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[1] The multiscaling fractional advection-dispersion equation (ADE) is a
multidimensional model of solute transport that encompasses linear advection, Fickian
dispersion, and super-Fickian dispersion. The super-Fickian term in these equations has a
fractional derivative of matrix order that describes unique plume scaling rates in different
directions. The directions need not be orthogonal, so the model can be applied to
irregular, noncontinuum fracture networks. The statistical model underlying multiscaling
fractional dispersion is a continuous time random walk (CTRW) in which particles have
arbitrary jump length distributions and finite mean waiting time distributions. The
meaning of the parameters in a compound Poisson process, a subset of CTRWs, is used to
develop a physical interpretation of the equation variables. The Green’s function solutions
are the densities of operator stable probability distributions, the limit distributions of
normalized sums of independent, and identically distributed random vectors. These
densities can be skewed, heavy-tailed, and scale nonlinearly, resembling solute plumes in
granular aquifers. They can also have fingers in any direction, resembling transport along
discrete pathways such as fractures. INDEX TERMS: 1832 Hydrology: Groundwater transport;

1869 Hydrology: Stochastic processes; 3250 Mathematical Geophysics: Fractals and multifractals; 5104

Physical Properties of Rocks: Fracture and flow; 5139 Physical Properties of Rocks: Transport properties;
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1. Introduction

[2] Hundreds of studies have proposed modeling techni-
ques to address the super-Fickian transport of solutes in
aquifers. Among them are fractional advection-dispersion
equations (ADEs), analytical equations that employ frac-
tional derivatives in describing the growth and scaling of
diffusion-like plume spreading. Fractional ADEs are the
limiting equations governing continuous time random walks
(CTRW) with arbitrary particle jump length distribution and
finite mean waiting time distribution [Compte, 1996]. They
are a subset of fractional kinetic equations that allow frac-
tional derivatives in both the space and time operators
[Saichev and Zaslavsky, 1997; Benson, 1998; Mainardi et
al., 2001]. The spatially fractional equations are particularly
suited to application in hydrogeology because they have
tractable Green’s function solutions, given by stable prob-
ability distributions.

[3] One-dimensional fractional ADEs have been used to
model the heavy leading edges and nonlinear scaling of
conservative plumes observed in both laboratory and field
solute transport experiments [Benson, 1998; Pachepsky et
al., 2000; Benson et al., 2001]. These phenomena were
reproduced without the addition of scale-dependent param-
eters or the use of high-resolution numerical simulations.
The dispersion coefficient in each experiment was constant
over time, since the spatially fractional derivatives account
for the nonlinear link between plume size and time (t).
[4] In a Fickian plume, the dispersion coefficient is larger

in the longitudinal direction than in the transverse direc-
tions, but the scaling rate is constant and growth is propor-
tional to t1/2 in all directions [de Josselin de Jong, 1958].
Meerschaert et al. [2001] demonstrate that a contaminant
plume can also have different scaling rates in various
directions (Figure 1). They derive a multiscaling fractional
ADE in which unique fractional derivatives govern scaling
rates in different directions. However, they do not explain
the relationship between the equation and hydrogeologic
parameters or how the equation can be used to model solute
plumes.
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[5] Herein, we extend the theory of fractional ADEs in
hydrogeology to multiple dimensions. By equating certain
CTRW models of particle jump processes with the com-
pound Poisson process, we interpret the meaning of the
variables in the multiscaling spatially fractional ADE.
Emphasis will be placed on the relationship between the
mathematics and particle-jump models so that the rationale
for using multiscaling fractional ADEs in contaminant
transport modeling remains clear. We then develop a
numerical procedure for computing the solutions to multi-
scaling ADEs.

2. Fractional Advection-Dispersion Equations

[6] Spatially fractional ADEs are used as models for
stochastic processes with heavy-tailed independent incre-
ments or ‘‘jumps’’ [Fogedby, 1994; Zaslavsky, 1994a,
1994b; Compte, 1997; Gorenflo and Mainardi, 1997,
1998; Saichev and Zaslavsky, 1997; Benson, 1998; Chaves,
1998; Metzler and Klafter, 2000; Baeumer and Meer-
schaert, 2001]. The equations are subsets of the convolu-
tion-Fickian nonlocal ADEs described by Cushman and
Ginn [1993, 2000]. As the scaling limits of sums of
independent and identically distributed (iid) random varia-
bles, fractional ADEs are ergodic, nonlocal equations. This
study will focus on spatially fractional processes for con-
servative solutes where the effects of spreading due to
diffusion are negligible compared with those due to dis-
persion. The one-dimensional fractional ADE of form:

