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Many real problems in finance and hydrology involve data sets with power law tails. For
multivariable data, the power law tail index usually varies with the coordinate, and the
coordinates may be dependent. This paper surveys nonparametric methods for modeling
such data sets. These models are based on a generalized central limit theorem. The limit
laws in the generalized central limit theorem are operator stable, a class that contains
the multivariate Gaussian as well as marginally stable random vectors with different
tail behavior in each coordinate. Modeling this kind of data requires choosing the right
coordinates, estimating the tail index for those coordinates, and characterizing dependence
between the coordinates. We illustrate the practical application of these methods with
several example data sets from finance and hydrology.

1. Introduction

Heavy tailed random variables with power law tails P (|X| > x) ≈ Cx−α are observed
in many real world applications. Estimation of the tail parameter α is important, because
it determines which moments exist. If α < 2 then the variance is infinite, and if α < 1
the mean is also undefined. For a heavy tailed random vector X = (X1, . . . , Xd)

′ the tail
index αi for the ith component may vary with i. Choosing the wrong coordinates can
mask variations in tail index, since the heaviest tail will dominate.

Modeling dependence is more complicated when αi < 2 since the covariance matrix is
undefined. In order to model the tail behavior and dependence structure of heavy tailed
vector data, a generalized central limit theorem [10,11,27] can be used. A nonparametric
characterization of the heavy tailed vector data identifies the operator stable limit. Since
the data distribution belongs to the generalized domain of attraction of that operator
stable limit, it inherits the tail behavior, natural coordinate system, and tail dependence
structure of that limit.

This paper surveys some nonparametric methods for modeling heavy tailed vector data.
These methods begin by estimating the appropriate coordinate system, to unmask vari-
ations in tail behavior. Then the tail index is estimated for each coordinate, and finally
the dependence structure can be characterized. In the parlance of operator stable laws,
the first two steps estimate the exponent of the operator stable law, and the last step
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Figure 1. Heavy tailed α-stable densities provide a superior fit to relative concentration
of a tracer released in an underground aquifer (from [6]).

estimates its spectral measure. All of the methods presented here apply to data whose
distribution is attracted to an operator stable limit, not just to operator stable data.
Therefore these methods are extremely robust.

2. Examples of data sets with heavy tails

Applications of heavy tailed random variables and random vectors occur in many areas,
including hydrology and finance. Anderson and Meerschaert [4] find heavy tails in a river
flow with α ≈ 3, so that the variance is finite but the fourth moment is infinite. Tessier,
et al. [39] find heavy tails with 2 < α < 4 for a variety of river flows and rainfall
accumulations. Hosking and Wallis [14] find evidence of heavy tails with α ≈ 5 for
annual flood levels of a river in England. Benson, et al. [5,6] model concentration
profiles for tracer plumes in groundwater using stochastic models whose heavy tails have
1 < α < 2, so that the mean is finite but the variance is infinite. Figure 1 shows the
best-fitting Gaussian and α-stable densities plotted against relative concentration of a
passive tracer. The straight lines on these log-log graphs indicate power law tails for the
α-stable densities. Heavy tail distributions with 1 < α < 2 are used in physics to model
anomalous diffusion, where a cloud of particles spreads faster than classical Brownian
motion predicts [7,18,38]. More applications to physics with 0 < α < 2 are cataloged in
Uchaikin and Zolotarev [40]. Resnick and Stărică [34] examine the quiet periods between
transmissions for a networked computer terminal, and find heavy tails with 0 < α < 1, so
that the mean and variance are both infinite. Several additional applications to computer
science, finance, and signal processing appear in Adler, Feldman, and Taqqu [3]. More
applications to signal processing can be found in Nikias and Shao [30].

