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Abstract

An operator fractional Brownian field (OFBF) is a Gaussian, stationary increment Rn-valued random

field on Rm that satisfies the operator self-similarity property {X (cE t)}t∈Rm
L
= {cH X (t)}t∈Rm , c > 0, for

two matrix exponents (E, H ). In this paper, we characterize the domain and range symmetries of OFBF,
respectively, as maximal groups with respect to equivalence classes generated by orbits and, based on a new
anisotropic polar-harmonizable representation of OFBF, as intersections of centralizers. We also describe
the sets of possible pairs of domain and range symmetry groups in dimensions (m, 1) and (2, 2).
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1. Introduction

A random vector is called full if its distribution is not supported on a lower dimensional
hyperplane. A random field X = {X (t)}t∈Rm with values in Rn is called proper if X (t) is full
for all t ≠ 0. A linear operator P on Rm is called a projection if P2

= P . Any nontrivial
projection P ≠ I maps Rm onto a lower dimensional subspace. We say that a random field X
is degenerate if there exists a nontrivial projection P such that X (t) = X (Pt) for all t ∈ Rm .
We say that X is stochastically continuous if X (tn) → X (t) in probability whenever tn → t .
A proper, nondegenerate, and stochastically continuous random vector field X is called operator
self-similar (o.s.s.) if

{X (cE t)}t∈Rm
L
= {cH X (t)}t∈Rm for all c > 0. (1.1)

In (1.1),
L
= indicates equality of finite-dimensional distributions, E ∈ M(m, R) and H ∈

M(n, R), where M(p, R) represents the space of real-valued p × p matrices, and cM
=

exp(M(log c)) =

∞

k=0(M log c)k/k! for a square matrix M . For a univariate stochastic process
(namely, (m, n) = (1, 1)), the relation (1.1) is called self-similarity (see, for example, [17,35]).

An operator fractional Brownian field (OFBF, in short) is an Rn-valued random field X =
{X (t)}t∈Rm satisfying the following three properties: (i) it is Gaussian with mean zero; (ii) it

is o.s.s.; (iii) it has stationary increments, that is, for any h ∈ Rm , {X (t + h) − X (h)}t∈Rm
L
=

{X (t)− X (0)}t∈Rm . When (m, n) = (1, 1), OFBF is the celebrated fractional Brownian motion,
widely used in applications due to the long-range dependence property of its increments (see
[34,16]). When m = 1, n ≥ 1, OFBF is known as operator fractional Brownian motion (OFBM).

The theory of o.s.s. stochastic processes (m = 1, n ≥ 1) was developed by Laha and
Rohatgi [24] and Hudson and Mason [21], see also Chapter 11 in [29]. OFBM was studied
by Didier and Pipiras [13] (see also [1,33,22,23] on the related subject of multivariate long-range
dependent time series). For scalar fields (namely, m ≥ 1, n = 1), the analogues of fractional
Brownian motion and fractional stable motion were studied in depth by Biermé et al. [7],
with related work and applications found in [4,8,25,6,5,19,9,10,28,15,32]. Li and Xiao [26]
proved important results on o.s.s. random vector fields. Baek et al. [2] bridged the gap between
harmonizable and moving average integral representations for OFBF.

The domain and range symmetries of a proper, nondegenerate random field X starting at zero
are defined by

Gdom
1 (X) :=


A ∈ GL(m, R) : {X (At)}

L
= {X (t)}


,

Gran
1 (X) :=


B ∈ GL(n, R) : {B X (t)}

L
= {X (t)}


,

(1.2)

where GL(k, R) denotes the general linear group of invertible k × k matrices. Cohen et al. [11]
and Didier and Pipiras [14], respectively, characterized the range symmetries of operator stable
Lévy processes and OFBM.

Symmetry is an important modeling consideration, and a useful guide to model selection
(see [27] on Markov processes and [30] on measures). In particular, the interest in the study of
symmetries is tightly connected to two major themes: (a) anisotropy, i.e., when Gdom

1 (X) is not
the orthogonal group, and its applications in several fields such as bone radiographic imaging
and hydrology; and (b) the parametric identification of operator scaling laws, which depends on
both Gdom

1 (X) and Gran
1 (X). The latter theme is treated in detail for general o.s.s. random fields

in the related paper [12]. In regard to the former, note that the term “anisotropy”, like “nonlinear”
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or “non-Gaussian”, leaves open the question of what types of anisotropy (i.e., domain symmetry
groups Gdom

1 (X)) exist. This paper is dedicated to the domain and range symmetry groups (1.2)
themselves, and thus, the characterization of anisotropy, when X is an OFBF.

We use harmonizable representations of OFBF to construct separate mathematical characteri-
zations of domain and range symmetry groups. More precisely, we establish in any dimension m
or n that domain symmetry groups are maximal groups with respect to orbits (Proposition 3.3),
and break up range symmetry groups into a set of commutativity relations (Proposition 3.2)
based on a new anisotropic polar-harmonizable representation of OFBF. The latter represen-
tation (Proposition 3.1 or Remark 3.2) is by itself of interest for the analysis of anisotropic
fractional covariance structures, and it further provides a mathematical framework for construct-
ing OFBFs displaying all (possible) pairs of domain and range symmetry groups in dimensions
(m, n) = (m, 1) and = (2, 2) (Theorem 3.1). In dimension (2, 2), this is attained based on ab-
solutely continuous or, in most cases, singular spectral measures, which illustrates the fact that
identical symmetry structures can be attained by different covariance structures. In particular,
in dimensions m = 2 and n = 2, respectively, all domain and range symmetry groups are ex-
plicitly described (Corollary 3.2). As a byproduct of the analysis, it is shown that not all pairs
of domain and range symmetry groups, as a Cartesian product, are possible. Notwithstanding
the widespread interest in anisotropy (e.g., [36], [31, chapter 9]), to the best of our knowledge
this paper provides the first characterization of the domain symmetry group – namely, the types
of anisotropy – of a class of random fields for some m ≥ 2. A full description of the pairs of
symmetry groups in general dimension (m, n) remains an open problem and a topic for future
research (see Remarks 3.8 and A.3 on the difficulties involved).

We provide two applications of our analysis. First, we develop a parametric characterization
of the subclass of isotropic OFBFs in any dimension (m, n) (Proposition 3.6) that sheds light
on the fact that isotropy is not determined solely by the domain exponent E in (1.1). Second,
following up on [12], we revisit the problem of the non-identifiability of OFBF by displaying all
the possible sets of exponents in dimension (m, n) = (2, 2) (Corollary 3.3).

2. Preliminaries

In this section, we lay out the notation and conceptual framework used in the paper.
M(n) and M(n, C) denote, respectively, the spaces of n × n matrices with real or complex

entries, whereas the space of n×m matrices with real entries is denoted by M(n, m, R). A∗ and A
stand for the Hermitian transpose and conjugate matrix of A ∈ M(n, C), respectively. S≥0(n, C),
S>0(n, C), S≥0(n, R), S>0(n, R) represent, respectively, the cones of Hermitian symmetric
positive semidefinite, Hermitian symmetric positive definite, symmetric positive semidefinite and
symmetric positive definite matrices. O(n), U (n) and SO(n) represent the orthogonal, unitary
and special orthogonal groups, respectively. A zero matrix of appropriate dimension is denoted
by 0. We will make use of the cyclic and dihedral subgroups of O(2) defined by, respectively,

Cν = {Ok2π/ν : k = 1, . . . , ν}, Dν = {Ok2π/ν, Fk2π/ν : k = 1, . . . , ν}, ν ∈ N, (2.1)

as well as the dihedral group D∗1 = {I, diag(−1, 1)}. In (2.1), we write

SO(2) ∋ Oθ =


cos θ − sin θ

sin θ cos θ


, O(2) \ SO(2) ∋ Fθ =


cos θ sin θ

sin θ − cos θ


,

θ ∈ [0, 2π). (2.2)
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For example, C2 = {I,−I }, D2 = {I,−I, diag(1,−1), diag(−1, 1)}. We also define the unitary
matrix

U2 =

√
2

2


1 1
i −i


, (2.3)

which allows us to write a (spectral) decomposition of all matrices SO(2) ∋ Oθ =

U2diag(e−iθ , eiθ )U∗2 , θ ∈ [0, 2π). The matrix Oθ acts by rotating a vector in R2 by an angle
θ , whereas the matrix Fθ reflects it at the angle θ/2.

By Didier et al. [12, Proposition 2.1], if X is proper, nondegenerate and X (0) = 0 a.s.,
then Gdom

1 (X) and Gran
1 (X) (see (1.2)) are compact groups. In particular, recall that a compact

subgroup G of GL(m, R) can be written as

G = W OW−1, (2.4)

or equivalently,

G ∼= O, (2.5)

where O is a subgroup of O(m) and the matrix W ∈ S>0(n, R) is called a conjugacy (see
[21, p. 285]). Denote the classes of all possible domain groups, range groups, and pairs of domain
and range groups, respectively, by

Gdom
m = {Gdom

1 (X) : for some n ∈ N, X = {X (t)}t∈Rm is an Rn-valued OFBF},
Gran

n = {Gran
1 (X) : for some m ∈ N, X = {X (t)}t∈Rm is an Rn-valued OFBF},

Gm,n = {(Gdom
1 (X), Gran

1 (X)) : X = {X (t)}t∈Rm is an Rn-valued OFBF}.
(2.6)

Note that Gdom
m × Gran

n ⊇ Gm,n , but the converse, in principle, may not hold (indeed, see
Theorem 3.1). For notational simplicity, we will drop the subscripts and write

Gdom, Gran, G. (2.7)

Let X = {X (t)}t∈Rm be an OFBF satisfying

0 < minℜ eig(H) ≤ maxℜ eig(H) < minℜ eig(E∗), (2.8)

where

eig(M) (2.9)

denotes the set of eigenvalues of a matrix M . Throughout the paper, we will assume that the
matrices E and H satisfy condition (2.8). Moreover, since the relation (1.1) can be rewritten
with E/ minℜ eig(E∗) and H/ minℜ eig(E∗) in place of E and H , respectively, we will further
assume without loss of generality that the normalization

minℜ eig(E∗) = 1 (2.10)

holds. Under (2.8), in [2, Theorem 3.1], it is shown that the OFBF X admits a harmonizable
representation of the form

{X (t)}t∈Rm
L
=


Rm

(ei⟨t,x⟩
− 1)BF (dx)


t∈Rm

. (2.11)
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The term BF (dx) is a Hermitian Gaussian random measure whose S≥0(n, C)-valued control
measure

FX (dx) = EBF (dx)BF (dx)∗ (2.12)

satisfies the integrability condition
Rm

∥x∥2

1+ ∥x∥2
FX (dx) <∞, (2.13)

where ∥ · ∥ is the Euclidean norm. Moreover, the spectral measure FX (dx) is (E∗,−2H)-
homogeneous, i.e.,

FX (cE∗dx) = c−H FX (dx)c−H∗ , c > 0, (2.14)

and

S≥0(n, C) ∋ fX (cE∗x) = c−HE fX (x)c−H∗E dx-a.e., c > 0, (2.15)

whenever a spectral density fX (x) =
FX (dx)

dx exists, where tr(·) denotes the trace. In (2.15), we
define

HE = H +
tr(E)

2
I. (2.16)

The existence of a spectral density is guaranteed in the particular case of an operator fractional
Brownian motion (OFBM), i.e., an OFBF in dimension (1, n) with E = 1, for which

fX (x) = x−(H+I/2)
+ AA∗x−(H∗+I/2)

+ + x−(H+I/2)
− AA∗x−(H∗+I/2)

− dx-a.e. (2.17)

for some A ∈ M(n, C) (see [13, Theorem 3.1]). In particular, the OFBM class is parametrized
by the triplet of real matrices

(H,ℜ(AA∗),ℑ(AA∗)), (2.18)

which we call scaling (H ) and spherical parameters (AA∗, or ℜ(AA∗) and ℑ(AA∗)). It can be

shown [13, Theorem 3.1] that an OFBM is time-reversible, namely, {BH (−t)}t∈R
L
= {BH (t)}t∈R,

if and only if

ℑ(AA∗) = 0. (2.19)

Remark 2.1. Beyond being a particular case of OFBF when m = 1 and n ≥ 1, OFBM is
of direct interest in this paper since, based on the polar-harmonizable representation of OFBF
(Proposition 3.1), arguments for OFBF can often be reduced to an argument for OFBM by
fixing the so-named spherical component of OFBF (see also Remark 3.2). OFBM is also used to
illustrate some of the results in the paper.

Let Rm denote either Rm or Rm
\ {0}. Also let

µ : B(Rm)→ S≥0(n, C) (2.20)

be an (entry-wise C-valued) measure whose measure induced by the maximum eigenvalue is
σ -finite. Given a linear operator A ∈ M(m, R), we define the measure

µA(B) = µ(A−1 B) (2.21)
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on Borel sets B, where A−1 B is the preimage of the set B. Equivalently, we can write µA(dx) =

µ(A−1dx). In the analysis of symmetry groups (1.2), we shall use the symmetry groups of a
measure µ as defined next.

Definition 2.1. Let µ be as in (2.20). The domain and range symmetry sets of µ are, respectively,

S dom(µ) = {C ∈ M(m, R) : µC (B) = µ(B), B ∈ B(Rm)}, (2.22)

S ran(µ) = {C ∈ M(n, R) : Cµ(B)C∗ = µ(B), B ∈ B(Rm)}. (2.23)

We will need the notion of support of a matrix-valued measure, which is laid out next.

Definition 2.2. Consider the measure µ as in (2.20). We define

supp {µ} = {x ∈ S : for any open set U , x ∈ U ⇒ µ(U ) ≠ 0}.

We will use changes of variables into polar coordinates, as discussed in [7, p. 314]. Let E be as
in (2.8). Then, there exists a norm ∥ · ∥0 on Rm for which

Ψ : (0,∞)× S0 → Rm
\ {0}, Ψ(r, θ) := r Eθ, (2.24)

is a homeomorphism, where

S0 = {x ∈ Rm
: ∥x∥0 = 1}. (2.25)

Then, one can uniquely write the polar representation

Rm
\ {0} ∋ x = τ(x)E l(x), (2.26)

where the functions τ(x), l(x) – which depend on E – are called the radial and directional parts
of x , respectively. One such norm ∥ · ∥0 may be calculated explicitly by means of the expression

∥x∥0 =
 1

0
∥t E x∥

dt

t
, (2.27)

where ∥ · ∥ is any norm in Rm . The uniqueness of the representation (2.26) yields

τ(cE x) = cτ(x), l(cE x) = l(x). (2.28)

In particular, if ∥·∥0 is the Euclidean norm, then S0 = Sm−1, where the latter denotes the ordinary
Euclidean sphere.