@C x; tð Þ
@t

¼ �v
@C x; tð Þ

@x
þ 1

2
1þ bð ÞD @a

@xa
C x; tð Þ

þ 1

2
1� bð ÞD @a

@ �xð Þa C x; tð Þ; ð1Þ

where 0 < a � 2 has been used to predict longitudinal
plume growth at the Cape Cod and MADE test sites
[Benson et al., 2000, 2001]. Lévy’s a-stable probability

density functions (PDF), with scale parameter a, spread
parameter s ¼ D�tð Þ

1
2, skewness parameter b, and shift

parameter v, are the Green’s function solutions to diffusion
equations in which the second spatial derivative is replaced
with a fractional derivative of order 0 < a � 2 The a-stable
solutions have the Gaussian PDF as a subset when a = 2.
This equation models a plume that grows at a rate
proportional to tH where H = 1/a is the scaling coefficient.
[7] A straightforward generalization of the fractional ADE

and its solutions to multiple dimensions is possible when the
order of the fractional derivative a is equal in all directions.
This case, described by Meerschaert et al. [1999], has a
constant order of differentiation in all directions:

@C ~x; tð Þ
@t

¼ �~v � rC ~x; tð Þ þ Dra
MC ~x; tð Þ; ð2Þ

where rM
a is a multivariate fractional derivative of order a.

The multidimensional fractional ADE could be used to
describe contaminant plume growth if the growth rates
(scaling coefficients) in the longitudinal and transverse
directions are equal.
[8] A multiscaling, spatially fractional ADE in which a

scaling operator treats different scaling rates of dispersion in
different directions was introduced by Meerschaert et al.
[2001]:

@C ~x; tð Þ
@t

¼ �~v � rC ~x; tð Þ þ r � DFrC ~x; tð Þ þ DrH�1

M C ~x; tð Þ; ð3Þ

where H�1 the inverse of the scaling matrix, provides the
order and direction of the fractional derivatives. The
structure of H�1 is described below. Without the last term
on the right-hand side (RHS), equation (3) is the classical,
multidimensional ADE. The first term treats linear advec-
tion, while the second term treats Fickian dispersion, if it
exists, in any of the principal directions of plume growth. If
dispersion is super-Fickian in all directions, then the
Brownian motion modeled by the classical second-order
dispersion tensor is overwhelmed. In this case, all
components of the Fickian dispersion tensor, DF , go to
zero and the second term disappears. The third term on the
RHS of (3), which treats heavy-tailed dispersion in the
appropriate coordinates, is the subject of this study.
The probabilistic interpretation of the fractional Laplacian
rM

H�1

with mixing measure M and matrix exponent H�1 is
explored in detail. In this study, ‘‘multidimensional
fractional ADE’’ will refer to the multivariate equation (2)
with a single value of a governing fractional differentiation
in all directions. ‘‘Multiscaling fractional ADE’’ will be
used for the ADE with a matrix-order fractional operator
(3). It should be emphasized that the term multiscaling
refers to different scaling rates in different directions, not
different scaling rates at different distances from the plume
origin.

3. Stochastic Foundation of Multiscaling
Dispersion

[9] For lack of microscopic or complete measuring tools,
stochastic partial differential equations (PDE) are used to
describe groundwater and aquifer contaminant movement at

Figure 1. Measured longitudinal (circles) and lateral
(squares) variance of the bromide plume versus mean travel
distance from the MADE-1 test [Adams and Gelhar, 1992].
Lines indicate power laws of order 2/a. Transverse values
are artificially high at early time due to the wide arrays of
injection wells. From Meerschaert et al. [2001].
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measurable scales. Although the physical processes govern-
ing particle transport in aquifers are deterministic, the
constitutive problem can be solved using probability theory
as an analytical tool [Bhattacharya and Gupta, 1990]. The
convention has been to view solute transport in aquifers as
an ensemble of particles moving randomly through the
porous medium, with each path line considered a vector
sum of elementary particle displacements [Bear, 1972].
CTRWs, also-called renewal-reward processes, are general-
izations of classical random walks in which the distance a
particle has traveled is the sum of iid jumps governed by
one probability distribution while the waiting times between
the jumps are iid and governed by a second probability
distribution [Montroll and Weiss, 1965; Scher and Lax,
1973]. The jump length and waiting time distributions can
be independent of each other (uncoupled) or dependent and
described by a single joint density (coupled). The waiting
time can be thought of as the period between instantaneous
jumps or as the time it takes for a jump to be completed.
These stochastic processes have been applied to hydro-
geology by Berkowitz and Scher [1995], Berkowitz et al.
[2001], and Benson [1998]. CTRWs provide a useful model
of aquifer solute transport; a particle can move through the
aquifer with the groundwater or be motionless due to
sorption or immobile zones. By taking the scaling limits
of CTRWs, a variety of limit processes governed by PDEs
are obtained. The limiting probability distribution governing
total displacement of a single particle after a large number
of displacements is then interpreted as the spatial distribu-
tion of a cloud of particles, or the concentration profile of an
aquifer contaminant plume at a snapshot in time. The
probability densities are the Green’s function solutions to
the PDEs.
[10] Spatially fractional and integer-order ADEs are the