Mandelbrot [22] and Fama [9] pioneered the use of heavy tail distributions in finance.
Mandelbrot [22] presents graphical evidence that historical daily price changes in cotton
have heavy tails with α ≈ 1.7, so that the mean exists but the variance is infinite. Jansen
and de Vries [15] argue that daily returns for many stocks and stock indices have heavy
tails with 3 < α < 5, and discuss the possibility that the October 1987 stock market
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plunge might be just a heavy tailed random fluctuation. Loretan and Phillips [21] use
similar methods to estimate heavy tails with 2 < α < 4 for returns from numerous stock
market indices and exchange rates. This indicates that the variance is finite but the fourth
moment is infinite. Both daily and monthly returns show heavy tails with similar values
of α in this study. Rachev and Mittnik [33] use different methods to find heavy tails with
1 < α < 2 for a variety of stocks, stock indices, and exchange rates. McCulloch [23] uses
similar methods to re-analyze the data in [15,21], and obtains estimates of 1.5 < α < 2.
This is important because the variance of price returns is finite if α > 2 and infinite if
α < 2. While there is disagreement about the true value of α, depending on which model
is employed, all of these studies agree that financial data is typically heavy tailed, and
that the tail parameter α varies between different assets.

3. Generalized central limit theorem

For heavy tailed random vectors, a generalized central limit theorem applies. If X,X1,
X2,X3, . . . are IID random vectors on Rd we say that X belongs to the generalized
domain of attraction of some full dimensional random vector Y on Rd, and we write
X ∈ GDOA(Y ), if

An(X1 + · · · + Xn − bn) ⇒ Y (3.1)

for some d × d matrices An and vectors bn ∈ Rd. The limits in (3.1) are called operator
stable [17,27,37]. If E(‖X‖2) exists then the classical central limit theorem shows that
Y is multivariable normal, a special case of operator stable. In this case, we can take
An = n−1/2I and bn = nE(X). If (3.1) holds with An = n−1/αI for any α ∈ (0, 2], then Y
is multivariable stable with index α. In this case we say that X belongs to the generalized
domain of normal2 attraction of Y . See [27,35] for more information.

Matrix powers provide a natural extension of the stable index α, allowing the tail
index to vary with the coordinate. Let exp(A) = I + A + A2/2! + A3/3! + · · · be the
usual exponential operator for d × d matrices, and let E = diag(1/α1, . . . , 1/αd) be a
diagonal matrix. If (3.1) holds with An = n−E = exp(−E lnn), then An is diagonal with
entries n−1/αi for i = 1, . . . , d. Write Xt = (X1(t), . . . , Xd(t))

′, bt = (b1(t), . . . , bd(t))
′,

Y = (Y1, . . . , Yd)
′, and project (3.1) onto its ith coordinate to see that

Xi(1) + · · · +Xi(n) − bi(n)

n1/αi
⇒ Yi for each i = 1, . . . , d. (3.2)

Each coordinate Xi(t) is in the domain of attraction of a stable law Yi with index αi,
and the matrix E specifies every tail index. The limit Y is called marginally stable, a
special case of operator stable. The matrix E, called an exponent of the operator stable
random vector Y , plays the role of the stable index α for stable laws. The matrix E need
not be diagonal. Diagonalizable exponents involve a change of coordinates, degenerate
eigenvalues thicken probability tails by a logarithmic factor, and complex eigenvalues
introduce rotational scaling, see Meerschaert [24].

A proof of the generalized central limit theorem for matrix scaling can be found in
Meerschaert and Scheffler [27]. Since Y is infinitely divisible, the Lévy representation

2This terminology refers to the special form of the norming, not the limit!



4

(Theorem 3.1.11 in [27]) shows that the characteristic function E[eik·Y ] is of the form
eψ(k) where

ψ(k) = ib · k − 1

2
k · Σk +

∫

x6=0

(
eik·x − 1 − ik · x

1 + ‖x‖2

)
φ(dx) (3.3)

for some b ∈ Rd, some nonnegative definite symmetric d × d matrix Σ and some Lévy
measure φ. The Lévy measure satisfies φ{x : ‖x‖ > 1} <∞ and

∫

0<‖x‖<1

‖x‖2φ(dx) <∞.