3. Main results

3.1. On the characterization of Gran

Recall that Gran
1 (X) and Gran are defined in (1.2) and (2.7), respectively. In this section, we

find necessary and sufficient conditions for a group to be the range symmetry group Gran
1 (X) of

some OFBF X , and explicitly describe all possible range groups (i.e., Gran) in dimension 2.
The following lemma relates the range symmetries of an OFBF X to those of the spectral

measure FX (dx) in (2.12), or of the spectral density fX (x) =
FX (dx)

dx when it exists. It is more
convenient to work with and characterize the domain symmetries of the spectral measure. To
state the lemma, recall that a measure defined on the Borel σ -algebra of a Hausdorff space is
called a Radon measure when it is both locally finite and inner regular [3, p. 155].
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Lemma 3.1. Let X be an OFBF with harmonizable representation (2.11) and spectral measure
FX (dx) as in (2.12). Then,

Gran
1 (X) = S ran(FX ), (3.1)

where the term on the right-hand side of (3.1) is the range symmetry set defined by (2.23).
In particular, S ran(FX ) is a compact group. Let HE be as in (2.16). If, in addition, FX (dx)

is absolutely continuous (a.c.) with density fX (x), then B is a range symmetry of X (i.e.,
B ∈ Gran

1 (X)) if and only if

Br−HE fX (θ)r−H∗E B∗ = r−HE fX (θ)r−H∗E , θ ∈ Θc
B, r > 0. (3.2)

In (3.2), Θc
B is the complement of some set ΘB ∈ B(S0) depending on B, S0 is the sphere

(2.25) associated with E∗, and σ(ΘB) = 0 for some finite Radon measure on B(S0) that does
not depend on B. If, in addition, fX is continuous on S0, then the condition (3.2) is equivalent
to

B fX (x)B∗ = fX (x), x ≠ 0. (3.3)

Proof. Since X is Gaussian,

B ∈ Gran
1 (X)⇔ B E[X (s)X (t)∗]B∗ = E[X (s)X (t)∗], s, t ∈ Rm . (3.4)

Then, the claim (3.1) is a consequence of the harmonizable representation (2.11) and the
definition (2.22) (the compactness of S ran(FX ) then results from that of Gran

1 (X)).
So, fix B ∈ GL(n, R). Assuming FX (dx) has a density fX (x), then again by (2.11), B is a

range symmetry of X if and only if

B fX (x)B∗ = fX (x) dx-a.e. (3.5)

By Lemma 2.1 in [2], we can assume that the density fX is (E∗,−2HE )-homogeneous for HE
as in (2.16), namely, it satisfies the relation

fX (cE∗x) = c−HE fX (x)c−H∗E , x ∈ Rm
\ {0}, c > 0. (3.6)

Let

NB = {x = r E∗θ ∈ Rm
\ {0} : Br−HE fX (θ)r−H∗E B∗ ≠ r−HE fX (θ)r−H∗E },

i.e., NB is the set of points (expressed in polar coordinates (2.24)) where the equality in (3.5)
does not hold. For any fixed θ ∈ S0, define the set

Rθ = {r > 0 : Br−HE fX (θ)r−H∗E B∗ ≠ r−HE fX (θ)r−H∗E }.

Further define

Θ0 = {θ ∈ S0 : Rθ has positive R-Lebesgue measure}.

By (3.5), the Rm-Lebesgue measure of NB is zero. Hence, by using Proposition 2.3 in [7] in the
second equality below,

0 =


Rm
1NB (x)dx =


S0


∞

0
1
{r E∗θ∈NB }

r tr(E∗)−1drσ(dθ)

=


S0


∞

0
1Θ0(θ)1Rθ (r)r tr(E∗)−1drσ(dθ)
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for some finite Radon measure σ(dθ) on B(S0). Therefore, σ(Θ0) = 0. Now consider x∗ =
r E∗

0 θ0 ≠ 0 such that θ0 := l(x∗) ∈ Θc
0 . Then, Rθ∗ has R-Lebesgue measure zero. Therefore, by

using (3.5) and (3.6) we can choose a sequence {xn}n∈N, xn = r E∗
n θ0, such that, as n→∞,

B fX (x∗)B∗ = Br−HE
0 fX (θ0)r

−H∗E
0 B ← Br−HE

n fX (θ0)r
−H∗E
n B = B fX (xn)B

= fX (xn) = r−HE
n fX (θ0)r

−H∗E
n → r−HE

0 fX (θ0)r
−H∗E
0 = fX (x∗). (3.7)

Thus, (3.2) holds.
Now assume, in addition, that fX is continuous on S0. The argument leading to (3.7) can be

extended to establish (3.3). In fact, pick x0 = r E∗
0 θ0 ∈ NB . Since the Rm-Lebesgue measure of

NB is zero, there is a sequence {xn}n∈N = {r E∗
n θn}n∈N ⊆ N c

B such that xn → x0 as n → ∞.
Thus, rn → r0 and θn → θ0, since the function Ψ in (2.24) is a homeomorphism. Therefore, by

replacing r−HE
n fX (θ0)r

−H∗E
n with r−HE

n fX (θn)r
−H∗E
n , and x∗ with x0 in (3.7), (3.3) holds. �

Example 3.1. In the case of an OFBM X , by (2.17) we can assume that the density is continuous
except at zero. Therefore, by (3.3), we have that B ∈ Gran

1 (X) if and only if, for x ≠ 0,

Bx−(H+I/2)
+ AA∗x−(H∗+I/2)

+ B∗ = x−(H+I/2)
+ AA∗x−(H∗+I/2)

+

and Bx−(H+I/2)
− AA∗x−(H∗+I/2)

− B∗ = x−(H+I/2)
− AA∗x−(H∗+I/2)

− ,

where the two conditions are equivalent by taking complex conjugates.

Remark 3.1. When Gran
1 (X) ⊆ O(n) (i.e., if we can assume that W = I in (2.4)), the statement

(3.4) can be rewritten as a set of commutativity relations, i.e.,

Gran
1 (X) =


s,t ∈ R

{O ∈ O(n) : O EX (s)X (t)∗ = EX (s)X (t)∗O}

=


B ⊆ supp FX

{O ∈ O(n) : O FX (B) = FX (B)O},

where the second equality is a consequence of (3.1). Furthermore, in the absolutely continuous
case and assuming fX is continuous on S0, by (3.3) we can write

Gran
1 (X) =


x≠0

{O ∈ O(n) : O fX (x) = fX (x)O}.

Proposition 3.1, to be stated and shown next, establishes a formula for a change of measure
into (anisotropic) polar coordinates, which in turn yields a polar-harmonizable representation
for OFBF. In this reinterpretation of the covariance function of OFBF, the domain exponent E
influences the spherical component of OFBF, whereas H determines the decay of the spectral
measure in each spherical direction. Before stating and proving the proposition, it is useful to
revisit the case of OFBM, characterized by (2.17) and (2.18). Expression (3.8), involving the
spectral measure and parameters of OFBM, will be used in the proof of the ensuing proposition.

Example 3.2. By the homogeneity relation (2.14) with E = 1 (see (2.10)), c = x and
dx = [1,∞), the spectral measure of an OFBM X satisfies the relation

FX [x,∞) = x−H FX [1,∞)x−H∗ , x > 0.
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Consequently, by (2.17),

x−H
{H FX [1,∞)+ FX [1,∞)H∗}x−H∗x−1

= −
d

dx
FX [x,∞) = fX (x)

= x−H AA∗x−H∗x−1 dx-a.e.

for x > 0. Thus,

H FX [1,∞)+ FX [1,∞)H∗ = AA∗. (3.8)

In particular, the left-hand side of (3.8) is Hermitian positive semidefinite (n.b.: if B ∈ S≥0(n, C)

and H has eigenvalues with positive real parts, it is not generally true that H B + B H∗ ∈
S≥0(n, C)).

In the following proposition, S≥0(n, C) denotes the cone of extended Hermitian positive
semidefinite matrices, obtained from S≥0(n, C) by including matrix limits with infinite maxi-
mum eigenvalues.

Proposition 3.1. Let FX (dx) : B(Rm) → S≥0(n, C) be the spectral measure (2.12) under the
assumption that

∞ ≥ max eig FX (B) > 0⇒ min eig FX (B) > 0, B ∈ B(Rm). (3.9)

Then,

FX (B) =


∞

0


S0

1
{r E∗θ∈B}r

−H∆(dθ)r−H∗r−1dr, B ∈ B(Rm), (3.10)

for some entry-wise finite, Hermitian Borel measure ∆ : B(S0)→ S≥0(n, C). In particular, the
covariance function Γ (t1, t2) = EX (t1)X (t2)∗ of an OFBF X has a harmonizable representation
in polar coordinates

Γ (t1, t2) =

∞

0


S0

(ei⟨t1,r E∗ θ⟩
− 1)(e−i⟨t2,r E∗ θ⟩

− 1)r−H∆(dθ)r−H∗r−1dr, t1, t2 ∈ Rm . (3.11)

Conversely, if the function Γ (t1, t2) as defined in (3.11) is such that

Γ (t, t) is a positive definite matrix for all t ≠ 0, (3.12)

then it is the covariance function of an OFBF with exponents (E, H).

Proof. Consider the decomposition (2.26) induced by E∗, namely, with the latter in place of E .
Let

A(r,Θ) = {x ∈ Rm
: τ(x) ≥ r, l(x) ∈ Θ}, r > 0, Θ ∈ B(S0), (3.13)

where Θ ∈ B(S0) is a set such that

max eig FX (A(1,Θ)) > 0. (3.14)

Define

G X,Θ [a, b) =


FX (A(a,Θ))− FX (A(b,Θ)), 0 < a < b;

G X,Θ [−b,−a), a < b < 0.

By (2.28) and (2.26) with E∗ in place of E , A(cr,Θ) = cE∗ A(r,Θ). Hence, by
(2.14), the measure G X,Θ satisfies G X,Θ (c[a, b)) = FX (A(ca,Θ)) − FX (A(cb,Θ)) =
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c−H G X,Θ [a, b)c−H∗ , c > 0. Moreover, by (3.14) and (3.9),

G X,Θ (B) ∈ S>0(n, C), B ∈ {[a, b) : −∞ < a < b <∞, 0 ∉ [a, b)}. (3.15)

We can extend the σ -finite measure G X,Θ to B(R) so that

G X,Θ (−ds) = G X,Θ (ds), G X,Θ (cds) = c−H G X,Θ (ds)c−H∗ , c > 0. (3.16)

Let λmax
X,Θ (ds) = sup

v∈Sn−1
C

v∗G X,Θ (ds)v be the measure induced by the maximum eigenvalue

of G X,Θ (ds). For ρ ≥ 1, by (2.14),

v∗G X,Θ [1, ρ)v = v∗{FX (A(1,Θ))− ρ−H FX (A(1,Θ))ρ−H∗
}v, v ∈ Sn−1

C . (3.17)

By taking ρ →∞ in (3.17), we conclude that

0 ≤ λmax
X,Θ [r,∞) <∞, r ≥ 1. (3.18)

On the other hand, fix 0 < r < 1 and rewrite H = P JH P−1, where JH is the Jordan form
of H and P ∈ GL(n, C). Then, for v ∈ Sn−1

C and any small δ > 0, by using the relation
r−H
= Pr−JH P−1,

v∗G X,Θ [r, 1)v = v∗r−H FX (A(1,Θ))r−H∗v − v∗FX (A(1,Θ))v

≤ (v∗P)r−JH {P−1 FX (A(1,Θ))(P∗)−1
}r−J∗H P∗v ≤ Cr−2hmax−δ, (3.19)

where hmax := maxℜ eig(H) and the last inequality follows by the explicit form for r JH

(e.g., [13, Appendix D]). Thus, the bound (3.19) implies that

0 ≤ λmax
X,Θ [r, 1) ≤ C ′

 1

r
s−(2hmax+δ+1)ds. (3.20)

Recall that, by conditions (2.8) and (2.10), hmax ≤ 1. Thus, together with the bound |ei ts
−1|2 ≤

min{4, Cs2
} for an appropriate C > 0, the expressions (3.18) and (3.20) imply that

v∗

∞

0
|ei ts
− 1|2 G X,Θ (ds)


v ≤ ∥v∥2


∞

0
|ei ts
− 1|2λmax

X,Θ (ds) <∞, t ∈ R, v ∈ Sn−1
C .

In particular, by (3.16), ΓΘ (t1, t2) :=


R(ei t1s
− 1)(e−i t2s

− 1)G X,Θ (ds) is the covariance
function of an OFBM with range (Hurst) exponent H , where properness stems from (3.15).
By the proof of Theorem 3.1 in [13], there is AΘ ∈ M(n, C) such that

G X,Θ (ds) = (s−H
+ AΘ A∗Θ s−H∗

+ + s−H
− AΘ A∗Θ s−H∗

− )s−1ds. (3.21)

Since G X,Θ [1,∞) = FX (A(1,Θ)), then by (3.8) we obtain

H G X,Θ [1,∞)+ G X,Θ [1,∞) H∗ = AΘ A∗Θ ∈ S≥0(n, C). (3.22)
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Thus, for r > 0, it results from (3.21) that

−
d

dr
FX (A(r,Θ)) =

G X,Θ (dr)

dr
= r−H

{H FX (A(1,Θ))+ FX (A(1,Θ))H∗}r−H∗r−1

= r−H

Θ

∆(dθ)r−H∗r−1,

where ∆(dθ) := H FX (A(1, dθ))+ FX (A(1, dθ))H∗. Note that, by (3.22), ∆(Θ) ∈ S≥0(n, C)

and v∗∆(Θ)v < ∞, Θ ∈ B(S0), v ∈ Sn−1
C . By integrating from r to ∞, we arrive

at the relation (3.10) for the class A of sets of the form (3.13). Because FX (A(r, S0)) =

r−H FX (A(1, S0))r−H∗ , r > 0, the measure induced by the maximum eigenvalue of FX (dx)

is σ -finite. Since, in addition, the class A is a π -system that generates the Borel sets, an
entry-wise (real and imaginary parts) application of Theorem 1.1.3 in [29] implies (3.10).

The polar-harmonizable representation (3.11) is an immediate consequence of (3.10).
Conversely, let Γ (t1, t2) be the function defined by the expression (3.11). Then, it corresponds to
the covariance function of an OFBF as a consequence of the change of variables formula (3.10)
and the condition (3.12), the latter ensuring properness. �

Example 3.3. The covariance function of an OFBM (i.e., m = 1), characterized by its associated
spectral density (2.17), satisfies (3.11) with E = 1 and

∆(dθ) = AA∗δ{1}(dθ)+ AA∗δ{−1}(dθ), (3.23)

where δ• is a Dirac delta measure.