scaling limits of uncoupled CTRWs with finite mean wait-
ing time distribution [Compte, 1996]. Finite mean waiting
time CTRWs converge to the same limit processes as their
corresponding classical random walks [Barkai et al., 2000;
Whitt, 2001; Meerschaert et al., 2002]. As a result of a
functional central limit theorem, random walks composed of
normalized, iid finite-variance jumps converge in distribu-
tion to Brownian motion [Billingsley, 1968]. A Gaussian
density is the Green’s function solution to the ADE, which
describes the location of a particle undergoing Brownian
motion. Random walks with infinite variance jumps and a
single tail parameter in all directions lead to a-stable Lévy
motion, governed by multidimensional fractional ADEs (2).
The limit of normalized sums of infinite variance random
vectors with unique scaling parameters in each coordinate
direction are operator stable distributions [Meerschaert and
Scheffler, 2001]. Their densities are the Green’s function
solutions to the multiscaling fractional ADEs (3) that
govern operator Lévy motions [Sharpe, 1969; Meerschaert
et al., 2001]. Operator stable distributions are the most
general multivariate stable distributions, with independent
tail parameters (ai) in each direction [Jurek and Mason,
1993].
[11] The compound Poisson process is a subset of finite

mean waiting time uncoupled CTRWs. In the following
sections, we develop a probabilistic interpretation of multi-
scaling fractional dispersion based on the parameters of the
compound Poisson process. The compound Poisson process

is used here for pedagogical purposes. All finite-mean
waiting time CTRWs converge to the same limit processes
as compound Poisson process.

3.1. Compound Poisson Process Particle Jump Model

[12] The CTRW with exponential waiting time distribu-
tion independent of the jump distribution corresponds with
the compound Poisson process. To demonstrate, we first
define the CTRW. Particle location at time t, X(t), is the sum
of random jumps, each with a random jump time:

X tð Þ ¼
XN tð Þ

n¼1

Rn � ~�n; ð4Þ

where N(t) is the number of random jumps by time t and
Rn and ~�n are the random length and direction of the nth

jump. The complete solution to the CTRW with
independent jump sizes and durations is typically given
by its Fourier-Laplace transform (denoted by change of
variables x ! k and t ! s, respectively) [Scher and Lax,
1973]:

~̂P k; sð Þ ¼ 1� Ĉ sð Þ
s

1

1� ~fo kð ÞĈ sð Þ
; ð5Þ

where the probability of particle location ~̂P k; sð Þ is a
function of the jump size (and direction) distribution ~fo kð Þ
and the waiting time distribution Ĉ sð Þ. Let the waiting
time be exponentially distributed with Laplace transform
Ĉ sð Þ ¼ l

lþs
. Then (5) simplifies to

~̂P k; sð Þ ¼
1� l

lþs

s

1

1� ~fo kð Þ l
lþs

¼ 1

s� l ~fo kð Þ � 1
� �

:

Inverse Laplace transform yields the Fourier transform of
the compound Poisson process [Feller, 1968]:

P̂ k; tð Þ ¼ exp lt ~fo kð Þ � 1
� �� �

; ð6Þ

where l and fo retain their meaning as jump rate parameter
and jump size distribution, respectively. The compound
Poisson process describes the location X(t) of a particle as
the sum of random jumps where the number of jumps N(t)
that occur by time t is a Poisson process. Since the waiting
time distribution is exponential with mean 1/l jumps have
an average rate of occurrence l Each jump has a random
length and random direction so the jump distribution fo can
be divided into a jump length distribution and a jump
direction distribution. Jump direction is governed by a
probability distribution known as the mixing measure
M(dq). For example, in the 1-D case, jumps are only
permitted forwards or backwards and the discrete mixing
measure is found directly in the terms of the 1-D fractional
ADE (1) where

M þ1ð Þ ¼ 1
2
1þ bð Þ

M �1ð Þ ¼ 1
2
1� bð Þ;

ð7Þ
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so M(+1) + M(�1) = 1 and 0 � b � 1 defines the
skewness of the process.
3.1.1. Multivariate (Multidimensional) Compound
Poisson Process and Limits
[13] Infinite-variance jump lengths affect both the scaling

and the tails of this CTRW in multiple dimensions. For
example, if a single scaling coefficient 1/a governs the
growth rate in all directions, jumps may be written in the
form R1=a~�, where R1/a represents the random jump length
and ~� is the jump direction random vector. Note that the
jump magnitude is isotropic. This compound Poisson proc-
ess describes particle location by

X tð Þ ¼
XN tð Þ

n¼1

R1=a
n � ~�n: ð8Þ

Multidimensional random jumps R1=a~� are still described
by the distribution fo(dr, dq). The heavy-tailed distribution
of R is defined P(R > r)/ r�1so that P(R1/a > r)/ r�a. Also,
the norm of the random jump direction vector k ~�n k¼ 1,
and R and ~� are independent. The mixing measure M(dq)
governing jump direction where P

�
~� 2 A

�
¼ M Að Þ, can be

continuous or discrete.
[14] The product of l a positive real number that

describes the average rate of motions, and fo a probability
measure of jump size and direction, is a measure f(dr, dq) =
lfo(dr, dq) of total mass l. This measure, known as the
intensity measure or Lévy measure of the compound Pois-
son process [Bertoin, 1996 p.12], describes how often
jumps of a given size and direction will occur. A measure
assigns a value to a length or area and can be continuous or
discrete. For example, a probability measure integrates the
area under a probability density so that

Z 1

x

f dyð Þ ¼
R1
x

f yð Þdy for a continuous probability measureP1
x p yð Þ for a discrete probability measure:

(

ð9Þ

For any probability measure,
R
�1
1 f(dy) = 1. A general

measure follows the same rules, but the total mass of the
measure need not be one. For the Lévy measure of the
compound Poisson process described above,

R
�1
1 f(dy) = l.