For a multivariable stable law,

φ{x : ‖x‖ > r,
x

‖x‖
∈ B} = Cr−αM(B)

where M is a probability measure on the unit sphere that is not supported on any d− 1
dimensional subspace of Rd. We call M the spectral measure3. If φ = 0 then Y is normal
with mean b and covariance matrix Σ. If Σ = 0 then a necessary and sufficient condition
for (3.1) to hold is that

nP (AnX ∈ B) → φ(B) as n→ ∞ (3.4)

for Borel subsets B of Rd \ {0} whose boundary have φ-measure zero, where φ is the
Lévy measure of the limit Y . Proposition 6.1.10 in [27] shows that the convergence (3.4)
is equivalent to regular variation of the probability distribution µ(B) = P (X ∈ B), an
analytic condition that extends the idea of power law tails. If (3.4) holds then Proposition
6.1.2 in [27] shows that the Lévy measure satisfies

tφ(dx) = φ(t−Edx) for all t > 0 (3.5)

for some d× d matrix E. Then it follows from the characteristic function formula that Y
is operator stable with exponent E, and that for Yn IID with Y we have

n−E(Y1 + · · ·+ Yn − bn)
d
= Y (3.6)

for some bn, see Theorem 7.2.1 in [27]. Hence operator stable laws belong to their own
GDOA, so that the probability distribution of Y also varies regularly, and sums of IID
operator stable random vectors are again operator stable with the same exponent E. If
E = aI then Y is multivariable stable with index α = 1/a, and (3.4) is equivalent to the
balanced tails condition

P (‖X‖ > r, X
‖X‖ ∈ B)

P (‖X‖ > r)
→M(B) as r → ∞ (3.7)

for all Borel subsets B of the unit sphere S = {θ ∈ Rd : ‖θ‖ = 1} whose boundary has
M -measure zero.

3Some authors call CM the spectral measure.
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4. Spectral decomposition theorem

For any d× d matrix E there is a unique spectral decomposition based on the real parts
of the eigenvalues, see for example Theorem 2.1.14 in [27]. Write the minimal polynomial
of E as f1(x) · · ·fp(x) where every root of fj has real part aj and a1 < · · · < ap. Define
Vj = ker fj(E) and let dj = dim Vj. Then we may write Rd = V1 ⊕ · · · ⊕ Vp, and in any
basis that respects this direct sum decomposition we have

E =




E1 0 · · · 0
0 E2 0
...

. . .
...

0 0 · · · Ep


 (4.1)

where Ei is a di×di matrix, every eigenvalue of Ei has real part equal to ai, and d1 + · · ·+
dp = d. This is called the spectral decomposition with respect to E. Given a nonzero
vector θ ∈ Rd, write θ = θ1 + · · · + θp with θi ∈ Vi for each i = 1, . . . , p and define

α(θ) = min{1/ai : θi 6= 0}. (4.2)

If Y is operator stable with exponent E, then the probability distribution of Y varies
regularly with exponent E, and Theorem 6.4.15 in [27] shows that for any small δ > 0 we
have

r−α(θ)−δ < P (|Y · θ| > r) < r−α(θ)+δ

for all r > 0 sufficiently large. In other words, the tail behavior of Y is dominated
by the component with the heaviest tail. This also means that E(|Y · θ|β) exists for
0 < β < α(θ) and diverges for β > α(θ). Theorem 7.2.1 in [27] shows that every
ai ≥ 1/2, so that 0 < α(θ) ≤ 2. If we write Y = Y1 + · · · + Yp with Yi ∈ Vi for each
i = 1, . . . , p, then projecting (3.6) onto Vi shows that Yi is an operator stable random
vector on Vi with some exponent Ei. We call this the spectral decomposition of Y with
respect to E. Since every eigenvalue of Ei has the same real part ai we say that Yi is
spectrally simple, with index αi = 1/ai. Although Yi might not be multivariable stable,
it has similar tail behavior. For any small δ > 0 we have

r−αi−δ < P (‖Yi‖ > r) < r−αi+δ

for all r > 0 sufficiently large, so E(‖Yi‖β) exists for 0 < β < αi and diverges for β > αi.
If X ∈ GDOA(Y ) then Theorem 8.3.24 in [27] shows that the limit Y and norming

matrices An in (3.1) can be chosen so that every Vi in the spectral decomposition of
Rd with respect to the exponent E of Y is An-invariant for every n, and V1, . . . , Vp are
mutually perpendicular. Then the probability distribution of X is regularly varying with
exponent E and X has the same tail behavior as Y . In particular, for any small δ > 0
we have

r−α(θ)−δ < P (|X · θ| > r) < r−α(θ)+δ (4.3)

for all r > 0 sufficiently large. In this case, we say that Y is spectrally compatible with
X, and we write X ∈ GDOAc(Y ).
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Figure 2. Monthly average river flows (cubic feet per second) for the Salt river near
Roosevelt AZ exhibit heavy tails with α ≈ 3 (from [4]).

