to be the eigen-510

vectors of H) is sufficient to describe the structure of the511

aquifer. However, fields with the same orthogonal Hurst co-512

efficients may describe extremely different correlation struc-513

tures at scales smaller or larger than the radius of isotropy514

(Figure 8). These unique correlation structures also signif-515

icantly affect plume growth (Figures 9 and 10). Visual in-516

spection of the osfBm fields (Fig. 8) demonstrates that many517

of the possible osfBm fields do not resemble typical aquifer518

hydraulic conductivity. However, some appear to represent519

many of the features of say, braided stream systems, with520

narrow windows of directional continuity, bifurcating high-521

K zones, and long-range continuity of both high- and low-K522

units (Figure 6).523

Methods for determining the radius of isotropy from real524

data may be developed. In Figure 2 we see one-dimensional525

transects of ϕ(x), which can be directly calculated from the526
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Figure 9. Effective dispersivity versus mean travel dis-
tance for ensemble plumes in Log(K) fields with identical
scaling behavior (Hlongitudinal = 0.5, Htransverse = 0.3,
elliptical mixing measure) but varying radius of isotropy
(R). The analytic growth rates predicted by Di Federico
and Neuman (D-F&N) [1998b], Mercado [1967], and Ra-
jaram and Gelhar (R&G) [1995] are also plotted.

auto-correlation function [Molz et al., 1997] which can be es-527

timated for a real data set. With a uniform mixing measure,528

we observe the radius of isotropy, R = 50, at the intersection529

of the two transects (Figure 2). A non-uniform mixing mea-530

sure could complicate such observations. Future research531

could develop more advanced methods for experimental de-532

termination of the radius of isotropy in osfBm fields.533

The effective longitudinal dispersivity appears to be lim-534

ited to linear or sublinear growth with respect to mean travel535

distance for all osfBm fields (Fig. 9). The magnitudes of αL536

at any mean travel distance range over nearly an order-of-537

magnitude, but none exceed linear growth. For most of the538

simulations, we do not plot values of αL beyond a mean539

travel distance of approximately 100 cells. The plots are cut540

off as soon as the first leading particles reach the domain541

boundary at x1 = 1024, since the plume variance can no542

longer be accurately calculated. In the ensemble case, the543

leading particles may have traveled as much as an order-of-544

magnitude farther than the plume centroid. Even though545

the σln(K) was fairly small at 1.5, the ensemble plumes are546

highly non-Gaussian (Figure 11) and cannot be modeled by547

a classical, local, second-order, advection-dispersion equa-548

tion.549

Similar to the case of classical isotropic fBm fields, the550

plume centroid dispersivity was found to be limited to lin-551

ear growth with mean centroid displacement. The slope of552

the linear growth is dependent on the correlation structure553

and therefore depends on the orthogonal Hurst coefficients554

as well as the unit circle radius.555

Benson et al. [2006] made observations concerning the556

effects of the transverse Hurst coefficient on plume growth.557

The authors found that higher transverse Hurst coefficients558

created more continuity in the K fields, which led to faster559
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Figure 10. Normalized breakthrough curves for ensem-
ble plumes in ln(K) fields with identical scaling behavior
(Hlongitudinal = 0.5, Htransverse = 0.3, elliptical mixing
measure) but varying radius of isotropy (R). The arith-
metic mean and geometric mean breakthrough times are
also plotted. The arithmetic mean hydraulic conductiv-
ity is simply the average of all the K values in the field.
The geometric mean is the nth root of n numbers—the
geometric mean K is smaller than the arithmetic mean
K, which leads to a later geometric mean breakthrough.
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plume growth. The added complication of the effects of560