Remark 3.2. As anticipated in Remark 2.1, in light of (3.11) and (3.23) we can interpret the
spectral (covariance) structure of OFBF as that of an OFBM for each fixed spherical direction.

Moreover, let X = {X (t)}t∈Rm be an OFBF whose spectral measure FX (dx) satisfies the
assumptions of Proposition 3.1. Then, the representation (3.11) leads to the polar-harmonizable
integral representation

{X (t)}t∈Rm
L
=


∞

0


S0

(ei⟨t,r E∗θ⟩
− 1)r−H−I/2BH,∆(dr, dθ)


t∈Rm

, (3.24)

where BH,∆(dr, dθ) is a Hermitian Gaussian random measure with S≥0(n, C)-valued control
measure

EBH,∆(dr, dθ)BH,∆(dr, dθ)∗ = dr∆(dθ) = ∆(dθ)dr.

The representation (3.24) is of independent interest. As noted before Example 3.2, in (3.24) the
domain exponent E influences the spherical component of OFBF, whereas H determines the
decay of the spectral measure in each spherical direction. The representation (3.24) generalizes
that of OFBM (i.e., m = 1) and will allow us to apply the arguments developed for OFBM to
OFBF, e.g., as in the proof of Proposition 3.2.

Remark 3.3. In terms of the spectral measure expressed in polar coordinates, a sufficient con-
dition for (3.12) is that, for some basis {uk}k=1,...,m ⊆ S0 of Rm , and pairwise disjoint vicinities
Θk ∋ uk , k = 1, . . . , m,

ℜ∆(Θk) ∈ S>0(n, R), k = 1, . . . , m. (3.25)
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Indeed, let v ∈ Rn
\ {0}. For t ≠ 0,

v∗Γ (t, t)v ≥

∞

0
v∗r H


2


∪

m
k=1 Θk

|ei⟨t,r E∗θ⟩
− 1|2 ℜ∆(dθ)


r H∗v r−1dr

= 2

∞

0


∪

m
k=1 Θk

|ei⟨t,r E∗θ⟩
− 1|2

v∗r H

∥v∗r H∥
ℜ∆(dθ)

r H∗v

∥r H∗v∥


∥r H∗v∥2 r−1dr

≥ 2

∞

0


∪

m
k=1 Θk

|ei⟨t,r E∗θ⟩
− 1|2 min eig(ℜ∆(dθ))


∥r H∗v∥2 r−1dr > 0.

(3.26)

The first inequality in (3.26) results from the Hermitian property of the measure ∆(dθ), i.e.,
∆(−dθ) = ∆(dθ). In turn, the last inequality is a consequence of the condition (3.25), since
∪

m
k=1 Θk

|ei⟨t,r E∗θ⟩
− 1|2 min eig(ℜ∆(dθ)) > 0 for all r > 0.

Given a matrix M , CO(n)(M) denotes the centralizer of M restricted to the orthogonal group,
namely, the set of orthogonal matrices that commute with M . Centralizers appear naturally in
the characterization of the range symmetry group of OFBM, as shown in [14]. We shall use
centralizers also with OFBF and resort to arguments in the latter reference whenever needed.
The next proposition shows that the range symmetry group of an OFBF X can be decomposed
into the intersection of the (orthogonal) centralizers of the spectral measure FX (dx) expressed
in polar coordinates.

Proposition 3.2. Let X = {X (t)}t∈Rm be an OFBF satisfying the conditions (2.8) and (3.9). Let

U = {Θ ∈ B(S0) : Θ ∩ int(supp ℜ∆(dθ)) ≠ ∅}, (3.27)

where the measure ∆(dθ) appears in (3.10) and (3.11). Then,

(i)

Gran
1 (X) =


Θ∈U

G H,Θ :=

Θ∈U

WΘ


r>0

CO(n)(Πr,Θ ) ∩ CO(n)(ΠI,Θ )


W−1
Θ , (3.28)

where, for Θ ∈ U ,

Πr,Θ = r−W−1
Θ H WΘ r−WΘ H∗W−1

Θ , r > 0, ΠI,Θ = W−1
Θ ℑ(∆(Θ))W−1

Θ , (3.29)

and

WΘ := ℜ(∆(Θ))1/2
∈ S>0(n, R), Θ ∈ B(S0); (3.30)

(ii) when n = 2,

G H,Θ =


WΘ


r>0

CO(2)(Πr,Θ ) ∩ SO(2)


W−1
Θ , if ℑ∆(Θ) ≠ 0;

WΘ


r>0

CO(2)(Πr,Θ )


W−1
Θ , if ℑ∆(Θ) = 0,

(3.31)

and

CO(2)(Πr,Θ ) = D2 or O(2), Θ ∈ U , r > 0. (3.32)
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Proof. By the change of measure FX (dx) into polar coordinates (Proposition 3.1) and
Lemma 3.1,

Gran
1 (X) = {C ∈ GL(n, R) : C FX (dx)C∗ = FX (dx)}

= {C ∈ GL(n, R) : Cr−H∆(dθ)r−H∗C∗ = r−H∆(dθ)r−H∗ , r > 0}

= {C ∈ GL(n, R) : Cr−H
ℜ∆(dθ)r−H∗C∗ = r−H

ℜ∆(dθ)r−H∗ , r > 0}
{C ∈ GL(n, R) : Cr−H

ℑ∆(dθ)r−H∗C∗ = r−H
ℑ∆(dθ)r−H∗ , r > 0}

=


Θ∈U
{C ∈ GL(n, R) : Cr−H

ℜ∆(Θ)r−H∗C∗ = r−H
ℜ∆(Θ)r−H∗ , r > 0}

{C ∈ GL(n, R) : Cr−H
ℑ∆(Θ)r−H∗C∗ = r−H

ℑ∆(Θ)r−H∗ , r > 0}

=:


Θ∈U

Gran
1,Θ ∩ Gran

2,Θ .

So, consider WΘ as in (3.30). To establish claim (i), we can apply the same argument as in the
proof of Theorem 3.1 in [14, pp. 362–364], with WΘ in place of W and ∆(Θ) ∈ S≥0(n, C) ∩

GL(n, C), Θ ∈ U (under condition (3.9)), in place of the OFBM spectral matrix AA∗. In
particular, by the argument in [14], one can express Gran

2,Θ = {C ∈ GL(n, R) : Cℑ∆(Θ)C∗ =
ℑ∆(Θ)}; i.e., the centralizer CO(n)(ΠI,Θ ) does not depend on r . Claim (ii) is a consequence of
the following two facts. First, if ΠI,Θ ≠ 0, then CO(2)(ΠI,Θ ) = SO(2), since ΠI,Θ is skew-
symmetric, namely, Π ∗I,Θ = −ΠI,Θ (see Lemma 5.1 in [14, p. 376], where CO(2)(ΠI,Θ ) is
denoted by G(ΠI,Θ )). Second, (3.32) follows from the analysis in [14, p. 377]. �

We are now in a position to describe Gran in dimension 2.

Corollary 3.1. Consider the class of OFBFs taking values in R2 and satisfying the condi-
tions (2.8) and (3.9). Then, up to a positive definite conjugation (see (2.4)), the elements of
Gran are

C2, D2, SO(2) or O(2). (3.33)

Proof. First, note that

O(2) ∩ SO(2) = SO(2), D2 ∩ SO(2) = C2. (3.34)

So, let G H,Θ be as in (3.28). By (3.31), (3.32) and (3.34), G H,Θ has one of the forms
in (3.33) up to a positive definite conjugation WΘ . Moreover, fix any pair Θ,Θ ′ ∈ B(S0)

and consider their associated groups G H,Θ , G H,Θ ′ . By looking at each subcase and using
Lemma A.1, the intersection group G H,Θ ∩ G H,Θ ′ also has one of the forms (3.33), up to
a conjugacy, as summed up in Table 1. In fact, to obtain the first entry of Table 1, suppose
G H,Θ = WΘ O(2)W−1

Θ and G H,Θ ′ = WΘ ′O(2)W−1
Θ ′ . Then, C2 ⊆ G H,Θ ′ ∩ G H,Θ ′ . If, in ad-

dition, the latter set inclusion is strict, then Lemma A.1 implies that WΘ = wWΘ ′ for some
w > 0, and thus G H,Θ ′ ∩ G H,Θ ′ = WΘ O(2)W−1

Θ , as stated in Table 1. For another case,
if G H,Θ = WΘ SO(2)W−1

Θ and G H,Θ ′ = WΘ ′D2W−1
Θ ′ , then C2 ⊆ G H,Θ ′ ∩ G H,Θ ′ but

WΘ ′{±diag(1,−1)}W−1
Θ ′ ⊈ G H,Θ ′ ∩ G H,Θ ′ , since the matrices ±diag(1,−1) have negative

eigenvalues. Therefore, G H,Θ ′ ∩ G H,Θ ′ = C2, as described on the sixth entry of Table 1. The
remaining entries of the table can be obtained in a similar fashion.
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Table 1
The intersection of range groups for different spherical sets
Θ , Θ ′ (n = 2), where ∼= denotes conjugacy (see (2.5)).

G H,Θ
∼= . . . G H,Θ ′

∼= . . . G H,Θ∩G H,Θ ′
∼= . . .

O(2) O(2) O(2) or C2
O(2) SO(2) SO(2) or C2
O(2) D2 D2 or C2
O(2) C2 C2
SO(2) SO(2) SO(2) or C2
SO(2) D2 C2
SO(2) C2 C2

D2 D2 D2 or C2
D2 C2 C2
C2 C2 C2

Since for any subgroup G given by (3.33) there is an OFBM X (m = 1) such that
Gran

1 (X) ∼= G (see [14, Theorem 5.1]), then up to conjugacies the family Gran is given by (3.33),
as claimed. �

Remark 3.4. For the sake of illustration, in Examples 3.5 and 3.6 we construct two OFBFs with
given domain and range symmetry groups.

3.2. On the characterization of Gdom

This section is dedicated to domain symmetry groups, where Gdom
1 (X) for an OFBF X is

defined in (2.7). However, the arguments are quite different from those in Section 3.1, on range
symmetry groups, and build upon the framework developed in [30]. In particular, the operator
self-similarity of OFBF will not play a role, and will only reappear in the subsequent Section 3.3.
The two main results of this section are the following. First, we find a necessary condition for
a group to be the domain symmetry group of some OFBF X . Second, and within the same
mathematical framework, we show how a scalar-valued measure can be built that has a given
domain symmetry group. Such measure will be used in Section 3.3 to help build OFBFs with
given domain and range symmetry groups, and thus different types of anisotropy. An explicit
description of Gdom in dimension m = 2 is postponed to Corollary 3.2 in Section 3.3.

The next lemma relates the domain symmetries of X to those of the spectral measure FX (dx)

in (2.12), or of the spectral density fX (x) = FX (dx)/dx when it exists. As with range symme-
tries, in the study of domain symmetries it is more convenient to work with the spectral measure.

Lemma 3.2. Let X be an OFBF with harmonizable representation (2.11) and spectral measure
FX (dx) as in (2.12). Then,

Gdom
1 (X) = S dom(FX )∗, (3.35)

where S dom(FX ) is the domain symmetry set defined by (2.22). In particular, S dom(FX ) is a
compact group. If, in addition, FX (dx) is absolutely continuous, then A ∈ Gdom

1 (X) if and only
if

fX (x) = | det(A∗)−1
| fX ((A∗)−1x) dx-a.e. (3.36)
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Proof. A matrix A in GL(m, R) satisfies A ∈ Gdom
1 (X) if and only if EX (As)X (At)∗ =

EX (s)X (t)∗ for all s, t ∈ Rm . From the representation (2.11),

EX (As)X (At)∗ =


Rm
(ei⟨s,x⟩

− 1)(e−i⟨t,x⟩
− 1)(FX )A∗(dx), (3.37)

by a change of variables x = A∗y. It follows that A ∈ Gdom
1 (X) if and only if (FX )A∗(dx) =

FX (dx), as we wanted to show. Proposition 2.1 in [12] then implies that S dom(FX ) is a compact
group, and (3.36) follows promptly. �

To characterize domain symmetry groups, recall the group equivalence relation laid out
in [30]. For two subgroups G, K ⊆ GL(m, R), we write that

G ∼ K ⇔ {Gx : G ∈ G} = {K x : K ∈ K} for all x ∈ Rm . (3.38)

Let [G] be the equivalence class of the group G. We partially order the subsets of GL(m, R) by set
inclusion and call a group maximal when it contains all other groups in its equivalence class. For
example, O(2) is maximal, whereas SO(2) is not, since [O(2)] = [SO(2)]. The next proposition
shows that maximality is a necessary condition for a group to be the domain symmetry group of
an OFBF.

Proposition 3.3. Let X be an OFBF with harmonizable representation (2.11). Then, the domain
symmetry group G = Gdom

1 (X) is maximal with respect to its equivalence class [G].

Proof. Since the group Gdom
1 (X) is compact, then by Lemma 3.2 we can write Gdom

1 (X)∗ =

W O0W−1
= S dom(FX ), where W is a positive definite matrix (see (2.4)) and O0 is

a subgroup of O(m). Define the measure G X (dx) = FX (W dx). Then, G X (O0dx) =

FX (W O0W−1W dx) = FX (W dx) = G X (dx). Therefore, O0 ⊆ S dom(G X ). Now let
A ∈ S dom(G X ). Then, FX (W Adx) = G X (Adx) = G X (dx) = FX (W dx), whence
FX (W AW−1dy) = FX (W W−1dy) = FX (dy). Thus, A ∈ O0. In other words, O0 =

S dom(G X ), and thus without loss of generality we can assume that W = I so that we can
conveniently use the Euclidean norm in the ensuing argument.

Let φ(z) be the M(n, C)-valued transform

φ(z) =


Rm
ei⟨z,x⟩ ∥x∥

2

1+ ∥x∥2
FX (dx), z ∈ Rm .