5. Nonparametric methods for tail estimation

Mandelbrot [22] pioneered a graphical estimation method for tail estimation. If y =
P (X > r) ≈ Cr−α then log y ≈ logC − α log r. Ordering the data so that X(1) ≥ X(2) ≥
· · · ≥ X(n) we should have approximately that r = X(i) when y = i/n. Then a plot of
logX(i) versus log(i/n) should be approximately linear with slope −α. If P (X > r) ≈
Cr−α for r large, then the upper tail should be approximately linear. We call this a
Mandelbrot plot. Figure 2 shows a Mandelbrot plot used to estimate the tail index for a
river flow time series.

The most popular numerical estimator for α is due to Hill [13], see also Hall [12].
Assuming that P (X > r) = Cr−α for large values of r > 0, the maximum likelihood
estimates for α and C based on the m + 1 largest observations are

α̂ =

[
1

m

m∑

i=1

(
lnX(i) − lnX(m+1)

)
]−1

Ĉ =
m

n
X α̂

(m+1)

(5.1)

where m is to be taken as large as possible, but small enough so that the tail condition
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P (X > r) = Cr−α remains a useful approximation. Finding the best value of m is a
practical challenge, and creates a certain amount of controversy [8]. Jansen and de Vries
[15] use Hill’s estimator with a fixed value of m = 100 for several different assets. Loretan
and Phillips [21] tabulate several different values of m for each asset. Hill’s estimator α̂
is consistent and asymptotically normal with variance α2/m, so confidence intervals are
easy to construct. These intervals clearly demonstrate that the tail parameters in Jansen
and de Vries [15] and Loretan and Phillips [21] vary depending on the asset. Painter,
Cvetkovic, and Selroos [32] apply Hill’s estimator to data on fluid flow in fractures, to
estimate two parameters of interest. Their αi estimates also show a significant difference
between the two parameters. In all of these studies, an appropriate model for vector data
must allow αi to vary with i.

Aban and Meerschaert [1] develop a more general Hill’s estimator to account for a
possible shift in the data. If P (X > r) = C(r− s)−α for r large, the maximum likelihood
estimates for α and C based on the m + 1 largest observations are

α̂ =

[
1

m

m∑

i=1

(
ln(X(i) − ŝ) − ln(X(m+1) − ŝ)

)
]−1

Ĉ =
m

n
(X(m+1) − ŝ)α̂

(5.2)

where ŝ is obtained by numerically solving the equation

α̂(X(m+1) − ŝ)−1 = (α̂ + 1)
1

m

m∑

i=1

(X(i) − ŝ)−1 (5.3)

over ŝ < X(m+1). Once the optimal shift is computed, α̂ comes from Hill’s estimator
applied to the shifted data. One practical implication is that, since the Pareto model is
not shift-invariant, it is a good idea to try shifting the data to get a linear Mandelbrot
plot.

Meerschaert and Scheffler [25] propose a robust estimator

α̂ =
2 lnn

lnn + ln σ̂2
(5.4)

based on the sample variance σ̂2 = n−1
∑n

t=1(Xt − X̄n)
2, where as usual X̄n = n−1(X1 +

· · ·+Xn) is the sample mean. This tail estimator is consistent for IID data in the domain
of attraction of a stable law with index α < 2. Like Hill’s estimator [34], it is also
consistent for moving averages. If X is attracted to a normal limit, then α̂ → 2. It is
interesting, and even somewhat ironic, that the sample variance can be used to estimate
tail behavior, and hence tells us something about the spread of typical values, even in this
case 0 < α < 2 where the variance is undefined.