the radius of isotropy make such a general observation im-561

possible. Nonetheless, we do observe that 1) both the trans-562

verse and longitudinal Hurst coefficients as well as the radius563

of isotropy are important to transport, and 2) all ensem-564

ble transport in 2-d osfBm fields is limited to sub-Mercado565

growth rates.566

5. Comparison with Analytic Predictions

None of the plumes (in either the classical isotropic case or567

the anisotropic operator-scaling case) demonstrate asymp-568

totic or Fickian-type growth (Figures 5 and 9), a result that569

agrees with the analytic theories, as the plume size never ex-570

ceeds the scale of the largest heterogeneities present. All of571

the ensemble results exhibit primarily Mercado-type plume572
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Figure 11. Semi-log plot of ensemble longitudinal plume
profile (insert: plume profile in real space). We see a
plume shape has a very fast leading edge that is highly
non-Gaussian for this case with Hlongitudinal = 0.7,
Htransverse = 0.9, elliptical measure, R = 50 (same as
Figure 6). The K-fields were constructed with µln(K) = 0
and σln(K) = 1.5. The leading edge of the ensemble
plume decays slower than the Gaussian at approximately
an exponential rate.
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Figure 12. Apparent dispersivity for 20 individual
plume realizations. No individual plumes exhibit sus-
tained super-Mercado growth rates.

growth. None of the results follow Di Federico and Neuman’s573

permanently pre-asymptotic growth. Simulations were con-574

ducted with various longitudinal and transverse Hurst co-575

efficients (results are not shown for brevity). These ensem-576

ble results also demonstrated primarily Mercado-type plume577

growth. In all of the experiments conducted, the ensem-578

ble average plume growth through the osfBm log(K) fields579

does not exceed Mercado’s stratified result. This includes580

cases in which σln(K) is reduced to 0.01 to better coincide581

with small perturbation requirements of the analytic theo-582

ries. In addition to the ensemble results, an examination of583

the growth rates of individual realizations gave very similar584

results (Figure 12). None of the individual plumes sustain585

super-Mercado growth, and none of the plumes converge to586

a Fickian regime.587

Berkowitz et al. [2006] briefly discuss analytic results for588

transport in fields with large correlation lengths, includ-589

ing the “racetrack” model (a perfectly stratified aquifer).590

Although these fields demonstrate super-Fickian plume591

growth, Berkowitz et al. [2006] point out that it cannot592

be considered anomalous transport as it is merely a super-593

position of normal transport in each layer. In the case of594

purely advective transport in a stratified aquifer, dispersiv-595

ity should grow with X̄, similar to our results. Matheron596

and de Marsily [1980] found that dispersivity grows with597

t1/2 in the presence of diffusion between layers. Since the598

long-range continuity inherent in our osfBm fields clearly599

engenders very stratified flow, we might expect Matheron600

and de Marsily’s result if local diffusion or dispersion is in-601

cluded in our simulations; however, this has not yet been602

investigated.603
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Figure 13. The effect of initial transverse plume dimen-
sions on effective dispersion. Ensemble transport through
purely isotropic fBm fields (H = 0.25) is investigated
to best explore the validity of Neuman’s [1990] universal
scaling theory. When we “observe” effective dispersiv-
ity at a mean travel distance proportional to the initial
plume width (black dots), we can see Neuman’s appar-
ent super-Mercado growth, although all individual and
ensemble plume growth is limited to Mercado’s linear
growth.
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In an elegant attempt to synthesize a universal dispersiv-604