By condition (2.13), φ(z) is well-defined pointwise. For a pair k, l = 1, . . . , n, let µ(dx)kl =
∥x∥2

1+∥x∥2
FX (dx)kl and µ(dx) = (µ(dx)kl)k,l=1,...,n . Now, consider the decomposition µ(dx)kl =

ℜµ(dx)kl + iℑµ(dx)kl . The Borel measures ℜµ(dx)kl ,ℑµ(dx)kl are real-valued and finite.
Hence, they can be broken up into positive and negative parts. So, for simplicity we can suppose
that ℜµ(dx)kl , ℑµ(dx)kl are positive measures. As a consequence,

φ(z)kl = αkl,1


Rm

ei⟨z,x⟩ℜµ(dx)kl

αkl,1
+ iαkl,2


Rm

ei⟨z,x⟩ℑµ(dx)kl

αkl,2

=: αkl,1φ(z)kl,1 + iαkl,2φ(z)kl,2 ∈ C,

where the constants αkl,1, αkl,2 > 0 make ℜµ(dx)kl/αkl,1, ℑµ(dx)kl/αkl,2 into probability
measures. Therefore, φ(z)kl, j , j = 1, 2, are (C-valued) characteristic functions. Thus, for
O ∈ O(m),

φ(O∗z)kl = φ(z)kl ⇔ φ(O∗z)kl, j = φ(z)kl, j , j = 1, 2
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⇔ µ(O∗dx)kl, j = µ(dx)kl, j , j = 1, 2

⇔ µ(O∗dx) = µ(dx)⇔ FX (O∗dx) = FX (dx) (3.39)

for all z ∈ Rm , where the last equivalence follows from ∥Ox∥2

1+∥Ox∥2
=

∥x∥2

1+∥x∥2
. Therefore, for

O ∈ O(m),

φ(O∗z) = φ(z), z ∈ Rm
⇔ O ∈ S dom(FX ),

where φ(z) = (φ(z)kl)k,l=1,...,n . So, we can focus on the characteristic function matrix φ (for all
entries k, l simultaneously).

Suppose G ⊆ K ∈ [G] and recall that W = I . This implies that K ⊆ O(m); otherwise, for
some non-orthogonal matrix K ∈ K, K x ∉ Sm−1 for some x ∈ Sm−1. This contradicts the fact
that G Sm−1

⊆ Sm−1. So, for all K ∈ K and all z ∈ Rm , K z = Gz,K z for some Gz,K ∈ G. But
then, for this K , we have that for every z ∈ Rm , φ(K ∗z) = φ(G∗z,K z) = φ(z). Hence, (3.39)

implies that K ∈ S dom(FX ) = Gdom
1 (X)∗ = G, by Lemma 3.2, i.e., K ⊆ G. However, since

G ⊆ K, we conclude that K = G. Hence G is maximal, as claimed. �

Remark 3.5. Table 3 in Section 3.3 contains an explicit description of maximal compact
subgroups of O(2), i.e., O(2), Cν , Dν for ν ∈ N, and D∗1 . Corollary 3.2 shows that, indeed,
these types of subgroup make up Gdom in dimension m = 2.

Remark 3.6. As mentioned in Section 3.1, in Examples 3.5 and 3.6 we construct two OFBFs
with given domain and range symmetry groups.

The next natural question is whether the converse of Proposition 3.3 is true, namely, given a
compact maximal subgroup G of GL(m, R) one can build an OFBF whose domain symmetry
group is G. We answer this question in the negative for (m, 1) and in the affirmative for
(m, n) = (2, 2) in Theorem 3.1. Starting from G, the construction of the OFBF amounts to
defining an appropriate spectral measure, expressed in polar coordinates (3.53). The first step
in this direction consists of defining a scalar-valued measure in the fashion of Meerschaert and
Veeh [30, p. 3], which draws upon the Haar measure of the compact group G. Recall that, by (2.4),
every compact subgroup of GL(m, R) is a subgroup of O(m) up to a conjugacy. Therefore, to
construct a measure with a given symmetry group, it suffices to directly consider subgroups of
O(m), instead.

Definition 3.1. Let G be a maximal compact subgroup of O(m), and let D = {x1, . . . , xJ } be
a set of points (pivots) in Sm−1 such that their respective orbits G x1, . . . , G xJ are distinct, i.e.,
G x j1 ≠ G x j2 for j1 ≠ j2. For j = 1, . . . , J , let n j ∈ N be the (finite) number of connected
components of the orbit G x j , where connectedness is defined in the topology induced by any
matrix norm. We define the Rm-Borel measure

ΛD(dx) =

J
j=1


G

jn j δx j (Gdx)H(dG) ≥ 0, (3.40)

where, for j = 1, . . . , J , δx j is the Dirac measure concentrated on the pivot x j , and H(dG) is
the unique Haar probability measure on the group G (see [20, pp. 254 and 263]).

Whenever there is no risk of ambiguity, we will drop the subscript D and simply write Λ(dx).
Lemma A.2 in the Appendix sums up some of the properties of the measure Λ(dx) (see also
[30, p. 3, proof of Theorem 1]).
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In the next proposition, we show that the symmetry group of the scalar-valued measure
ΛD(dx) becomes exactly G after a sufficiently large, but finite, number of pivots is added to
the set D. In the statement and proof of the proposition, span{G x1, . . . , G xJ } for a set of pivots
x1, . . . , xJ is understood as the space generated by the vectors in the orbits G x1, . . . , G xJ . Before
stating and showing the proposition, we give a simple example of a measure ΛD(dx) and briefly
discuss its properties. This will be useful when proving the proposition.

Example 3.4. Consider ΛD(dx) as in Definition 3.1 with J = 1, D =


eiπ/4
≡

√
2

2 ,
√

2
2

∗
⊆

S1 and G = C4 = {O0, Oπ/2, Oπ , O3π/2}. Then, the orbit associated with the pivot eiπ/4 is
Geiπ/4

= {eiπ/4, ei3π/4, ei5π/4, ei7π/4
}, where the complex exponentials, interpreted as vectors

in S1, are the connected components of the orbit. Since the Haar measure H(dG) of C4 assigns
equal weight 1/4 to each element (connected component) of the group, we further obtain that

G
δeiπ/4(Geiπ/4)H(dG) = δeiπ/4(I eiπ/4)H(I ) = 1×

1
4

=
1

#{ connected components of Geiπ/4}
.

In addition, note that


G δeiπ/4(G{y})H(dG) = 0 when the orbit G{y} does not include the vector
eiπ/4

∈ S1.

Proposition 3.4. Let G be a maximal compact subgroup of O(m) and let ΛD(dx) be the
measure (3.40) for a given set of pivots D = {x1, . . . , xJ } ⊆ Sm−1. Then, there is a finite
set of pivots Dk ⊆ Sm−1, D ⊆ Dk , satisfying the conditions of Definition 3.1, such that the
corresponding scalar-valued, Rm-Borel measure ΛDk (dx) as defined in (3.40) has symmetry
group

S dom(ΛDk ) = G. (3.41)

Moreover, there is a set of pivots D∗ = {x1, . . . , xJ∗} ⊇ Dk such that

span{G x1, . . . , G xJ∗} = Rm (3.42)

and

S dom(ΛD∗) = G. (3.43)

Proof. In this proof, ⊂ denotes proper set inclusion, whereas ⊆ denotes weak set inclusion.
Let H be the Haar probability measure on G. Then, H(G) = 1 and H(G A) = H(AG) = H(A)

for any Borel subset A of G and any G ∈ G. By Lemma A.2, (ii), each of the orbits G x j ,
x j ∈ Sm−1, is a compact set, and the number of connected components of an orbit is no more than
the (finite) number of connected components of G. By Lemma A.2, (i), two orbits either coincide
or are disjoint. Suppose that the orbit G x j has n j connected components. Since G G = G, each
of these components satisfies

G
δx j (G G x j )H(dG) =

1
n j

(3.44)

(see [30, p. 4]; cf. Example 3.4). For a given D = {x1, . . . , xJ } ⊆ Sm−1 associated with distinct
orbits G x1, . . . , G xJ and the corresponding measure ΛD(dx) in (3.40), note that Lemma A.2,
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Table 2
OFBF, (m, n) = (2, 2): restrictions on the domain group
imposed by the range symmetry group.

Types of Gran
1 (X) Restriction on Gdom

1 (X)

C2 –
(i) D2 −I ∈ Gdom

1 (X)

(ii) SO(2) −I ∉ Gdom
1 (X)

(iii) O(2) −I ∈ Gdom
1 (X)

(iii) and (v) imply that ΛD(dx) is supported on the compact set G D, and that it assigns different
values to each orbit.

By Lemma A.2, (iv), each G ∈ G is a symmetry of ΛD , i.e., S dom(ΛD) ⊇ G. If S dom(ΛD)x =
G x for all x ∈ Rm , then S dom(ΛD) ∼ G. Since G is maximal, then S dom(ΛD) ⊆ G, whence
G = S dom(ΛD). Otherwise,

there exists some element x ∈ Sm−1
\ {0} such that G x ⊂ S dom(ΛD)x . (3.45)

Set D1 = D ∪ {x}, and consider the measure ΛD1 . By Lemma A.2, (vii), K ∈ S dom(ΛD1) ⇒

K G y = G y, y ∈ D1. Therefore, S dom(ΛD1)G y = G y, y ∈ D1. Since G ⊆ S dom(ΛD1), and in
view of (3.45), this yields

S dom(ΛD1)x = G x ⊂ S dom(ΛD)x . (3.46)

Lemma A.2, (vi) with D′ = D1 and expression (3.46) imply that S dom(ΛD1) ⊂ S dom(ΛD),
since the connected components of S dom(ΛD1)x must be strictly contained in those of
S dom(ΛD)x . Continue in this manner to obtain a decreasing nested sequence of symmetry groups
{S dom(ΛDk )}k∈N∪{0}, all of which contain G. By Lemma A.2, (viii), G = S dom(ΛDk ) for some k.

Let Dk = {x1, . . . , xk} be the set of pivot vectors that we arrive at by following the procedure
above. If the ensemble of points in the orbits {G x1, . . . , G xk} does not contain a basis of Rm ,
then since I ∈ G there is a vector xk+1 such that span{G x1, . . . , G xk} ⊂ span{G x1, . . . , G xk+1}.
By Lemma A.2, (iv) and (vi), G ⊆ S dom(ΛDk+1) ⊆ S dom(ΛDk ). Thus,

G = S dom(ΛDk+1). (3.47)

Proceeding in this fashion, for a finite J∗ we obtain a set of pivots D∗ = {x1, . . . , xJ∗} satisfying
(3.42). Expression (3.43) is a consequence of (3.47). �

3.3. On the characterization of G

The following theorem is the main result of this paper, and concerns the set G of the
possible pairs of domain and range symmetry groups defined in (2.7). It consists of three
statements. Two of them characterize G (in dimensions (m, n) = (m, 1) and (2, 2)) and the
other establishes a subset of G (for dimension (m, 2)). In particular, the theorem settles in the
negative a central issue, namely, whether in general Gdom

×Gran
⊆ G (the opposite set inclusion

being straightforward). This can be illustrated in dimension (m, n) = (2, 2), Table 2; indeed,
Lemma A.3 shows that some choices of range symmetry groups imply restrictions on the choice
of domain symmetry groups.
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Remark 3.7. The presence of the restrictions −I ∈ Gdom
1 (X) and −I ∉ Gdom

1 (X) should not be
surprising. Note that −I ∈ Gdom

1 (X) is equivalent to the law of the OFBF X being reversible in
the sense that

{X (−t)}t∈Rm
L
= {X (t)}t∈Rm . (3.48)

For example, for m ≥ 1 and n = 1, the condition (3.48) always holds. This can be seen by noting
that (for n = 1) the control measure FX (dx) in (2.12) satisfies FX (dx) = FX (dx) = FX (−dx),
and hence that

EX (t1)X (t2) =


Rm
(ei⟨t1,x⟩ − 1)(e−i⟨t2,x⟩ − 1)FX (dx)

=


Rm

(e−i⟨t1,x⟩ − 1)(ei⟨t2,x⟩ − 1)FX (dx) = EX (−t1)X (−t2).

In particular, in this case all domain symmetry groups contain the element −I (see also part (i)
of Theorem 3.1).

The theorem’s proof consists of constructing OFBF spectral measures in polar form
FX (x) = r−H∆(dθ)r−H∗r−1dr (see (3.11)) which display attainable pairs of domain and
range symmetries. It draws upon the characterization of range symmetries in Proposition 3.2, as
well as on the class of spectral measures on B(Sm−1) with given domain symmetries, provided
in Proposition 3.4. Especially in dimension (m, n) = (2, 2), where both domain and range
symmetries can be non-trivial, the argument boils down to reducing the construction of the OFBF
spectral measure to that of building appropriate OFBM spectral measures in every spherical
direction, where the spherical measure ∆(dθ) has the desired domain symmetry group. In the
theorem’s statement, the symbols

Gmax, Gmax|−I • G , (3.49)

denote, respectively, and up to conjugacies, the class of maximal subgroups of O(m) and the
subclass of those which satisfy the restriction −I • G, where • stands for ∉ or ∈.

Theorem 3.1. Consider the class of OFBFs in dimension (m, n), and satisfying the condi-
tions (2.8) and (3.9).

(i) For m ≥ 2 and n = 1, the set of possible pairs of domain and range symmetry groups is
given by

G = Gmax|−I∈G × {±1}; (3.50)

(ii) for m ≥ 2 and n = 2, the set of possible pairs of domain and range symmetry groups
satisfies

G ⊇ Gmax|−I∈G × {C2, D2, O(2)}; (3.51)

(iii) for (m, n) = (2, 2), the set of possible pairs of domain and range symmetry groups is given
by

G = Gmax|−I∈G × {C2, D2, O(2)}


Gmax|−I ∉G × {C2, SO(2)}, (3.52)

where Gmax consists of the maximal groups described in the middle column of Table 3.

In (3.50), (3.51) and (3.52), equalities and set inclusion hold up to conjugacies.
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Proof. Recall that Proposition 3.1 provides the general representation (3.10) of any spectral
measure FX (dx) in polar coordinates. We will construct suitable OFBF spectral measures with
the desired domain and range symmetry groups. In polar coordinates, these measures will have
the form

FX (dx) = r−HΞ (dθ)r−H∗r−1dr, (3.53)

where the spherical component is given by the measure

Ξ (dθ) = AA∗Λ(dθ)+ AA∗Λ(−dθ), S0 = Sm−1, (3.54)

as constructed in Lemma A.5. In (A.11), the matrix A will be appropriately chosen (together with
H ) so that X has the desired range symmetry group, and the measure Λ(dθ) will be obtained from
Proposition 3.4.