6. The right coordinate system

Equation 4.3 shows that tail behavior is dominated by the component with the heaviest
tail. In order to unmask variations in tail behavior, one has to find a coordinate system
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θ1, . . . , θd where αi = α(θi) varies with i. This is equivalent to estimating the spectral
decomposition. A useful estimator is based on the (uncentered) sample covariance matrix

Mn =
1

n

n∑

t=1

XtX
′
t. (6.1)

If Xt are IID with X, then XtX
′
t are IID random elements of the vector space Md

s of
symmetric d×d matrices, and the extended central limit theorem applies (see Section 10.2
in [27] for complete proofs). If the probability distribution of X is regularly varying with
exponent E and (3.4) holds with tφ{dx} = φ{t−Edx} for all t > 0, then the distribution
of XX ′ is also regularly varying with

nP (AnXX ′A′
n ∈ B) → Φ(B) as n→ ∞ (6.2)

for Borel subsets B of Md
s that are bounded away from zero and whose boundary has

Φ-measure zero. The exponent ξ of the limit measure Φ{d(xx′)} = φ{dx} is defined by
ξM = EM +ME ′ for M ∈ Md

s. If every eigenvalue of E has real part ai > 1/2, then

nAnMnA
′
n ⇒W (6.3)

holds with W operator stable. The centered sample covariance matrix is defined by

Γn =
1

n

n∑

i=1

(Xi − X̄n)(Xi − X̄n)
′

where X̄n = n−1(X1 + · · · + Xn) is the sample mean. For heavy tailed data, Theorem
10.6.15 in [27] shows that Γn and Mn have the same asymptotics. In practice, it is common
to mean-center the data, so it does not matter which form we choose.

Since Mn is symmetric and nonnegative definite, there exists an orthonormal basis of
eigenvectors for Mn with nonnegative eigenvalues. Sort the eigenvalues

λ1 ≤ · · · ≤ λd

and the associated unit eigenvectors

θ1, . . . , θd

so that Mnθj = λjθj for each j = 1, . . . , d. In the spectral decomposition (4.1) each block
Ei is a di × di matrix, and every eigenvalue of Ei has the same real part ai for some
1/2 ≤ a1 < · · · < ap. Let D0 = 0 and Di = d1 + · · · + di for 1 ≤ i ≤ p. Now Theorem
10.4.5 in [27] shows that

2 logn

log n+ log λj

P→ αi as n→ ∞

for any Di−1 < j ≤ Di, where αi = 1/ai is the tail index. This is a multivariable
version of the one variable tail estimator (5.4). Furthermore, Theorem 10.4.8 in [27]
shows that the eigenvectors θj converge in probability to V1 when j ≤ D1, and to Vp
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when j > Dp−1. This shows that the eigenvectors estimate the coordinate vectors in
the spectral decomposition, at least for the lightest and heaviest tails. Meerschaert and
Scheffler [29] show that the same results hold for moving averages. If p ≤ 3, this gives a
practical method for determining the right coordinate system for modeling heavy tail data:
Simply use the eigenvalues of the sample covariance matrix as the coordinate vectors.

Example 6.1. Meerschaert and Scheffler [26] consider n = 2853 daily exchange rate log-
returns X1(t) for the German Deutsch Mark and X2(t) for the Japanese Yen, both taken
against the US Dollar. Divide each entry by .004, which is the approximate median for
both |X1(t)| and |X2(t)|. This has no effect on the eigenvectors but helps to obtain good
estimates of the tail thickness. Then compute

Mn =
1

n

n∑

t=1

(
X1(t)

2 X1(t)X2(t)
X1(t)X2(t) X2(t)

2

)
=

(
3.204 2.100
2.100 3.011

)

which has eigenvalues λ1 = 1.006, λ2 = 5.209 and associated unit eigenvectors θ1 =
(0.69,−0.72)′, θ2 = (0.72, 0.69)′. Next compute

α̂1 =
2 ln 2853

ln 2853 + ln 1.006
= 1.998

α̂2 =
2 ln 2853

ln 2853 + ln 5.209
= 1.656

(6.4)

indicating that one component fits a finite variance model but the other fits a heavy tailed
model with α = 1.656.