[15] To make this particle jump process converge to a limit
process, let the particle jump rate l approach infinity, and at
the same time, let the length of particle jumps approach zero.
This subdivides motions into smaller and smaller units that
occur with greater frequency, the usual process that trans-
forms a random walk into a Brownian motion. Here, the sum
of infinite variance particle jumps leads to Lévy motion
[Bertoin, 1996; Saichev and Zaslavsky, 1997].
[16] Since particle jump length R1/a is governed by a

power law or Pareto probability distribution, its density
looks like aaar�a�1so that f(dr, dq) = laaar�a�1. The
smallest jump permitted is of size a Take the limit of this
measure by rescaling in time (l ! 1) and space (a ! 0)
The limit must be taken so that laa ! D, where D is a
constant to avoid degenerate cases. The limiting form of the
Lévy measure

f dr; dqð Þ ¼ ar�a�1drDM dqð Þ ð10Þ

describes the jump intensity of the Lévy motion and has
directional and radial weights derived from a compound
Poisson particle jump model. In approaching this limit, we
also find that the dispersion coefficient D is dependent on
the theoretical particle jump rate, particle jump length, and
the order of the scaling exponent.
3.1.2. Multiscaling Compound Poisson Process
and Limits
[17] When scaling rates vary with direction, R must be

rescaled by H, a matrix whose eigenvalues are the scaling
coefficients 1/ai of the growth process. Then the multi-
scaling compound Poisson process is defined

X tð Þ ¼
XN tð Þ

n¼1

RH
n � ~�n: ð11Þ

As in the standard multidimensional case, P(R > r) / r�1

and P ~� 2 A
� �

¼ M Að Þ. The matrix RH is now anisotropic
with different jump sizes in different directions. Jump length
probabilities on the ith eigenvector fall off as r�ai while
jump length probabilities on trajectories off the eigenvectors
fall off like powers of a mixture of the scaling coefficients.
[18] Multiscaling compound Poisson processes converge

to operator Lévy motion [Meerschaert et al., 2002]. The
Lévy measure f(dr, dq) in (10) is valid for multidimensional
ADEs with a single fractional derivative describing scaling
in every direction, governing multivariate Lévy motion. The
varied effect of a velocity change in one direction on
multiscaling dispersion in all directions is controlled by
the scaling matrix H When the Lévy measure is expressed
in a coordinate system adapted to the matrix H (described
below), the jump probabilities in all directions are equal.

3.2. Relation of Model Variables to Hydraulic
Properties

[19] The parameters in the compound Poisson particle
jump model for solute dispersion can be related to hydraulic
properties. The mixing measure M(dq) describing the jump
direction density, is dependent on the hydraulic conductivity
field and the direction of the hydraulic gradient. Preferential
pathways will be represented in the mixing measure by
larger jump probabilities in their respective directions. If the
hydraulic conductivity in two directions is equal, the direc-
tion closer to the gradient will be weighted more heavily in
the mixing measure. While an aquifer conductivity field
remains constant, the magnitude of the velocity field may
fluctuate in time. As in the classical ADE, the dispersion
coefficient measures the difference in particle velocities.
The change in particle jump size due to velocity fluctuations
is represented by a change in the dispersion coefficient, a
linear function of the compound Poisson rate parameter l. If
the average linear velocity is doubled, the particle jump rate
will be doubled, and in turn, the dispersion coefficient will
be doubled. This is in keeping with the traditional notion
that the dispersion coefficient is linear with the hydraulic
gradient or velocity field [Bear, 1972]. In 1-D, H�1 =
1/H = a has been related to the degree of heterogeneity in
an aquifer [Schumer et al., 2001]. Greater heterogeneity
implies greater deviation from the mean particle velocity,
allowing for an increased rate of scaling or super-Fickian
plume growth. When H�1 is a matrix, smaller coefficients
still correspond with a greater degree of heterogeneity. Since
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dispersion is proportional to velocity and larger average
velocities are found in the longitudinal direction of aquifers,
the rate of scaling will be larger in the longitudinal direction
than the transverse direction of solute plumes and the
coefficients will be smallest in the longitudinal direction.

4. Multiscaling Fractional ADEs

[20] The multiscaling fractional ADE treats Fickian
plume growth in any direction in the same manner as the
classical ADE. It can also model super-Fickian plume
growth with unique scaling rates in any direction. The
multivariate Gaussian is notable among the a-stable distri-
butions because it has no skewness and its spread is
described by a covariance matrix rather than a mixing
measure. Random walks with finite-variance particle jumps
converge to Brownian motion with Gaussian distributions
while infinite-variance random walks converge to Lévy
motion with non-Gaussian a-stable distributions. Brownian
motion models imply scaling by second-order derivatives
(since H�1 = (1/2)�1 = 2) while non-Gaussian stables imply
fractional derivatives. The two classes of stable distribution
are sufficiently different that they can not be treated by the
same operator. As a result, a Gaussian term and a heavy-
tailed term appear in the multiscaling fractional ADE (3). If
particle dispersion in a given aquifer is due to heavy-tailed
jumps in at least one direction and Gaussian dispersion in at
least one other, then the multiscaling fractional ADE treats
them independently [Meerschaert et al., 2001].