Given the spectral measure (3.53), we claim that Gdom
1 (X) and Gran

1 (X) are determined,
respectively, by the component Ξ (dθ), and by the latter combined with the parameter H . Indeed,
for a given FX (dx) of the form (3.53), by Lemmas 3.2 and A.6, (i),

Gdom
1 (X) = S dom(FX )∗ = S dom(Ξ )∗. (3.55)

Moreover, by Lemmas 3.1 and A.6, (ii),

Gran
1 (X) = S ran(FX ) = Gran

1 (BH ), (3.56)

where

BH , FBH (dx) = r−H
{AA∗δ{1}(dθ)+ AA∗δ{−1}(dθ)}r−H∗r−1dr (3.57)

are an OFBM with parameters (H,ℜ(AA∗),ℑ(AA∗)) and its spectral measure expressed in polar
coordinates notation. Relations (3.55) and (3.56) show that the domain and range symmetry
groups of the associated OFBF X are determined, respectively, by Ξ (dθ) and by the latter and
H , as claimed.

We now show (ii). Fix G2 ∈ {C2, D2, O(2)}. By Corollary 5.1 in [14], G2 is a range symmetry
group attainable by a time-reversible OFBM (see (2.19)). This means that we can choose H and
AA∗ such that A2 = 0 in A = A1 + i A2 and the OFBM (3.57) has range symmetry group
Gran

1 (BH ) = G2. Now pick G1 ∈ Gmax|−I∈G . Then, by Lemma A.5, (ii), the associated measure
Ξ (dθ) in (A.11) has domain symmetry group G1. Then, relations (3.53), (3.55) and (3.56) ensure
that the induced random field X satisfies (Gdom

1 (X), Gran
1 (X)) = (G1, G2). Moreover, X is proper

as a consequence of (3.25) and (3.42), as explained in Remark 3.3. Therefore, X is an OFBF (with
exponents E = I and H ).

To show (i), note that the constraint FX (−dx) = FX (dx) for any spectral measure boils down
to FX (−dx) = FX (dx) when n = 1. By Lemma 3.2, this is equivalent to −I being in the
domain symmetry group of the associated OFBF X , i.e., G ⊆ Gmax|−I∈G × {±1}. To establish
the converse, the same procedure for showing (ii) can be applied with added simplicity stemming
from scalar-valued parameters H and AA∗.

The statement (iii) is an immediate consequence of Proposition 3.5, shown below. �

The following result complements Corollary 3.1. It states that for every individual group (in
contrast with a pair thereof) described in Table 3, there is an OFBF exhibiting that domain or
range symmetry group.
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Table 3

OFBF: description of the (individual) domain (Gdom, m =
2) and range (Gran, n = 2) symmetry groups. In the middle
column, isotropy corresponds to Gdom

1 (X) = O(2) (with
W = I ; see Section 3.4.1), the remaining cases describing
all types of anisotropy.

Type Gdom
1 (X) ∼= . . . Gran

1 (X) ∼= . . .

Full O(2) O(2)

Rotational – SO(2)

Cyclic Cν , ν ∈ N C2
Dihedral Dν , ν ∈ N, D∗1 D2

Corollary 3.2. For the class of OFBFs satisfying the conditions (2.8) and (3.9), the classes Gdom

for m = 2 and Gran for n = 2 can be described as in the middle and right columns of Table 3,
respectively.

Proof. In view of Corollary 3.1, we only need to describe the middle column in Table 3. The
latter is a consequence of Theorem 3.1, (iii), and the complete description of compact maximal
groups in dimension m = 2 (see [11, p. 2404]). �

The next proposition pertains to the case of dimension (m, n) = (2, 2). It shows that (almost)
every possible combination of domain and range symmetry groups can be attained by some
OFBF whose spectral density is either singular or has a density (i.e., it is absolutely continuous
with respect to the Lebesgue measure). The special case not covered by singular measures is that
of pairs including the domain group O(2); indeed, in Proposition 3.6, it is shown that isotropy
implies that the spectral measure FX (dx) is absolutely continuous. Fig. 1 is provided to help
visualize part of the argument (see also Examples 3.5 and 3.6).

Proposition 3.5. Let (G1, G2) be a pair of domain and range symmetry groups as described
in (3.52). Then,

(i) if G1 is not conjugate to O(2), there is an OFBF X with singular spectral measure FX (dx)

such that

(Gdom
1 (X), Gran

1 (X)) = (G1, G2); (3.58)

(ii) there is an OFBF X with absolutely continuous spectral measure FX (dx) = fX (x)dx such
that (3.58) holds.

Proof. Throughout this proof,

Gdom
1 and Gran

1 (3.59)

denote generic domain and range symmetry groups, respectively, of an OFBF X being con-
structed. In the end, we are able to write Gdom

1 = Gdom
1 (X) and Gran

1 = Gran
1 (X).

In both cases (i) and (ii), the proof is by construction, but based on different techniques. We
will make use of the representation (3.53) in polar coordinates, where the choice of the pair of
domain and range symmetry groups has to account for the restrictions described in Table 2.

To show (i), we will apply the same technique for showing (ii) in Theorem 3.1. Fix a group
G2 ∈ Gran

1 = {C2, D2, SO(2), O(2)}, where, without loss of generality, we can disregard con-
jugacies W ∈ S>0(2, R). Recall the notation (3.49) for maximal subgroups. In light of Table 2,
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choose the parameters (H,ℜ(AA∗),ℑ(AA∗)) for the OFBM (3.57) according to the following
recipe.

• If G2 implies −I ∈ Gdom
1 by Table 2, then choose

(a) any G1 ∈ Gmax|−I∈G ;
(b) a parametrization (H,ℜ(AA∗),ℑ(AA∗)) from the OFBM (3.57) such that ℜ(AA∗) is

positive definite, A2 = 0 and Gran
1 (BH ) = G2.

• If G2 implies −I ∉ Gdom
1 by Table 2, then choose

(a) any G1 ∈ Gmax|−I ∉G ;
(b) a parametrization (H,ℜ(AA∗),ℑ(AA∗)) from the OFBM (3.57) such that ℜ(AA∗) is

positive definite and Gran
1 (BH ) = G2.

• If G2 is compatible with either −I ∈ Gdom
1 or I ∈ Gdom

1 as described in Table 2, then choose
(a) any G1 ∈ Gmax;
(b) a parametrization (H,ℜ(AA∗),ℑ(AA∗)) from the OFBM (3.57) such that ℜ(AA∗) is

positive definite, Gran
1 (BH ) = G2 and A2 ≠ 0 or = 0 according to whether −I ∉ G1 or

−I ∈ G1, respectively

(see [14, Section 5.1], on how to choose H and AA∗). Then, as in the proof of Theo-
rem 3.1, (ii), relations (3.53), (3.55) and (3.56) ensure that the induced random field X satisfies
(Gdom

1 (X), Gran
1 (X)) = (G1, G2). In particular, depending on whether −I ∉ G1 or −I ∈ G1,

Lemma A.5 ensures that the associated measure Ξ (dθ) in (A.11) has domain symmetry group
G1. Moreover, X is, indeed, proper, and thus an OFBF (with exponents E = I and H ), which is
a consequence of (3.25) and (3.42).

Because, by assumption, G1 is not (conjugate to) O(2), the list of the possible domain groups
displayed in Table 3 shows that for every x ≠ 0, the orbit G1x consists of finitely many points.
Moreover, by Lemma A.2 and expression (A.19), the support of the measure Ξ (dθ) consists of
the orbits that enter into the construction of the measure, namely, a finite number of points in S1.
Therefore, the resulting spectral measure FX (dx) = r−HΞ (dθ)r−H∗r−1dr is singular.

To show (ii), it will suffice to take E = I . Let H ∈ M(2, R) be a matrix whose eigenvalues
satisfy (3.9). Consider the OFBF class whose harmonizable representation is

X = {X (t)}t∈Rm =


R2

(ei⟨t,x⟩
− 1)∥x∥−HE ∆1/2

 x

∥x∥

B(dx)


t∈R2
, (3.60)

where HE is as in (2.15), ∆1/2
∈ S≥0(2, C) is a Hermitian function whose real parts’ max-

imal and minimal eigenvalues are bounded and bounded away from zero, respectively (cf. Re-
mark 3.3). By Theorem 3.1 in [2], the random field (3.60) is a well-defined OFBF with exponents
(I, H) and spectral density

fX (x) = ∥x∥−HE ∆
 x

∥x∥


∥x∥−H∗E . (3.61)

Then,

EX (s)X (t)∗ =


R2
(ei⟨s,x⟩

− 1)(e−i⟨t,x⟩
− 1)∥x∥−HE ∆

 x

∥x∥


∥x∥−H∗E dx

=

 2π

0


∞

0
(ei⟨s,rθ⟩

− 1)(e−i⟨t,rθ⟩
− 1)r−H∆((cos θ, sin θ)∗)r−H∗r−1drdθ,

where the equality is a consequence of making a change of variables into (Euclidean) polar co-
ordinates. It will suffice to define the spherical function ∆ appropriately.
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In light of Table 3, we will break up the construction according to the types of domain symme-
try groups, i.e., groups of the form Dν , Cν or O(2) (Cases 1, 2 or 3, respectively; see also (2.1)).
Case 1: Fix ν ≥ 1, and set G1 = Dν . Now pick a range group G2 that is compatible with G1
according to (3.52). In other words, depending on whether ν is odd or even, then −I ∉ Dν or
−I ∈ Dν , respectively. Consider a parameter H and spherical parameters

∆1,D,∆2,D ∈ S>0(2, C) (3.62)

(i.e., ∆·,D stands for AA∗ in (3.57)) such that

∆1,D =


ℜ∆1,D + iℑ∆1,D, ν is odd,

ℜ∆1,D, ν is even,

∆2,D =


∆1,D, ν is odd,

ℜ∆2,D ≠ ℜ∆1,D, ν is even,

(3.63)

and which yield the same group

Gran
1 (BH ) = G2 (3.64)

as the range symmetry group of two OFBMs of the form (3.57), both with H as the Hurst ex-
ponent, whereas, for one, AA∗ = ∆1,D , and for the other, AA∗ = ∆2,D (see [14, Section 5.1],
on how to choose H and the spherical parameters). Note that, depending on whether ν is odd or
even, we have −I ∉ Gdom

1 or −I ∈ Gdom
1 , respectively. Since −I corresponds to a π rotation,

when ν is even such a rotation must take a slice of the sphere to another slice where it takes the
same value, the opposite holding for when ν is odd (this can be visualized in Fig. 1). In addition,
when ν is even, we can always suppose

ℜ∆2,D = cℜ∆1,D (3.65)

for some c ∈ (0,∞) \ {1} since multiplication by a nonzero constant does not alter the domain
symmetry group of an OFBF, and

ℜ∆1,D,ℜ∆2,D ∈ S>0(2, R).

For x ∈ S0 = S1 and its angular component θ(x), define the matrix-valued function ∆(x)

appearing in (3.60) and (3.61) as

∆(x) =


∆1,D, θ(x) ∈

2π

ν

1
4
+ (k − 1),

3
4
+ (k − 1)


;

∆2,D, θ(x) ∈
2π

ν


k − 1,

1
4
+ (k − 1)


∪

2π

ν

3
4
+ (k − 1), k


,

(3.66)

for k = 1, 2, 3, . . . , ν. In other words, we can interpret the function ∆(·) as dividing up the
sphere S1 into slices of angular size 1

4
2π
ν

, where it takes values ∆1,D or ∆2,D . In particular, each
consecutive pair of slices associated with the value ∆1,D is followed by a pair associated with
the value ∆2,D (cf. Fig. 1, left column). Moreover,

∆(−x) =


∆(x) ∈ S≥0(2, R) ν is even;

∆(x) ν is odd,
x ∈ S1. (3.67)

Therefore, for ν ∈ N,

∆(−x) = ∆(x), x ∈ S1. (3.68)
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We now study the symmetries of the resulting OFBF spectral measure interpreted in terms of
polar coordinates as in (3.23), where the spherical measure is given by ∆(dθ) = ∆(x)dx for
x ∈ S1 and ∆(x) is defined by (3.66). In regard to range symmetries, (3.65) implies that for any
Θ ∈ supp{∆(dθ)} we can write

∆(Θ) = cΘℜ∆1,D + i dΘℑ∆1,D

for some pair cΘ > 0 and dΘ ≥ 0, where dΘ is > or = 0 when ν is odd or even, respectively.
Since

WΘ = ℜ(∆(Θ))1/2
= c1/2

Θ ℜ(∆1,D)1/2 (3.69)

in (3.30), then

W−1
Θ H WΘ = ℜ∆−1/2

1,D H ℜ∆1/2
1,D

and

Πr,Θ = r−ℜ∆
−1/2
1,D H ℜ∆1/2

1,D r−ℜ∆
1/2
1,D H∗ ℜ∆−1/2

1,D , r > 0,

ΠI,Θ = ℜ∆−1/2
1,D dΘℑ∆1,D ℜ∆−1/2

1,D .

In particular,

CO(2)(ΠI,Θ ) =


SO(2), if ℑ∆1,D ≠ 0 (ν is odd),
O(2), if ℑ∆1,D = 0 (ν is even).

This holds because, for odd ν, by (3.62) the matrix ℑ∆1,D is skew-symmetric, and thus so is

ℜ∆−1/2
1,D ℑ∆1,Dℜ∆−1/2

1,D (cf. Lemma 5.1 in [14]). Therefore, (3.31) can be rewritten as

G H,Θ =


ℜ(∆1,D)1/2


r>0

CO(2)(Πr ) ∩ SO(2)

ℜ(∆1,D)−1/2, ν is odd,

ℜ(∆1,D)1/2


r>0

CO(2)(Πr )

ℜ(∆1,D)−1/2, ν is even,

(3.70)

where Πr is the scaling function (3.29) (not dependent on Θ) of an OFBM with parameters H
and AA∗ = ∆1,D , namely, BH in (3.64). From (3.28), (3.69) and (3.70), we obtain

Gran
1 (X) = Gran

1 (BH ) = G2.

In regard to domain symmetries, by Lemmas 3.2 and A.4, we know that Gdom
1 (X)∗ =

S dom(FX ) ⊆ O(2). We first look at reflection matrices. A matrix Fk 2π
ν
∈ O(2) \ SO(2) de-

termines a reflection axis at the angle k
2

2π
ν

. If k is odd, this angle can be rewritten as

k

2
2π

ν
=

k + 1
2
−

1
2

2π

ν
,

k + 1
2
∈ N. (3.71)

In other words, the reflection axis splits a pair of angular slices where ∆(x) takes the value ∆1,D .
Alternatively, if k is even, then

k

2
2π

ν
,

k

2
∈ N. (3.72)

In this case, the reflection axis splits a pair of angular slices where ∆(x) takes the value ∆2,D .
Combined with the fact that FX (dx) is a Hermitian measure, in view of (3.36) this implies that
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FX (Fk 2π
ν

dx) = FX (dx), i.e., Fk 2π
ν
∈ Gdom

1 (X), k = 1, . . . , ν. Turning to rotation matrices, it is
clear that, by (3.36) and the construction of FX (dx),

FX


Ok 2π

ν
dx


= FX (dx), k = 1, . . . , ν.