Now the eigenvectors can be used to find a new coordinate system that unmasks the
variations in tail behavior. Let

P =

(
0.69 −0.72
0.72 0.69

)

be the change of coordinates matrix whose ith row is the eigenvector θi, and let Zt =
PXt be the same data in the new, rotated coordinate system. The random vectors
Zt ∈ GDOAc(Y ) where Y = (Y1, Y2)

′ is operator stable with exponent

E =

(
0.50 0
0 0.60

)

since 0.50 = 1/1.998 and 0.60 = 1/1.656. Hence the random variables Z1(t) can be
modeled as belonging to the domain of attraction of a normal limit Y1, while the random
variables Z2(t) are attracted to a stable limit Y2 with index α = 1.656. Inverting Zt = PXt

we obtain

X1(t) = 0.69Z1(t) + 0.72Z2(t)

X2(t) = −0.72Z1(t) + 0.69Z2(t).
(6.5)

Both exchange rates have a common heavy-tailed term Z2(t), so both have heavy tails
with the same tail index α = 1.656. It is tempting to interpret Z2(t) as the common
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Figure 3. Exchange rates against the US dollar. The new coordinates uncover variations
in the tail parameter α.

influence of fluctuations in the US dollar, and the remaining light-tailed factor Z1(t) as
the accumulation of other price shocks independent of the US dollar.

Once the new coordinate system is identified, any one variable tail estimator can be used
to approximate the αi. Applying Hill’s estimator to the Zi(t) data with m ≈ 500 yields
estimates similar to those obtained here, providing another justification for a model with
α1 6= α2. This exchange rate data was also analyzed by Nolan, Panorska and McCulloch
[31] using a multivariable stable model with the same tail index α ≈ 1.6 for both exchange
rates. Rotating to a new coordinate system unmasks variations in the tail index that are
not apparent in the original coordinates. Kozubowski, et al. [19] compare the fit of
both stable and geometric stable laws to the rotated data Z2(t), see Figure 4. Since
operator geometric stable laws (where the number n of summands in (3.1) is replaced by
a geometric random variable) have the same tail behavior as operator stable laws, and
even the same domains of attraction (see Theorem 3.1 in [20]), the spectral decomposition
and its eigenvector estimator are the same for both models.

7. Modeling dependence

For heavy tailed random vector data with tail index αi < 2, the covariance matrix is
undefined. In this case, dependence can be modeled using the spectral measure. Suppose
that Xt are IID in the generalized domain of attraction of an operator stable law Y with
no normal component, so that Σ = 0 in (3.3). In this case, the log-characteristic function
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Figure 4. Two models for the rotated exchange rate data Z2: stable (dotted line) and
geometric stable (solid line).

can be written in the form

ψ(k) = ib · k + C

∫ 2π

0

∫ ∞

0

(
eik·r

Eθ − 1 − ik · rEθ

1 + r2

)
dr

r2
M(dθ) (7.1)

where C > 0, and M is a probability measure on the unit circle S = {x ∈ Rd : ‖x‖ = 1}
called the spectral measure of X. Equation (7.1) comes from applying a disintegration
formula (Theorem 7.2.5 in [27]) to the Lévy measure in (3.3). The spectral measure M
determines the dependence between the components of X. For example (cf. [35] for
the multivariate stable case and Meerschaert and Scheffler [28] for the general case), the
components of X are independent if and only if M is supported on the coordinate axes.

The following method of Scheffler [36] can be used to estimate C,M : Any x ∈ Rd \{0}
can be written uniquely in the form x = τ(x)Eθ(x) for some radius τ(x) > 0 and some
direction θ(x) ∈ S. These are called the Jurek coordinates [16]. Define the order statistics
X(i) such that τ(X(1)) ≥ · · · ≥ τ(X(n)) where ties are broken arbitrarily. The estimate

M̂m of the mixing measure based on the m largest order statistics is just the empirical
measure based on the points θ(X(i)) on the unit sphere S. In other words, the probability
we assign to any sector F of the unit sphere S is equal to the fraction of the points
{θ(X(i)) : 1 ≤ i ≤ m} falling in this sector. The estimator of C is Ĉ = (m/n)τ(X(m)),
which reduces to Hill’s estimator of C in the one variable case. This estimator applies
when the data belong to the normal4 generalized domain of attraction of an operator
stable law with no normal component.