4.1. Multiscaling Fractional Derivatives

[21] The properties of fractional derivatives are described
by Oldham and Spanier [1974], Samko et al. [1993], and
Miller and Ross, [1993]. The fractional operator rM

a of
multidimensional ADEs (2), is a linear combination of
directional derivatives, all of order a with mixing measure
M providing the relative weights in all directions [Meer-
schaert et al., 1999]. In multiscaling fractional ADEs,
anomalous dispersion is modeled by the multiscaling frac-
tional derivative rM

H�1

. This nonlocal fractional operator is
defined by [Meerschaert et al., 2001]:

rH�1

M C xð Þ ¼
Z1
0

C x� yð Þ � C xð Þ þ y � rC xð Þ½ �f dyð Þ; ð12Þ

with Fourier transform

F rH�1

M C ~xð Þ
h i

¼
Z

e�i~k�~x � 1þ i~k �~x

 �

f d~xð Þ
� 

Ĉ ~k

 �

: ð13Þ

The Fourier transform of the fractional derivative (13) is
equivalent to the Fourier transform of the mean-centered
compound Poisson distribution (Appendix A) so the Lévy
measure f d~xð Þ can be equated with the limiting form of the
compound Poisson Lévy measure, a function of H�1 and
M. Particles undergoing fractional dispersion from any
starting point will move in a random direction governed by
the mixing measure M of the fractional derivative.
Associated with each direction is a jump length distribution.
[22] Computations in Lemma 7.3.8 of Meerschaert and

Scheffler [2001] show that, in one dimension,Z
ðe�ikx � 1þ ikxÞfðdxÞĈðkÞ ¼ ðikÞaĈðkÞ

This is a simple convolution of the concentration with a
power law (in the sense of distributions, see Rudin [1991]):
daC xð Þ
dxa

¼ 1
� �að Þ

R
r�a�1C x� rð Þdr. The fractional derivative

models a redistribution of the concentration at all points
according to a power law of the distance r. The multi-
dimensional generalization (13) is a redistribution of solute
according to various power laws in each direction. Because
of the link with the particle jump model, this implies that the
jump length distribution in each direction decays as a
unique power law prescribed by H�1 After a particle has
made many of these power law jumps, the density C(x, t)
describing its random location will grow in several
dimensions according to the scaling matrix H. Detailed
discussions of the form of the scaling matrix H and the
mixing measure M follow.
4.1.1. Scaling Matrix H
[23] The scaling matrix H describes the scale invariance

of the PDF used to represent the contaminant plume. The
solutions C(x, t) to 1-D fractional ADEs grow as C(x, Kt) =
K�1/aC (K�1/ax, t), where K is a constant. Similarly, the
density of particle location governed by a multiscaling
fractional ADE scales as C ~x;Ktð Þ ¼ K�Hj jC K�H~x; tð Þ,
where j�j is the determinant. If the primary directions of
growth are perpendicular, as might be assumed for flow in
granular porous media, then the scaling terms in each of the
principal directions 1/aj are the eigenvalues of the matrix H

and it is of the form Ho ¼
1=ax 0 0

0 1=ay 0

0 0 1=az

2
4

3
5, where Ho will be

used for a diagonal eigenvalue matrix. In this case, plume
growth in direction j scales by a power of 1/aj. Since the
exponents 1/aj reflect the self-similarity of the random
process, they are sometimes called the Hurst indices.
[24] The multiscaling fractional ADE can describe plume

growth with nonorthogonal principal growth directions.
This represents a departure from previous methods for
describing plume scaling and points toward the description
of plume growth in fracture networks. The form of the
matrix H describing nonorthogonal flow directions can be
calculated by a change of basis, or similarity transforma-
tion. The matrix H will have the same eigenvalues as its
eigenvalue matrix Ho, but eigenvectors along the fractures,
rather than the x, y, and z axes. Then the scaling matrix H
in Cartesian coordinates will be diagonalized by the
equation

Ho ¼ S�1HS; ð14Þ

where Ho and S are, respectively, the eigenvalues and
eigenvector matrices for H [Strang, 1988]. By their physical
interpretation, we assume the eigenvalues and eigenvectors
of H in groundwater transport applications will always
exist, guaranteeing that the matrix is diagonalizable. Since
the eigenvectors of H, which correspond to the fracture
directions, are known, H can be calculated by H = SHoS

�1.
For example, working in two dimensions, if fractures occur

at 0� and 30� the eigenvectors will be
1

0

� �
and

ffiffi
3

p

2

1=2

� �
.