Hence, we also have Ok 2π
ν
∈ Gdom

1 (X), k = 1, . . . , ν. Moreover, by construction, no other

rotation or reflection matrices appear in Gdom
1 (X). Therefore, Gdom

1 (X) = Dν .
Case 2: Fix ν ≥ 1, and set G1 = Cν . Again pick a range group G2 that is compatible with G1
according to (3.52), i.e., in other words, depending on whether ν is odd or even, then −I ∉ Cν

or −I ∈ Cν , respectively. As in Case 1, by analogy to (3.63), we pick an appropriate H and
define the matrices ∆i,C , i = 1, 2, 3, 4, so that their imaginary parts are zero or not depending
on whether ν is even or odd. More specifically,

∆1,C =


ℜ∆1,C + iℑ∆1,C , ν is odd,

ℜ∆1,C , ν is even,
∆2,C =


ℜ∆2,C + iℑ∆2,C , ν is odd,

ℜ∆2,C , ν is even,

∆3,C =


∆1,C , ν is odd,

ℜ∆3,C , ν is even,
∆4,C =


∆2,C , ν is odd,

ℜ∆4,C , ν is even.
(3.73)

In (3.73),
ℜ∆1,C = ℜ∆3,C ≠ ℜ∆2,C = ℜ∆4,C , if ν is odd,

ℜ∆1,C ,ℜ∆2,C ,ℜ∆3,C ,ℜ∆4,C are pairwise distinct, if ν is even,

and ∆1,D ∈ M(n, C), i = 1, 2, 3, 4, correspond to the spherical parameters with positive defi-
nite real parts associated with OFBMs (3.57) displaying the same range symmetry group G2. For
x ∈ S1, define the matrix-valued function

∆(x) =



∆1,D, θ(x) ∈
2π

ν


k − 1,

1
4
+ (k − 1)


;

∆2,D, θ(x) ∈
2π

ν

1
4
+ (k − 1),

1
4
+ (k − 1)


;

∆3,D, θ(x) ∈
2π

ν

1
2
+ (k − 1),

3
4
+ (k − 1)


;

∆4,D, θ(x) ∈
2π

ν

3
4
+ (k − 1), 1+ (k − 1)


,

(3.74)

for k = 1, 2, 3, . . . , ν. In other words, we can interpret the function ∆(·) as dividing up the
sphere S1 into slices of angular size 1

4
2π
ν

, where it takes values ∆1,D , ∆2,D , ∆3,D or ∆4,D
(cf. Fig. 1, right column).

We now study the symmetries of the spectral measure. In regard to range symmetries, the
same type of argument as in Case 1 can be used. In regard to domain symmetries, again by
Lemma A.4, we know that Gdom

1 (X)∗ = S dom(FX ) ⊆ O(2). Irrespective of whether ν is odd
or even, FX (Ok2π/νdx) = FX (dx), k = 1, . . . , ν. Moreover, the matrix value of ∆(x) on each
of four consecutive slices are, by construction, pairwise distinct. This implies that there is no
reflection in the symmetry group of FX (dx). Moreover, both conditions (3.67) and (3.68) hold.
Therefore, Gdom

1 (X) = G1.
Case 3: It remains to consider the domain symmetry group O(2). So, pick a compatible range
symmetry group G2 and consider the spectral density (3.61) with

∆((cos θ, sin θ)∗) ≡ ∆. (3.75)
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Fig. 1. The spectral density of anisotropic OFBFs with Euclidean spherical component (Gdom
1 ). The shading of each arc

is extended to the corresponding disk slice for ease of visualization. From left to right: top row, D2 and C2; bottom row,
D3 and C3. In the panels for D2 and D3, the reflection axes appear as black lines splitting a slice of a given shade.

In (3.75) and (3.61), ∆ ∈ S≥0(n, C) is chosen so that ℜ∆ is symmetric positive definite and
∆ and H correspond to the spectral parametrization of an OFBM (3.57) with (range) symmetry
group G2. �

The following examples illustrate the study of the structures of range and domain symmetry
groups provided in Propositions 3.2 and 3.3 (as well as in Theorem 3.1 and Proposition 3.5). The
first one is taken from [12]; in this case, the domain and range symmetry groups can be obtained
based on a direct computation. In the second example, we make use of the construction in the
proof of Proposition 3.5. An application to the problem of the identifiability of the exponents of
OFBF is given in Example 3.7.

Example 3.5. Let X = {X (t)}t∈R2 be an R2-valued OFBF with spectral density fX (x) =

∥x∥−γ I , x ∈ R2
\ {0}, 2 < γ < 4, where ∥ · ∥ denotes the Euclidean norm and I is the

identity matrix. This means that its covariance function can be written as

Γ (s, t) = I


R2
(ei⟨s,x⟩

− 1)(e−i⟨t,x⟩
− 1)

1
∥x∥γ

dx, (3.76)

where ⟨·, ·⟩ is the Euclidean inner product. By (3.76) and a change of variables, X is (E, H)-
o.s.s. with E = I , H = hI , where h = (γ − 2)/2. Since Γ (s, t) is a scalar matrix (i.e., a scalar
times the identity) for s, t ∈ R2, then the condition

AΓ (s, t)A∗ = Γ (s, t) (3.77)
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for A ∈ GL(2, R) implies that AA∗ = I , namely, A ∈ O(2). Moreover, any A ∈ O(2) satisfies
(3.77). Hence, Gran

1 (X) = O(2). Now note that, by a change of variables in (3.76) and the
continuity of the spectral density except at zero, A ∈ Gdom

1 (X)⇔ ∥A∗x∥ = ∥x∥, x ∈ Rm
\ {0},

i.e., A ∈ O(2). As a consequence, Gdom
1 (X) = O(2).

Example 3.6. Let X = {X (t)}t∈R2 be an R2-valued OFBF with spectral density

fX (x) = ∥x∥−HE ∆
 x

∥x∥


∥x∥−H∗E

(see (2.16), (3.60) and (3.61)). For the sake of illustration, we look at a subcase, namely, we want
to construct an OFBF X with symmetry groups

Gdom
1 (X) = D3, Gran

1 (X) = SO(2). (3.78)

So, choose the parameters H , ∆1,D , ∆2,D such that

∆1,D = ℜ∆1,D + iℑ∆1,D, ∆2,D = ∆1,D

where (H,ℜ∆1,D,ℑ∆1,D) corresponds to the parametrization (2.18) of an OFBM with range
symmetry group SO(2). In particular, ℑ∆1,D ≠ 0. The function ∆(·) then breaks up the sphere
S1 into slices of angular size 1

4
2π
3 , where it takes values ∆1,D or ∆2,D . This is depicted in

Fig. 1, bottom left panel. A detailed justification of why (3.78) holds is provided in the proof
of Proposition 3.5. Intuitively, since the spectral density fX (x) of the OFBF coincides, in every
direction, with that of an OFBM with (range) symmetry group SO(2), then Gran

1 (X) = SO(2).
Moreover, of all the possible domain groups in Table 3, only the application of D3 leaves the
sphere in Fig. 1 unaltered. Therefore, Gdom

1 (X) = D3.

Remark 3.8. The description of all pairs of symmetry groups in general dimension (m, n),
m, n ∈ N, remains an open problem. In regard to range symmetries, solving commutativity
relations of the type involved in (3.28) is algebraically intense in dimension n ≥ 3 (cf. [14]).
Remark A.3 describes the technical difficulties surrounding the construction of a spectral
measure for general m ∈ N when the domain symmetries include −I .

3.4. Applications

In this section, we provide two applications of the analysis in the preceding sections: one
is a parametric characterization of isotropic OFBF, and the other is the set of exponents of
OFBF in dimension (m, n) = (2, 2). Throughout this section, E dom

H (X) denotes the set of
domain exponents given some range exponent H , and likewise, E ran

E (X) denotes the set of range
exponents given some domain exponent E (see also [12]).

3.4.1. On the parametric characterization of isotropy
Recall that a random field X = {X (t)}t∈Rm is called isotropic when its law is invariant under

orthogonal transformations, namely,

{X (Ot)}t∈Rm
L
= {X (t)}t∈Rm , O ∈ O(m). (3.79)

In other words, Gdom
1 (X) = O(m). The existence of a commuting domain exponent of the

form E0 = ηI is not generally sufficient for isotropy. For example, an OFBM, for which the
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domain exponent is just a scalar, may not be time-reversible (isotropic; see [13, Theorem 6.1]).
The inequivalence between isotropy and Euclidean spherical coordinates is further illustrated
in Fig. 1, which depicts the Fourier spectrum of anisotropic OFBFs with Euclidean spherical
components. In fact, in the next proposition we show that, even though a scalar matrix-valued
domain exponent is a necessary condition for isotropy, sufficiency is only attained in the presence
of the spherical symmetry of the measure ∆(dθ) on the Euclidean sphere.

Proposition 3.6. Let X = {X (t)}t∈Rm be an Rn–valued OFBF with exponents (E, H). Suppose
X satisfies the condition (2.8), and recall that ∥ · ∥ denotes the Euclidean norm. Then, X is
isotropic if and only if the following two conditions hold:

(i) there exists η > 0 such that E0 = ηI ∈ E dom
H (X);

(ii) based on the norm ∥ · ∥0 induced by E0 via the relation (2.27) for ∥ · ∥,

∆(dθ) = ∆(Odθ), O ∈ O(m), S0 = c−1
0 Sm−1, (3.80)

for some c0 > 0, where ∆(dθ) is the spherical measure in (3.11). Moreover, if X is isotropic, its
spectral measure has a density fX (x) =

FX (dx)
dx .

Proof. Suppose X is isotropic. By Theorem 2.6 in [12], there exists an exponent E0 that
commutes with Gdom

1 (X). Because the domain symmetry group is the full orthogonal group
O(m), the exponent has the form E0 = ηI , η > 0. This, in turn, yields ∥ · ∥0 based on the
Euclidean norm via (2.27), i.e., ∥x∥0 = c0∥x∥ for some c0 > 0. From (2.25), we obtain

l(x) =
x

c0 ∥x∥
. (3.81)

Since (2.24) is a homeomorphism,

τ(x) = (c0 ∥x∥)
1/η. (3.82)

Under (3.81) and (3.82), the relation (3.11) holds with E = ηI and the induced measure ∆(dθ).
Moreover, let O ∈ O(m). By isotropy and a change of variables O∗θ = θ ′,

EX (s)X (t)∗ =

∞

0


S0

(ei⟨s,rηI O∗θ⟩
− 1)(e−i⟨t,rηI O∗θ⟩

− 1)r−H∆(dθ)r−H∗r−1dr

=


∞

0


S0

(ei⟨s,rηI θ ′⟩
− 1)(e−i⟨t,rηI θ ′⟩

− 1)r−H∆(Odθ ′)r−H∗r−1dr.

This gives the equality of measures r−H∆(dθ)r−H∗r−1
= r−H∆(O∗dθ ′)r−H∗r−1, r > 0.

Hence, (3.80) holds. The converse, i.e., EX (Os)X (Ot)∗ = EX (s)X (t)∗, s, t ∈ Rm , O ∈ O(m),
can be established in the same fashion by means of (3.11).

Now note that (3.80) implies that the measure ∆(dθ) is uniform on c−1
0 Sm−1. In view of the

polar representation (3.10), this yields the absolute continuity of FX (dx). �

Remark 3.9. It is well known that the covariance function

EX (s)X (t) =
σ 2

2
{|t |2H

+ |s|2H
− |t − s|2H

}, s, t ∈ R, 0 < H ≤ 1, (3.83)

characterizes the univariate FBM. The equivalence between the covariance function and a
closed-form formula such as (3.83) breaks down in the case of vector processes. Generally
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speaking, and assuming that X (0) = 0 a.s., the stationarity of the increments of OFBF leads
to the expression

EX (t)X (s)∗ + EX (s)X (t)∗ = EX (t)X (t)∗ + EX (s)X (s)∗ − EX (t − s)X (t − s)∗.

If

EX (t)X (s)∗ = EX (s)X (t)∗, s, t ∈ Rm, (3.84)

then operator self-similarity based on exponents (E, H) yields

EX (s)X (t)∗ =
1
2


τ(t)H EX (l(t))X (l(t))∗τ(t)H∗

+ τ(s)H EX (l(s))X (l(s))∗τ(s)H∗

− τ(t − s)H EX (l(t − s))X (l(t − s))∗τ(t − s)H∗

, s, t ∈ Rm (3.85)

(cf. the relations (4.6) and (4.7) in [7, p. 325]). Conversely, starting from (2.11) and by making
use of the fact that EX (−t)X (−t)∗ = EX (t)X (t)∗, t ∈ Rm , we can see that (3.85) implies
(3.84). Under the assumption (2.8), the polar-harmonizable representation (3.11) can be used to
extend this statement. In other words, the relation (3.84), the existence of the closed form formula
(3.85) and the relation ∆(dθ) = ∆(dθ) are all equivalent. Furthermore, by a simple adaptation
of the argument in [13, Proposition 5.1], these relations can in turn be shown to be equivalent to
EX (−s)X (−t)∗ = EX (s)X (t)∗, s, t ∈ Rm .

3.4.2. On the identifiability of OFBF
For an OFBF X with exponents E and H , one of or both its exponents may be non-

identifiable, i.e., its sets of domain or range exponents may comprise more than one element.
As a consequence of Didier et al. [12, Theorems 2.4 and 2.5], if X satisfies (2.8) and (3.9) we
can write

E dom
H (X) = E + T (Gdom

1 (X)), E ran
E (X) = H + T (Gran

1 (X)), (3.86)

where, for any closed group G such as Gdom
1 (X) or Gran

1 (X), we define its tangent space by

T (G) =


A ∈ M(n, R) : A = lim
n→∞

Gn − I

dn
,

for some {Gn} ⊆ G and some 0 ≠ dn → 0

. (3.87)

The following result is a consequence of (3.86) and Theorem 3.1, and of the fact that T (O(2)) =

T (SO(2)) = so(2), where so(2) is the space of 2× 2 skew-symmetric matrices.