ity relationship, Neuman [1990] presented a plot of apparent605

longitudinal dispersivity versus scale of study from separate606

sites, demonstrating fractal behavior where αL ∝ X̄1+2H ,607

estimating H = 0.25 from the empirical fit to the data.608

Our simulations suggest that no single site will create super-609

Mercado growth, so the question remains—why do multiple610

plumes exhibit the “super-Mercado” growth? One possibil-611

ity is the effect of initial plume size on longitudinal plume612

dispersion. Both transverse and longitudinal plume size613

have an effect on dispersion in fractal fields (Figure 13). In614

Figure 13 we have plotted effective dispersivity for plumes615

of varying initial width. Isotropic fBm fields were used616

(H = 0.25) to investigate the validity of Neuman’s [1990]617

universal scaling theory. “Observations” of apparent disper-618

sivity are made (large black dots) at mean travel distances619

proportional to the initial plume sizes. These imaginary “ob-620

servations” are based on the conjecture that smaller initial621

plumes will not travel as far before natural attenuation or622

dilution will reduce them to undetectable levels. In short,623

larger initial plumes travel farther. In core and lab-scale624

tests this is unavoidable. Therefore, dispersivity measure-625

ments at small scales are likely a result of smaller initial626

plume sizes, and dispersivity measurements at larger travel627

distances are likely coming from larger initial plumes. When628

dispersivity is observed for various plume sizes when the629

mean travel distance is some proportion of the initial plume630

width, then a super-Mercado relation is observed (Figure631

13). This effect of initial plume size on apparent disper-632

sivity could give the appearance of a super-linear growth633

of apparent dispersivity as observed by Welty and Gelhar634

[1989], Neuman [1990] and Gelhar et al. [1992], although635

no individual or ensemble plume will actually exhibit such636

growth. Similar behavior was observed in anisotropic osfBm637

fields as well.638

6. Discussion

A key assumption in the derivations by Neuman [1990]639

is that a fractal K-field produces a fractal velocity field.640

As a particle moves within a stream tube, it is assumed to641

always have a chance of encountering higher velocity zones,642

accelerating plume growth. However, if stream tubes are de-643

fined by a predominantly layered geometry, then they will644

have a fixed flux and cannot proportionately increase veloc-645

ity through areas of higher K without violating conservation646

of mass requirements. On the other hand, our numerical re-647

sults may be skewed due to the far-reaching influence of the648

artificial boundaries. These effects are typically assumed649

to be negligible [e.g. Hassan et al., 1997]. To explore the650

possibility of significant boundary effects we conducted sev-651

eral ensemble simulations with sequentially smaller domain652

sizes. The results of these simulations matched the larger653

domain size simulations, suggesting that boundary effects654

are minimal.655

Some analytic solutions have been proposed for the rela-656

tion between transverse plume size and effective dispersion.657

Dagan [1994] emphasizes that any heterogeneities smaller658

than the size of the plume will contribute to dispersion,659

while larger scale heterogeneities will only affect uncertainty660

in the location of the plume. Dagan [1994] predicts that the661

effective dispersion will grow with l2 for transverse plume662

dimension l. Some preliminary results indicate a weaker de-663

pendence of dispersion on transverse plume dimension. If we664

compare dispersivities for various plume sizes at the same665

travel distance in Figure 13 we observe a relationship closer666

to α ∝ l0.5. At larger mean travel distance, the dispersivity667

data for smaller initial plumes becomes much more irregu-668

lar (and is not shown), indicating that larger ensemble sets669

are needed for smaller plumes. Because the smaller initial670

ensemble plumes are very uncertain, it may be extremely671

difficult to predict the growth of small plumes in fractal hy-672

draulic conductivity fields.673

In all the simulations presented here we have neglected674

local dispersion, and modeled purely advective transport, in675

order to most closely match the analytic theories we wished676

to test. Nonetheless, the inclusion of significant local dis-677

persion could appreciably change plume behavior. Kapoor678

and Gelhar [1994a, 1994b] and Kapoor and Kitanidis [1998]679

observed that local dispersion is the only process that leads680

to the destruction of concentration variance (or the spatial681

fluctuations in concentration). In our ensemble plumes we682

do not see a significant concentration variance (Figure 11).683

Furthermore, the plumes do not converge to a Gaussian, so684

that classical analytic theories about concentration variance685

may not apply. Further research involving the addition of686

local dispersion will be a valuable addition to the present re-687

search. In particular, local dispersion could have significant688

effects on the evolution of single-realization plumes, since689

particles will be less restricted to stream tubes.690

Modeling real-world flow and transport problems with691

fractal fields is a difficult task given the extensive charac-692

terization necessary as well as the inherent uncertainty in693

the model. Similar to the present work, most research has694

attempted to characterize the average behavior across an en-695

semble of possible realizations [Molz et al., 2004]. The ability696

to condition these fields given measured values of conductiv-697