Then, the scaling matrix will be

H ¼ 1
ffiffi
3

p

2

0 1
2

� � 1
a1

0

0 1
a2

" #
1 �

ffiffiffi
3

p

0 2

� �
¼

1
a1

ffiffi
3

p

a2
�

ffiffi
3

p

a1

0 1
a2

" #
:
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If fractures occur at ±30� then

H ¼
ffiffi
3

p

2

ffiffi
3

p

2

1
2

�1
2

" #
1
a1

0

0 1
a2

" # ffiffi
3

p

3
1ffiffi

3
p

3
�1

" #
¼

1
2a1

þ 1
2a2

ffiffi
3

p

2a1
�

ffiffi
3

p

2a2ffiffi
3

p

6a1
�

ffiffi
3

p

6a2

1
2a1

þ 1
2a2

2
4

3
5:

The inverse of the scaling matrix H�1 is the matrix order of
differentiation in the multiscaling fractional ADE. Each
eigenvalue of H�1 is the order of the fractional derivatives
in a principal direction of growth (the eigenvectors). When
the principal directions of growth are along the standard
Cartesian axes, the order of the fractional derivatives are the
reciprocal to the scaling coefficients.
4.1.2. Mixing Measure M(dQ) and Spectral Measure
�(dQ)
[25] While H dictates the plume scaling characteristics,

the mixing measure M(dq) defines the shape and skewness
of the plume. The definition of M(dq) comes from the
compound Poisson process, where it represents the propor-
tion of jumps in each angular interval dq. The dispersion
coefficient D specifies the frequency of these jumps. Studies
on heavy-tailed random vector parameter estimation refer to
the spectral measure, the product of the mixing measure and
the dispersion coefficient, as a single variable [Nolan, 1998]
(see Table 1.) We adopt the same notation because analysis
of plume characteristics will likely yield an estimate of the
spectral measure, rather than individual values of D and
M(dq).
[26] A spectral measure �(dq) on the unit sphere assigns

weights corresponding with probability of jumps in each
direction and defines the properties that reduce to skewness
(b) and spread (s) in one dimension. The mixing measure is a
probability measure with total mass

R
q
M dqð Þ ¼ 1. The spectral

measure has mass
R
q
� dqð Þ ¼ D . The spectral measure can be

continuous or discrete. When the spectral measure is uni-
form, the probability of particle jumps is equal in all
directions and the multivariate stable density is symmetric
(Figure 2a). When the spectral measure is discrete and
concentrated on the intersection of the axes with the unit
sphere (i.e., {1, 0}, {0, 1}, {�1, 0}, {0, �1}), then particle
jumps are only possible to the north, south, east and west
(Figure 2b). In this special case, the particle jumps in each
direction, representing longitudinal and transverse disper-
sion, are independent [Samorodnitsky and Taqqu, 1994;
Nolan, 1998]. This highlights the notion that in assigning
particle jump weights in every direction around a unit circle
or sphere, the spectral measure defines the dependence
between jumps in each of the principal directions.

[27] Since the spectral measure describes the most prob-
able directions of transport, we expect the weight of the
spectral measure of a porous medium to be greatest in the
principal flow direction, with decreasing weight toward
the transverse directions. A conservative contaminant plume
will have a spectral measure indicating a higher probability
of particle velocities above the mean velocity than below
(Figure 2c). Spikes in the spectral measure may occur in a
preferential flow path direction where there is an increased
probability of particle movement.
[28] Operator Lévy motions in d-dimensions may have up

to d unique heavy-tailed components. In the limit, any
others are overwhelmed by the d heaviest motions. To
illustrate, consider jumps allowed in 3 directions in 2-D,
with aa = 1.1, ab = 1.3, and ac = 1.5. In the limit, the large
jumps in the a and b directions stand out and the effects of
the heavy-tailed process in the c direction will not be
discernible. Jumps will still occur in the c direction in the
mixing measure but the limiting operator stable will only
have 2 principal scaling directions. In this case, H�1 will
have eigenvectors equal to directions a and b and eigenval-
ues aa and ab.

4.2. Solutions to Multiscaling Fractional ADEs

[29] The Green’s function solution to multiscaling frac-
tional ADEs can be calculated using Fourier transforms:

@Ĉ ~k; t

 �
@t

¼
�

�i~v �~k

 �

þ i~k

 �

� DF i~k

 �

þ
Z

e�i~k�~x � 1þ i~k �~x

 �

f d~k

 ��

Ĉ ~k; t

 �

Solving for Ĉ ~k; t

 �

with an instantaneous release at the
origin Cð~0; 0Þ ¼ 1 yields

Ĉ ~k; t

 �

¼ exp

�
t
�
� i~v �~k �~k � Q~k

þ
Z

e�i~k�~x � 1þ i~k �~x

 �

f d~xð Þ
��

; ð15Þ

where Q is a covariance matrix. This Fourier transform,
known as the Lévy representation, simplifies to common
parameterization of the 1-D and multivariate a-stable
characteristic functions (as in the work of Samorodnitsky
and Taqqu [1994]) when the proper power law Lévy
measure is applied [Meerschaert and Scheffler, 2001, chap.
7]. There is no simplified form for operator stable

Table 1. Definitions of Stochastic Measures Used in Particle Jump Models

Parameter Symbol Meaning

Mixing measure M(dq) specifies the probability of a particle
jumping through segment dq of
the unit circle

Spectral measure �(dq) = DM(dq) specifies the probability and relative
magnitude of particle jumps

Lévy measure f(dr, dq)
= ar�a�1dr �(dq)
= ar�a�1drDM(dq)

(multidimensional form)

specifies the probability of jumps of a
given size in each direction q

SBH 12 - 6 SCHUMER ET AL.: MULTISCALING FRACTIONAL ADES



densities, so the Lévy representation (15) is used to rep-
resent them.