Corollary 3.3. Let X be an OFBF in dimension (m, n) = (2, 2) with exponents E and H,
and satisfying the conditions (2.8) and (3.9). Then, the sets of exponents of X are given by,
respectively,

E dom
H (X) =


E +Wdomso(2)W−1

dom, Gdom
1 (X) ∼= O(2);

E, Gdom
1 (X) � O(2),

E ran
E (X) =


H +Wranso(2)W−1

ran , Gran
1 (X) ∼= SO(2) or O(2);

H, Gran
1 (X) � SO(2) or O(2),

for a pair of matrices Wdom, Wran ∈ S>0(2, R).
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Example 3.7. In Example 3.5, since Gdom
1 (X) = O(2) = Gran

1 (X), then

E ran
I (X) = hI + so(2), E dom

hI (X) = I + so(2).

In Example 3.6, since Gdom
1 (X) = D3 and Gran

1 (X) = SO(2), then

E ran
I (X) = hI + so(2), E dom

hI (X) = I.

Appendix. Auxiliary results

The following lemma is used in the proof of Corollary 3.1.

Lemma A.1. Let W1, W2 ∈ S>0(2, R). Also, let O1, O2 ∈ O(2) \ C2. If

W1 O1W−1
1 = W2 O2W−1

2 , (A.1)

then for some w > 0,

W1 = wW2 and O1 = O2. (A.2)

Proof. We first show that

O2 = AO1 A∗, A ∈ O(2). (A.3)

By (A.1),

eig(O1) = eig(O2) (A.4)

(see (2.9)). If O1 = O2, then (A.3) trivially holds. So, suppose O1 ≠ O2. By (A.1) and
the uniqueness of the Jordan spectrum, the matrices O1, O2 have the same eigenvalues. If
O1 ∈ SO(2) \ C2, then we can write O1 = U2diag(e−iθ , eiθ )U∗2 , θ ∈ (0, 2π) \ {π}, where
U2 is given by (2.3). Note that O2 ∈ SO(2) \ C2 by (A.4) and the fact that O2 ∈ O(2). Then,
(A.1) implies that O2 = U2diag(eiθ , e−iθ )U∗2 = AO1 A∗, where A = diag(1,−1). Alternatively,
if O1 ∈ O(2) \ SO(2), then the eigenvalues of O1 are −1, 1, with real eigenvectors. By (A.4),
the same must be true for O2, whence O1 and O2 only differ by a rotation of their eigenvectors,
i.e., there is O3 ∈ SO(2) such that O2 = O3 O1 O∗3 . By setting A = O3, we establish the relation
(A.3) in all cases. Therefore, (A.1) and (A.3) imply that

(A∗W−1
2 W1)O1 = O1(A∗W−1

2 W1). (A.5)

Assume that O1 ∈ O(2) \ C2, i.e., O1 has distinct eigenvalues. By Theorem 2.1 in [14] or
[18, p. 219], there is some (possibly real-valued) unitary matrix U and some η ∈ C such that
A∗W−1

2 W1 = Udiag(η, η)U∗, where the conjugate eigenvalues are a consequence of the fact
that A∗W−1

2 W1 is real. Thus, A∗W−1
2 W 2

1 W−1
2 A = |η|2 I , i.e., W1 = |η|W2 since A ∈ O(2) and

W1 ∈ S>0(2, R). By (A.1), this implies that O1 = O2. �

The following lemma is used in the proof of Proposition 3.4.

Lemma A.2. Let G be a maximal compact subgroup of GL(m, R), and let ΛD(dx) be the
measure (3.40), D = {x1, . . . , xJ }. Then,

(i) two orbits G x j1 , G x j2 either coincide or are disjoint;
(ii) each orbit G x j , j = 1, . . . , J , is a compact set, and the number of connected components

of an orbit G x j is no greater than the (finite) number of connected components of G;
(iii) supp{Λ} =

J
j=1 G x j ;
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(iv) G0 ∈ G ⇒ G0 ∈ S dom(Λ);
(v) the measure Λ(dx) assigns different (positive) values to distinct orbits G xk1 and G xk2 ;

(vi) D = {x1, . . . , xJ } ⊆ {x1, . . . , xJ ′} = D′ ⇒ S dom(ΛD′) ⊆ S dom(ΛD);
(vii) for G ∈ S dom(ΛD),

G G x j = G x j , j = 1, . . . , J ; (A.6)

(viii) for a decreasing nested sequence of symmetry groups {S dom(ΛDk )}k∈N∪{0}, all of which
containing G, the equality G = S dom(ΛDk ) holds for some k.

Proof. To show statement (i), suppose x ∈ G x1 ∩ G x2 where we set j1 = 1 and j2 = 2
for notational simplicity. Then, there are G1 and G2 such that G1x1 = G2x2 = x . So, let
y ∈ G x2, i.e., y = G y x2 for some G y ∈ G. Then, G yG−1

2 G2x2 ∈ G x1, since G2x2 ∈ G x1.
This shows that G x1 ⊇ G x2. By the same argument, the converse also holds. In regard to
statement (ii), the compactness of G and the continuity of the group action imply that each
orbit G x j , j = 1, . . . , J , is a compact set. Therefore, the number of connected components
of the orbit G x j is no greater than the number of connected components of the group G (see
[30, p. 4]). To show (iii), consider a Borel set B ⊆ (G x1 ∪ · · · ∪ G xJ )c, and let G ∈ G.
Since G is bijective and ∅ = B ∩ G x j , then ∅ = G B ∩ G G x j = G B ∩ G x j , j = 1, . . . , J .
Therefore, G B ∩ {x j } = ∅ and Λ(B) =

J
j=1


G jn jδx j (G B)H(dG) = 0. By (ii), each

orbit G x j is a closed set. Then, supp{Λ} ⊆ ∪J
j=1 G x j . Conversely, let y ∈ G x j0 for some j0.

Then, Λ({y}) ≥


G j0n j0δ j0(G{y})H(dG) > 0, since there is G0 ∈ G and y ∈ Rm such that
G0 y = x j0 . Thus, ∪J

j=1 G x j ⊆ supp{Λ}. To show (iv), note that

Λ(G−1
0 dx) =

J
j=1


G

jn j δx j ((GG−1
0 )dx)H(d(GG−1

0 )G0)

=

J
j=1


G

jn j δx j (K dx)H(d K G0)

=

J
j=1


G

jn j δx j (K dx)H(d K ) = Λ(dx),

where we made the change of variables GG−1
0 = K and used the right-translation invariance

of the Haar measure. In regard to (v), first note that the orbits G x1, . . . , G xJ are distinct, hence
disjoint by (i). Thus, for k1 ≠ k2,

Λ(G xk1) =

J
j=1


G

jn j δx j (G G xk1)H(dG) =

J
j=1


G

jn jδx j (G xk1)H(dG)

= k1 ≠ k2 = Λ(G xk2), (A.7)

by (3.44).
To establish (vi), pick any K ∈ S dom(ΛD′). Then, for fixed j = 1, . . . , J ′, J ′ ≥ J , and a

Borel set B ⊆ G x j ,
G

jn jδx j (G K−1 B)H(dG) = ΛD′(K−1 B) = ΛD′(B) =


G

jn jδx j (G B)H(dG).

In particular, this also holds for j = 1, . . . , J , i.e., K ∈ S dom(ΛD).
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In regard to (vii), the argument is very similar to that in [30, p. 3], but we reproduce it here for
the reader’s convenience. Let C1 be one of the finitely many connected components of one of the
orbits G x1, . . . , G xJ . Since K ∈ S dom(ΛD) is a homeomorphism, then K C1 is also connected.
Moreover, by Lemma 1 in [30] and the fact that ΛD is a finite measure, K maps supp{ΛD} onto
itself. Therefore, there is some connected component C2 of some orbit such that

K C1 ⊆ C2. (A.8)

Since K−1
∈ S dom(ΛD) is also a homeomorphism, then by the same reasoning there is some

connected component C3 of some orbit such that K−1C2 ⊆ C3. By (A.8), C1 ⊆ C3; i.e.,
C1 = C3 = K−1C2. Hence, K C1 = C2. However, again since K ∈ S dom(ΛD), then
ΛD(C1) = ΛD(K C1) = ΛD(C2). Note that each connected component of the orbit G x j has
equal mass, namely, jJ

k=1 knk
, where nk is the number of components of the orbit G xk (see

[30, p. 4]). Then, C1 and C2 are connected components of the same orbit. Therefore, (A.6) holds.
Statement (viii) involves the familiar idea that a compact finite-dimensional Lie group does

not have an infinite properly nested sequence of closed subgroups, which in turn is a consequence
of the fact that any closed subgroup is compact, and therefore has finite dimension and finitely
many connected components. For the reader’s convenience, we provide a precise argument in the
fashion of Meerschaert and Veeh [30, p. 4]. Suppose G, H are finite-dimensional compact Lie
groups. We claim that, if G ⊂ H, then either the dimension of G is strictly less than the dimension
of H, or the number of components of G is strictly less than the number of components of H.
Let us recall that the dimension dim(G) of a Lie group G is the dimension of the corresponding
Lie algebra (or tangent space) T G (When G is a set of linear operators, the tangent space is the
collection of all operators which can be written as limk→∞(Gk− I )/gk where {Gk} is a sequence
of operators from G and {gk} is a sequence of real numbers which converges to 0). Since G ⊂ H,
then T G ⊆ T H. If dim(G) = dim(H), then the Lie algebras are equal. Since the exponential
map sends the Lie algebra onto the connected component of the identity, we see that in this case
the connected component of the identity of the two groups is the same, and we can call it C.
Now we have G/C ⊂ H/C, where both quotient groups are finite groups. If the inclusion was
not proper, we would conclude that G = H. However, if dim(G) = dim(H), then the number
of components of G is smaller than that of H, which establishes the claim. It follows that any
decreasing sequence of properly nested compact finite-dimensional Lie groups must eventually
terminate. Hence, G = S dom(ΛDk0

) for some k0, which concludes the proof. �

The next lemma is used in Section 3.3.

Lemma A.3. Consider the class of OFBFs taking values in R2 and satisfying the conditions (2.8)
and (3.9). Then, a particular Gran

1 implies a restriction on Gdom
1 as described in Table 2, where

Gdom
1 and Gran

1 are understood as in (3.59).

Proof. By the polar representation (3.10) of the measure FX and Lemma 3.1, −I ∉ Gdom
1 if

and only if there is some set A(s,Θ0) as in (3.13) such that FX (−A(s,Θ0)) ≠ FX (A(s,Θ0)),
i.e., ∆(Θ0) = ∆(−Θ0) ≠ ∆(Θ0) for some Θ0 ∈ U (see (3.27)). In other words, ℑ∆(Θ0) ≠ 0.
Equivalently, by (3.31),

− I ∉ Gdom
1 ⇔ G H,Θ0 = WΘ0


r>0

CO(2)(Πr,Θ0) ∩ SO(2)


W−1
Θ0

for some Θ0 ∈ U .

(A.9)
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By the contrapositive, if −I ∉ Gdom
1 , then (3.32) and (A.9) imply that G H,Θ0

∼= SO(2) or C2
(see also Table 1). By considering further intersections with the groups G H,Θ , Θ ∈ U , Table 1
shows that Gran

1 cannot be conjugate to O(2) or D2. This establishes statements (i) and (iii).
Now suppose Gran

1
∼= SO(2). By Table 1 and expression (3.31), there is some Θ0 ∈ U such

that G H,Θ0
∼= SO(2). By (3.32) and (A.9), −I ∉ Gdom

1 , i.e., statement (ii) holds. �

Remark A.1. As pointed out in Table 2, Gran
1
∼= C2 yields no restriction in the sense it is

compatible with either−I ∈ or−I ∉ Gdom
1 . This is shown by establishing (3.52), which implies

that C2 can be matched to any possible domain symmetry group.

The following lemma is used in the proof of Proposition 3.5.

Lemma A.4. Let FX (dx) = fX (x)dx be a spectral measure built in the proof of Proposi-
tion 3.5,(ii), for a domain symmetry group of the form Cν or Dν , ν ∈ N, as described in Table 2.
Then, S dom(FX ) ⊆ O(2).

Proof. By contradiction, suppose that S dom(FX ) = W OW−1, where O ⊆ O(2) and
W O1W−1

∉ O(2) for some O1 ∈ O(2). Then, for some x0 ∈ S1, y0 := W O1W−1x0 ∉ S1. By
the continuity of the transformation W O1W−1, we can without loss of generality assume that
neither x0 nor y0 is a boundary point between the slices (3.66) or (3.74). Then, we can choose
a small ε0 > 0 so that for θ ∈ (−ε0, ε0) \ {0}, the perturbed points Oθ x0 and W O1W−1 Oθ x0,
with Oθ as in (2.2), are in the same slices containing x0 and y0, respectively. Since, in addition,
W O1W−1 is a domain symmetry of FX , fX is continuous around the points x0 and y0, and
| det(W O1W−1)| = 1, then by Lemma 3.2 we have fX (y0) = fX (x0). In addition, the fact that
W O1W−1

∉ O(2) implies that it maps any segment in the sphere to a segment not contained in
any sphere around zero; in particular,

fX (x0) = fX (Oθ x0), ∥W O1W−1 Oθ x0∥ ≠ ∥W O1W−1x0∥, θ ∈ (−ε0, ε0) \ {0}.

However, since y0 and W O1W−1 Oθ x0 lie in the same slice,

∆
 W O1W−1 Oθ x0

∥W O1W−1 Oθ x0∥


= fX

 W O1W−1 Oθ x0

∥W O1W−1 Oθ x0∥


= fX

 y0

∥y0∥


= ∆

 y0

∥y0∥


.

As a consequence, by (2.8),

fX (Oθ x0) = fX (W O1W−1 Oθ x0) = ∥W O1W−1 Oθ x0∥
−HE

×∆
 y0

∥y0∥


∥W O1W−1 Oθ x0∥

−H∗E

≠ ∥y0∥
−HE ∆

 y0

∥y0∥


∥y0∥

−H∗E = fX (y0) = fX (x0) = fX (Oθ x0)

(contradiction). �

In the following lemma, we construct a measure on B(Sm−1) that goes into the measure (3.53),
expressed in polar coordinates.

Lemma A.5. Let G be a maximal compact subgroup of O(m). Let A := A1 + i A2 ∈ M(n, C)

be a matrix such that A1 A∗1 ∈ S>0(n, R), and
(a) A2 A∗1 − A1 A∗2 ≠ 0, if − I ∉ G;
(b) A2 = 0, if − I ∈ G.