ity could vastly improve the practical utility of the model.698

The simulations presented in this paper may also be gen-699

eralized to 3-d. All the operator scaling properties as well700

as the mixing measure can easily be generalized to allow for701

another degree of freedom. The only significant issue will702

be computational capabilities, as an additional dimension703

adds to the computations many fold. It could prove useful704

to explore the use of block scale dispersivity, presented in705

Liu and Molz [1997b] to reduce the grid size in 3-d. Liu706

and Molz [1997b] found that fractal behavior could be mod-707

eled by using a coarser grid and representing smaller-scale708

heterogeneities by increased local-scale dispersivities. Our709

finding that the dispersivity is, to first order, approximately710

linear with mean distance would easily apply to the grid711

scale. Unfortunately, the transport is highly non-Gaussian712

so the practical limits of upscaling are unknown. This con-713

cept could be tested in 2-d, and if found to be an accurate714

alternative, could be applied to 3-d operator-scaling fields.715

The mixing measures here assume some underlying con-716

nection between fractal behavior of depositional surface wa-717

ter systems (such as braided streams) and the underlying718

aquifers. This could be a possible (and simple) method for719

quantifying the statistical dependence structure of aquifers720

without the need for invasive characterization across a wide-721

range of scales. Sapozhnikov and Foufoula-Georgiou [1996]722

present a straightforward method for determining the fractal723

dimension of braided streams based on aerial photographs.724

Investigation into the relation between the surface and sub-725

surface manifestations of fractal behavior could be extremely726

valuable.727

7. Conclusions

• The growth of longitudinal dispersivity versus mean728

travel distance is limited to linear rates for both individual729

and ensemble plume growth in 2-d classical isotropic fBm730

fields. For smaller values of the Hurst coefficient the in-731

crease in apparent dispersivity falls off from linear growth732

at larger travel distances, but remains super-Fickian.733

• The mixing measure M(θ) has a less significant impact734

on plume evolution when compared with the effects of vari-735

ation in the transverse Hurst coefficient.736

• Accurate predictions of flow and transport cannot be737

made based upon a single value of the longitudinal Hurst738
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coefficient due to the strong effects of the transverse Hurst739

coefficient as well as the radius of isotropy.740

• The matrix stretching of the convolution kernel accord-741

ing to the anisotropy of the orthogonal Hurst coefficients742

has a very significant impact on the continuity of high- and743

low-K material within the aquifer. This stretching is heav-744

ily dependent on the radius of isotropy. Fields described745

by the exact same scaling matrix Q as well as mixing mea-746

sure M(θ) may demonstrate different correlation structures747

based upon the chosen radius of isotropy.748

• Because there is no fractal cutoff in our fBm fields, none749

of the individual plumes transition to Fickian or asymptotic750

growth, but always remain in a pre-asymptotic state.751

• In all of the cases investigated (including individual752

and ensemble simulations) the plumes demonstrate nearly753

Mercado-type growth (apparent dispersivity proportional754

to mean travel distance). Results indicate that Mercado755

plume growth cannot be exceeded in 2-d operator-scaling756

fBm fields.757

• In both fBm and osfBm fields, dispersivity of the plume758

centroids is limited to linear growth with mean centroid dis-759

placement. In fBm fields with large Hurst coefficients a sig-760

nificant portion of ensemble dispersivity is a result of dis-761

persivity of individual plume centroids. For lower values of762

the Hurst coefficient, ensemble dispersivity is dominated by763

spreading of individual plumes, dispersivity of the centroids764

being much less important to the ensemble spreading.765

• Neuman’s [1990] observation of super-linear growth of766

apparent dispersivity with scale of study can be explained767

by the effect of initial plume size on transport. We hypothe-768

size that initially larger plumes tend to persist longer and are769

typically observed at larger travel distances. If we “observe”770

apparent dispersivity at mean travel distances proportional771

to initial plume width, we can reproduce Neuman’s [1990]772

super-linear growth, although all individual and ensemble773

plumes are limited to linear growth of apparent dispersivity.774

8. Notation

αL – longitudinal dispersivity [L].
A – scalar order of fractional integration.
B(dx) – uncorrelated (white) Gaussian noise.
BH(x) – isotropic fractional Brownian motion.
Bϕ(x) – (operator) fractional random field.
d – number of dimensions.
fBm – fractional Brownian motion.
G(x, h) – fractional Gaussian noise, with increments h.
H – scalar Hurst coefficient.
I – identity matrix.
k – wave vector [L−1].
K – hydraulic conductivity [LT−1].
M(θ) – measure of directional weight within ϕ(x).
osfBm – operator-scaling fractional Brownian motion.
Q – deviations from isotropy matrix.
R – radius of isotropy.
VAR(X) – variance of longitudinal particle travel distance X.
X̄ – mean particle longitudinal travel distance.
µln(K) – mean of the ln(K) field.
σln(K) – standard deviation of the ln(K) field.
θ – unit vector on the d−dimensional radius of isotropy.
ϕ(x) – scaling (convolution) kernel.
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