5. Computation and Application of Operator
Stable Densities

[30] A coordinate system adapted to the scaling matrix is
introduced above. The Jurek coordinate system allows for
the independent representation of the scale parameters and
spectral measure in the Lévy measure f d~xð Þ. Since these are
the variables that can be related to aquifer transport proper-
ties, this coordinate system must be used to express the
Fourier transform of operator stable densities. A description
of the Jurek coordinate system is followed by the procedure
for generating solutions to multiscaling fractional ADEs and
a discussion of hydrogeologic applications.

5.1. Jurek Coordinate System

[31] The Jurek coordinate system is an anisotropic polar
coordinate system. The jump probability level sets of the
spectral measure are ellipses (Figure 3). If the order of
differentiation a is equal to 1.1 in both the x and y
directions, the probability of a particle jump length of
1.5 units is equally probable in all directions, so the rj =
1.5 coordinate line is circular (Figure 3a). If ay is
increased to 1.6 (less heavy-tailed,) it is less likely that

particles will jump as far in the y direction and longer
jumps are given more weight in that direction (Figure 3b).
This feature is more apparent as ay is increased to 1.9
(Figure 3c).
[32] In the Jurek coordinate system, rj, the analogue to the

polar r is curved so that it is orthogonal to (independent of)
the ellipses. As in standard polar coordinates, q denotes the
angle at which rj crosses the unit circle (the 1 coordinate
line in Figures 3a, 3b, and 3c). However, this angle only
corresponds with the angle between rj and the x axis at the
origin when the scaling parameters are equal in all direc-
tions and the Jurek coordinate system reduces to a rescaled
polar coordinate system where rj = r1/a. When all ai = 1 the
Jurek coordinate system is equivalent to the standard polar
coordinate system.
[33] Transformation from Cartesian to Jurek coordinates

requires the conversion ~x ¼ rHJ
~q. For example, if H is

symmetric then x1 = rj
1/a1 cos q and x2 = rj

1/a2 sin q. Jurek
and Mason [1993] provide the form of the Lévy measure in
Jurek coordinates:

f dxð Þ ¼ drJ

r2J
� dqð Þ: ð16Þ

This conversion can be read
R
f ~xð Þd~x !

R R
gð~qÞ 1r2j drjdq,

resembling a typical Cartesian to polar coordinates conver-

Figure 2. (a) Discrete, uniform spectral measure. (b) Measure concentrated on coordinate axes
representing independent jump probabilities. (c) Possible spectral measure for a particle jump model
representing plume growth.

Figure 3. Comparison of level sets in the Jurek coordinate system for various combinations of ax and
ay.
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sion where 1/rj is the scaling required for the change of
variables in (16).
[34] In the Jurek coordinate system, the solution to multi-

scaling ADEs is the Lévy representation for an operator
stable density [Meerschaert and Scheffler, 2001]:

Ĉ ~k; t

 �

¼ exp i~m2 �~k
Z
kqk¼1

Z 1

rJ¼0

ei
~k�rH

J
q � 1� i~k � rHJ q


 � 

� drJ
r2J

� dqð Þ
!
t: ð17Þ

5.2. Calculation of Operator Stable Densities

[35] In most cases, there is no closed form analytical
expression for operator stable densities. This computation
was performed by transforming the discrete counterpart of
(17) to real space using a Fast Fourier Transform (FFT). The

singularities and oscillations in the integrand of (17) were
treated individually to ensure convergence and accuracy. A
MathCAD worksheet (obtainable from the authors) that
calculates two-dimensional operator stable densities given
a shift vector and spectral measure was developed and used
to generate the figures described in the following section.
This worksheet was verified for the multidimensional case
(a equal in all directions) using the code described by Nolan
[1998].

5.3. Model Application in Hydrogeology

[36] The flexible scaling rates and heavy leading edges of
non-Gaussian operator stable densities capture some of the
anomalous behavior of real contaminant plume growth
unattainable by a Gaussian density (Figure 4). The asym-
metry of a spectral measure leads to skewness and slowly
moving peak values of operator stable densities (Figure 4).
[37] Multiscaling fractional ADEs may also be useful in

modeling solute transport in noncontinuum, or discrete,

Figure 4. Growth of Gaussian versus operator stable plumes with time. The Gaussian plume follows
equation (2) with a = 2. Each plume has a mass of unity and mean velocity of 10 in the positive x
direction. Relative to the x axis, the spectral measure has points at 0�, ±6�, ±12�, and ±18�, with
increasing intensity in the direction of mean travel. The initial condition is a Dirac delta function denoted
by the heavy filled circles.
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fracture networks (Figure 5a). Use of a single analytical
equation to describe multidimensional transport in fractured
aquifers would be a novel approach. Solute transport in
simple fracture networks is typically modeled using discrete
network models, equivalent continuum models, or a combi-
nation of the two [National Research Council, 1996].
Various deterministic and probabilistic techniques can be
used to create these heterogeneous flow domains before
numerical solutions to the classical ADE or particle tracking
methods are applied [Clemo and Smith, 1997]. The same
probabilistic techniques may be used to estimate the param-
eters of an operator stable model of fractured-aquifer plume
growth. The percentage of fractures in classes of orienta-
tions, along with the mean apertures and degree of con-
nectivity, gives the spectral measure (Figure 5b). The
scaling rate along a preferred fracture direction (aj) may