(A.10)
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If either

(i) m = 2; or
(ii) m ∈ N and −I ∈ G,

then there is a scalar-valued measure Λ(dθ) on B(Sm−1) such that the measure

Ξ (dθ) := AA∗Λ(dθ)+ AA∗Λ(−dθ) (A.11)

is Hermitian, S≥0(n, C)-valued,

supp{Ξ } =
kΞ
j=1

C j (A.12)

for disjoint connected components C j , j = 1, . . . , kΞ , and

S dom(Ξ ) = G. (A.13)

Proof. Suppose condition (i) holds, and further assume that −I ∉ G. We are interested in a
measure ΛD(dx) as in (3.40), D = {x1, . . . , xJ } ⊆ Sm−1, satisfying (3.42) and (3.43), where in
addition each pivot is such that

− x j ∉ G x j , j = 1, . . . , J. (A.14)

For this purpose, we now argue that we can rewrite the proof of Proposition 3.4 while replacing
the statement (3.45) with

there exists some element x ∈ R2
\ {0} such that − x ∉ G x ⊂ S dom(ΛD)x . (A.15)

In fact, right before (3.45) in the proof of Proposition 3.4, we already know that G ⊆ S dom(ΛD)

and may now assume that

G ⊂ S dom(ΛD). (A.16)

Recall that G is maximal, and note that the orbits of S dom(ΛD) must coincide with those of
a maximal subgroup in its equivalence class [S dom

1 (ΛD)]. Since m = 2 and −I ∉ G, by
Lemma A.7, (iii), with G1 := G and G2 set to the maximal element in the class [S dom

1 (ΛD)],
there is x0 ∈ S1 such that

−x0 ∈ G x0 ⊂ G2x0 = S dom(ΛD)x0.

This establishes (A.15) with x = x0. By following the rest of the proof of Proposition 3.4, we
obtain the desired measure ΛD(dx).

Note that (given x) (A.25) holds if and only if

for all y ∈ G x,−y ∈ G x . (A.17)

(in fact, assuming (A.25) holds, y ∈ G x ⇔ y ∈ G(−x)⇔ for some O ∈ G, y = O(−x)⇔ for
some O ∈ G,−y = Ox ∈ G x). By Lemma A.2, (iii), the support of the measure ΛD(dx) is the
union of all sets C , where

C is the connected component of some orbit G x1, . . . , G xJ . (A.18)
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In addition, in view of (A.17), (A.14) implies that there is no y ∈ G x j such that −y ∈ G x j .
Therefore,

ΛD(−C) = 0.

Now define the measure

Ξ (dθ) = AA∗ΛD(dθ)+ AA∗ΛD(−dθ), (A.19)

which has the form (A.11) with

Λ(dθ) = ΛD(dθ). (A.20)

Then, for C as in (A.18),

Ξ (−(B ∩ C)) = Ξ (B ∩ C), Ξ (B ∩ C) = AA∗ΛD(B ∩ C), B ∈ B(S1), (A.21)

i.e., the measure Ξ (dθ) is Hermitian and takes values in S≥0(2, C). Expression (A.12) is a
consequence of Lemma A.2, (iii), and the fact that G is a compact group. Moreover, since
ℜ(AA∗),ℑ(AA∗) ≠ 0,

G ∈ S dom(Ξ )⇔ Ξ (Gdx) = Ξ (dx)

⇔ AA∗ΛD(Gdθ)+ AA∗ΛD(−Gdθ) = AA∗ΛD(dθ)+ AA∗ΛD(−dθ)

⇔ℜAA∗{ΛD(Gdθ)+ ΛD(−Gdθ)} + iℑAA∗{ΛD(Gdθ)− ΛD(−Gdθ)}

= ℜAA∗{ΛD(dθ)+ ΛD(−dθ)} + iℑAA∗{ΛD(dθ)− ΛD(−dθ)}

⇔ΛD(Gdθ)+ ΛD(−Gdθ) = ΛD(dθ)+ ΛD(−dθ),

ΛD(Gdθ)− ΛD(−Gdθ) = ΛD(dθ)− ΛD(−dθ).

⇔ ΛD(Gdθ) = ΛD(dθ)⇔ G ∈ G,

where the last equivalence is a consequence of Proposition 3.4.
The case defined by condition (ii) (for which −I ∈ G, m ∈ N) can be tackled based on the

same formalism but without the modification (A.15). In fact, under the aforementioned condition,
let ΛD(dx) be the measure given by Proposition 3.4 (without any modification). Then, −I ∈ G
implies that ΛD(−dx) = ΛD(dx). Define the measure Ξ (dθ) by the same expression (A.19),
which in this case reduces to

Ξ (dθ) = 2ℜAA∗ΛD(dθ).

It is clear that G = S dom(Ξ ) holds, and (A.12) is a consequence of Lemma A.2, (iii). �

Remark A.2. Without the constraint (A.10) in the construction of the measure Ξ (dx), the
statement (A.13) is not generally true. Indeed, if −I ∉ G but we set A2 = 0, then the measure
Ξ (dx) as defined by the expression (A.11) becomes Ξ (dx) = ℜAA∗(ΛD(dx)+ΛD(−dx)) and
hence satisfies Ξ (−dx) = Ξ (dx), i.e., −I ∈ S dom(Ξ ). Consequently, S dom(Ξ ) ≠ S dom(ΛD).

Remark A.3. In regard to Lemma A.5, it is natural to ask whether, for general m, we can drop
the assumption that−I ∈ G. In order to use the proof of the lemma in its current form, we would
need to generalize the step (A.15). However, an explicit description of all maximal subgroups of
O(m) is not available in dimension m ≥ 3, and it is currently a conjecture that the claim (A.15)
holds in general.

The following lemma is used in the proof of Theorem 3.1.
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Lemma A.6. The second equalities in each expression (3.55) and (3.56) hold, i.e.,

(i) S dom(FX ) = S dom(Ξ );
(ii) S ran(FX ) = Gran

1 (BH ),

respectively.

Proof. We first show (i). Recall that, by Lemma A.5, Ξ (dθ) is constructed so that S dom(Ξ ) = G
for some maximal compact subgroup G of O(m). Define the class of sets

A = {A(s1, s2,Θ) : s2 ≥ s1 > 0, Θ ∈ B(Sm−1)},

where A(s1, s2,Θ) = {rθ : s1 < r ≤ s2, θ ∈ Θ}. Then,

σ(A) = B(Rm), A1, A2 ∈ A ⇒ A1 ∩ A2 ∈ A. (A.22)

Define the family of measures µO(A) =


A(FX )O(dx), A ∈ A, O ∈ O(m). First, assume that
O ∈ G = S dom(Ξ ), where the latter equality is a consequence of Lemma A.5. Then,

µO(A) =

 s2

s1


Θ

r−HΞ (O∗dθ)r−H∗r−1dr =
 s2

s1


Θ

r−HΞ (dθ)r−H∗r−1dr = µI (A).

Since this holds for any A ∈ A, then (A.22) and an entry-wise application of Theorem 1.1.3
in [29] imply that

µO(B) = µI (B), B ∈ B(Rm). (A.23)

Equivalently, O ∈ S dom(FX ). This establishes that G = S dom(Ξ ) ⊆ S dom(FX ).
Conversely, for some O ∈ O(m), assume that (A.23) holds. In particular, for B = A ∈ A,

Lebesgue’s differentiation theorem implies that

s−H

Θ

Ξ (Odθ)s−H∗s−1
= s−H


Θ

Ξ (dθ)s−H∗s−1, s > 0 a.e.,

i.e., 
Θ

Ξ (Odθ) =


Θ

Ξ (dθ), Θ ∈ B(Sm−1).

In other words, O∗ ∈ S dom(Ξ ) = G. Hence, statement (i) holds.
We now show (ii). Consider an OFBF X with spectral measure (3.53). For C ∈ GL(n, R),

C ∈ Gran
1 (X) if and only if

Cr−HΞ (θ)r−H∗r−1drC∗ = r−HΞ (θ)r−H∗r−1dr. (A.24)

By (A.12), expression (A.24) is equivalent to

Cr−HΞ (B0 ∩ C j )r
−H∗r−1drC∗ = r−HΞ (B0 ∩ C j )r

−H∗r−1dr,

B0 ∈ B(Sm−1), j = 1, . . . , kΞ .

So, fix j and a set B0 ∈ B(Sm−1) such that Ξ (B0 ∩ C j ) ≠ 0. Define the (discrete) spherical
measure

ξB0(B) =


Ξ (B0 ∩ C j ), B = {1};

Ξ (−B0 ∩ C j ), B = {−1}.
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Then,

r−H ξB0{dϑ}r−H∗r−1dr

is, up to a constant, the spectral measure of the OFBM (3.57), since by (A.21)

ℜξB0{1} = ℜAA∗ ΛD(B0 ∩ C j ), ℑξB0{1} = ℑAA∗ ΛD(B0 ∩ C j ),

and

ℜξB0{−1} = ℜAA∗ ΛD(B0 ∩ C j ), ℑξB0{−1} = −ℑAA∗ ΛD(B0 ∩ C j ).

Consequently, for Θ = B0 ∩ C j , and Πr,Θ and ΠI,Θ as in (3.29),

Πr,Θ = r−W−1
Θ H WΘ r−WΘ H W−1

Θ = r−(ℜAA∗)−1/2 H(ℜAA∗)1/2
r−(ℜAA∗)1/2 H(ℜAA∗)−1/2

,

and

ΠI,Θ = W−1
Θ ℑ∆(Θ)W−1

Θ =
(ℜAA∗)−1/2

ℑAA∗(ℜAA∗)−1/2

ΛD(B0 ∩ C j )
.

Hence,

CO(n)(Πr,Θ ) = CO(n)(Πr ),

and

CO(n)(ΠI,Θ ) = CO(n)((ℜAA∗)−1/2
ℑ(AA∗)(ℜAA∗)−1/2) = CO(n)(ΠI ),

where Πr and ΠI represent the functions (3.29) for the OFBM (3.57), and we can write

G H,Θ = (ℜAA∗)1/2


r>0

CO(n)(Πr ) ∩ CO(n)(ΠI )

(ℜAA∗)−1/2.

By Proposition 3.2, (i), statement (ii) is established. �

The following lemma is used in the proof of Lemma A.5. Recall that ⊂ denotes proper set
inclusion.

Lemma A.7. Consider the maximal subgroups of O(2) in the sense of Section 3.2.

(i) Let G be a maximal subgroup for which −I ∉ G. Then, for a given x ∈ S1,

− x ∈ G x (A.25)

if and only if for some F ∈ O(2) \ SO(2), F ∈ G, the vector x lies at π/2 angular distance
from the reflection axis of F;

(ii) for two maximal subgroups G1 ⊂ G2 such that

−I ∉ G1, (A.26)

there is x0 ∈ S1 such that − x0 ∉ G1x0 and G1x0 ⊂ G2x0. (A.27)

Proof. Throughout the proof, without loss of generality we suppose the groups’ conjugacies are
W = I .

Statement (i) is a consequence of the complete description of the maximal compact subgroups
in dimension m = 2 provided in Table 3, middle column. In fact, −I ∉ G implies that G must be
one of the subgroups Cν , Dν , 2ν+ 1, ν ∈ N∪ {0}. For any such cyclic subgroup Cν , statement (i)
is trivially true, since it does not include reflections. In addition, the reflections in the subgroup
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Dν , which are finite in number, also correspond to a finite number of reflection axes. Therefore,
the number of points for which −x ∈ G x is also finite (see Example A.1), whence statement (i)
holds.

We now turn to statement (ii). First, suppose−I ∈ G2. For any G1 described in Table 3, middle
column, statement (i) implies that it is possible to choose x0 ∈ S1 such that −x0 ∉ G1x0. Since
−x0 ∈ G2x0, (A.27) holds. So, from now on we suppose

− I ∉ G2. (A.28)

By Table 3, middle column, it suffices to consider the following cases:

(ii.a) G1 = Cν1 , G2 ∈ {Cν2 , Dν2}, ν1 ≤ ν2;
(ii.b) G1 = Dν1 , G2 = Dν2 , ν1 < ν2,

where O(2) is excluded under (A.26) and (A.28). For subcase (ii.a), in light of statement (i) and
Table 3, middle column, by (A.28) we can pick x0 ∈ S1 such that −x0 ∉ G2x0 (cf. Fig. 1).
Note that for O1, O2 ∈ SO(2), O1x0 = O2x0 ⇒ O1 = O2 (n.b.: this holds for any x0 ≠ 0).
When ν1 < ν2, this implies G2 contains more rotations than G1. Thus, the orbit G2x0 contains
more points than the orbit G1x0, whence (A.27) holds. Alternatively, when ν1 = ν2 =: ν (and
G2 = Dν), fix the point

x0 ≡ ei 2π
4ν

1
2 ∈ S1. (A.29)

The 4 in the denominator stems from splitting each slice of angular size 2π
ν

in half twice, the
first time based on the reflection axes, the second time to split the reflection regions (for ease of
visualization, in Fig. 1, lower left panel, there are 4ν = 12 slices of angular size 2π

12 . The point x0
splits in half the first slice, where we start counting in the counterclockwise sense at (1, 0)∗ ≡ 1;
see also Example A.1). Then,

− x0 ∉ G x0 (A.30)

for G = G1. In addition, the orbit Dνx0 consists of ν pairs of points around reflection axes, where
the counterclockwise angular distance between two successive pairs of points corresponds to a
rotation O3( 2π

4ν
)
. Since Cνx0 consists of the ν points obtained by successive rotations O 2π

ν
starting

at x0, G1x0 ⊂ G2x0. This shows (A.27) for the subcase (ii.a).
Under (A.26) and (A.28), for subcase (ii.b) it suffices to consider

Dν1 ⊂ Dν2 , ν1 and ν2 are odd.

In particular, Dν2 contains all the rotations in Dν1 . Therefore, ν2 must be a multiple of ν1. Since,
in addition, ν1, ν2 are odd, then

ν2 = zν1, z ∈ N, z ≥ 3. (A.31)

Choose again the starting point x0 as in (A.29) with ν = ν2. Then, again (A.30) holds with
G = G2 and card(Dν2 x0) = 2ν2. Moreover, by (A.31),

card(Dν1 x0) ≤ card(Dν1) = 2ν1 < ν2 < card(Dν2 x0).

Therefore, (A.27) holds, which establishes (ii). �

Example A.1. Consider the subgroup G = D3. Then, there are only six points x ∈ S1 for which
−x ∈ G x (see Table 4 and Fig. 1).
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Table 4

Dihedral group D3: points in S1 mapped to their antipodes by a
reflection.

Reflection Reflection axis (angle) −x = F•x ⇔ x = . . .

F2π
3

π
3 {ei 5π

6 , ei 11π
6 }

F4π
3

2π
3 {ei π

6 , ei 7π
6 }

F2π π {ei π
2 , ei 3π

2 }
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[6] H. Biermé, C. Lacaux, Hölder regularity for operator scaling stable random fields, Stochastic Process. Appl. 119
(7) (2009) 2222–2248.
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