4Here normal means that we can take An = n−E in (3.1).
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Figure 5. The empirical mixing measure distribution for the fracture flow data is nearly
uniform on the interval [0, π/2].

Example 7.1. Painter, Cvetkovic, and Selroos [32] performed a detailed simulation of
fracture flow networks, and extracted data on fracture aperture q (millimeters) and fluid
velocity v (meters/year). Mandelbrot plots of an unpublished data set related to that
study indicate that both Xt(1) = 1/v and Xt(2) = 1/qv have heavy tails with 1 < α < 2.
The Hill estimator (5.1) yields α̂1 = 1.4 and Ĉ1 = 0.0065 for the 1/v data, α̂2 = 1.05 and
Ĉ2 = 0.028 for the 1/qv data. The α̂ estimates were plotted as a function of m to see
where they stabilized. Linear regression estimates of the parameters based on a log-log
plot are consistent with the results of Hill’s estimator. See Aban and Meerschaert [2] for
a discussion of linear regression estimates and their relation to Hill’s estimator. Since
α1 6= α2 the original coordinates are appropriate. Also, the eigenvalues of the sample
covariance matrix are near the coordinate axes.

We rescale Yt(i) = Xt(i)/Ĉ
ai
i so that approximately P (Yt(i) > r) = r−ai , and then we

estimate C,M for the data Y1, . . . ,Yn. This rescaling gives a clearer picture of the mixing
measure. A histogram of {θ(Y(i)) : 1 ≤ i ≤ m} for m = 500, shown in Figure 5, indicates
that these unit vectors are approximately uniformly distributed over the first quadrant of
the unit circle. Other values of m in the range 100 < m < 1000 show similar behavior, and
we conclude that the mixing measure M is approximately uniform on the first quadrant
of the unit circle, indicating strong dependence between 1/v and 1/qv. The estimator Ĉ
based on the m largest order statistics stabilizes at a value near π/2 for 100 < m < 1000,
which coincides with the arclength of the first quadrant, so we estimate CM(dθ) = dθ.
Painter, Cvetkovic, and Selroos [32] argue that the 1/v and 1/qv data are well modeled
by stable distributions. In that case, it is reasonable to model the rescaled data Y as
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operator stable with characteristic function

F (k) = exp

{
ib · k +

∫ 2π

0

∫ ∞

0

(
eik·r

Eθ − 1 − ik · rEθ
) dr
r2
dθ

}

where b is the sample mean (this uses an alternative form of the log-characteristic function,
see [27] Theorem 3.1.14 and Remark 3.1.15), and k · rEθ = k1r

1/1.4 cos θ + k2r
1/1.05 sin θ.

The density f(y) of this operator stable random vector can then be obtained from the
Fourier inversion formula

f(y) = (2π)−1

∫

k∈R2

e−ik·yF (k)dk

or perhaps more efficiently via inverse fast Fourier transforms.

8. Summary

Vector data sets with heavy tails can be usefully modeled as belonging to the general-
ized domain of attraction of an operator stable law. This robust model characterizes the
tail behavior, which can vary with coordinate, and also the dependence between coordi-
nates. Choosing the right coordinate system is crucial, since variations in tail behavior
can otherwise go undetected. A useful coordinate system in this regard is the set of
eigenvectors of the sample covariance matrix. Once the right coordinates are chosen, any
one variable tail estimator can be used. Then a nonparametric estimator of the spectral
measure provides a way to model the dependence between coordinates. These methods
have proven useful in a variety of applications to data analysis problems in hydrology and
finance.
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Birkhäuser, Boston.

4. Anderson, P. and M. Meerschaert (1998) Modeling river flows with heavy tails. Water
Resour. Res. 34, 2271–2280.

5. Benson, D., S. Wheatcraft, and M. Meerschaert (2000) Application of a fractional
advection-dispersion equation. Water Resour. Res. 36, 1403–1412.

6. Benson, D., R. Schumer, M. Meerschaert, and S. Wheatcraft (2001) Fractional disper-
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