be more difficult to estimate a priori, but will depend on the
variability of fracture length and aperture in a given ori-
entation. With estimates of these two parameters, the
corresponding operator stable densities yields the probabil-
istic concentration profiles predicted by the multiscaling
fractional ADE with time (Figure 5c). Notable is the
prediction of the greatest plume growth and earliest break-
through along preferred fracture directions instead of
directly downgradient of the source. Furthermore, at early
time, the longer finger is observed in the direction of the
wider fractures (M(q1) = 0.6) but is surpassed at later times
by the finger in the direction of the greater scaling rate (a2 =
1.3) The same concentration level sets are used in the three
operator stable densities shown in Figure 5c, making it
appear that the snapshots are becoming less heavy-tailed
with time along the fracture directions. However, if level

Figure 5. A conceptual model of plume growth in a fractured aquifer: (a) noncontinuum conceptual
model, (b) operator stable parameters, and (c) operator stable densities with time. Note the greater mass in
the q1 direction at early time due to the spectral measure, but the greater growth rate in the q2 direction due
to smaller a1.
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sets representing smaller concentrations were used in sub-
sequent snapshots, it would be apparent that the fingers
remain ahead of the majority of the plume for all time.

6. Summary

[38] CTRW models of particle transport converge to
stochastic limit processes governed by PDEs. Compound
Poisson processes with arbitrary jump distribution and
finite mean waiting time distribution lead to operator Lévy
motion, governed by multiscaling fractional ADEs. These
equations describe linear advection and Fickian or super-
Fickian dispersion. The super-Fickian dispersive term
DrH�1

M C ~x; tð Þ of multiscaling fractional ADEs has a frac-
tional derivative of matrix order. The scaling matrix H
describes the scaling of the contaminant plume growth, and
the inverse of this matrix contains the order (eigenvalues)
and directions (eigenvectors) of fractional differentiation.
The eigenvectors of the growth process can be orthogonal
(as in granular aquifers) or nonorthogonal (as in fracture
flow). In d dimensions as many as d independent scaling
rates remain in the limit. The mixing measure M(dq)
specifies the proportion of particle jumps in every direction
while the dispersion coefficient D describes the overall
jump intensity given the scaling coefficients from the
scaling matrix H. The operator stable densities that solve
multiscaling fractional ADEs can be computed via Fourier
transform using a modified polar coordinate system we call
the Jurek coordinate system. These solutions capture
essential features of real plumes, including different growth
rates in different directions and skewed and/or fingered
plumes.

Appendix A: Equivalence of Compound Poisson
and Multiscaling Fractional Derivative Transforms

[39] Demonstration that the Fourier transforms of the
multiscaling fractional derivative and mean-centered com-
pound Poisson process are equivalent requires the definition
of b the average particle jump length (assuming one exists).
Equation (6) gave the Fourier transform of the compound
Poisson distribution

E e�ikX
� �

compound Poisson
¼ exp l ~fo kð Þ � 1

� �� �
:

Then, using the relations f̂o kð Þ ¼
R
e�ikxfo dxð Þ,

R
fo (dx) = 1,

and
R
xfo (dx) = E[x] = b, the Fourier transform for a

centered compound Poisson Y = X � bl is

E e�ikY
� �

¼ exp l f̂o kð Þ � 1

 �

� �ikð Þlb
h i

¼ exp l f̂o kð Þ � 1

 �

þ ikð Þlb

 �h i

¼ exp l
R
e�ikxfo dxð Þ �

R
fo dxð Þ

� �
þ ikl

R
xfo dxð Þ

� �
¼ exp

R
e�ikx � 1þ ikx
� �

lfo dxð Þ
� �

:

Expressing the Fourier transform for a centered compound
Poisson process in terms of the intensity measure we have

E e�ikY
� �

¼ exp

Z
e�ikx � 1þ ikx
� �

f dxð Þ
� �

;

which was given as the Fourier transform of the multi-
scaling fractional derivative in (13).

Notation
C solute concentration, ML�3.
X Pareto shift parameter.

DF Fickian dispersion tensor, L2t�1.
D generalized dispersion coefficient, Lat�1.
~k wave vector, L�1.
H scaling matrix.
M mixing measure.
Q covariance matrix
R jump length variable, L.
v average solute velocity, Lt�1.
a order of fractional differentiation/a-stable

tail parameter.
b a-stable skewness parameter.
s a-stable spread parameter.
� spectral measure.
q angle around the unit circle, radians.
~� unit vector.
f Lévy measure.
fo jump length measure.
l Poisson rate parameter, #t�1.
C waiting time distribution.
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