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Abstract

Operator geometric stable laws are the weak limits of operator normed and centered

geometric random sums of independent, identically distributed random vectors. They

generalize operator stable laws and geometric stable laws. In this work we characterize

operator geometric stable distributions, their divisibility and domains of attraction, and

present their application to finance. Operator geometric stable laws are useful for modeling

financial portfolios where the cumulative price change vectors are sums of a random number

of small random shocks with heavy tails, and each component has a different tail index.
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1. Introduction

We introduce a new class of multivariate distributions called operator geometric
stable (OGS), generalizing the geometric stable (GS) and operator stable (OS) laws.
Our motivation comes from a problem in finance, where a portfolio of stocks or
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other financial instruments changes price over time, resulting in a time series of
random vectors. The daily price change vectors are each accumulations of a random
number of random shocks. Price shocks are typically heavy tailed with a tail
parameter that is different for each stock [39]. OS models can handle the variations
in tail behavior [32] while GS models [11,14,21,24,26,33,34,40,41] capture the fact
that these are random sums. The combination of operator norming and geometric
randomized sums pursued in this paper should provide a more useful and realistic
class of distributions for portfolio modeling. The more general case where the
number of summands has an arbitrary distribution is discussed in a companion
paper [18]. The focus of this paper on geometric summation allows a simpler
treatment, and more complete results.
Let ðXiÞ be a sequence of independent and identically distributed (i.i.d.) random

vectors (r.v.’s) in Rd : Consider a random sum X1 þ?þ XNp
; where Np is a

geometric variable with mean 1=p independent of the Xi’s. If there exists a weak
limit of

Ap

XNp

i¼1
ðXi þ bpÞ as p-0; ð1:1Þ

where Ap is a linear operator on Rd and bpARd ; then we call it an OGS law. The

limits of (1.1) under scalar normalization Ap ¼ apAR are GS vectors (see, e.g.,

[12,27]). The same limit of a deterministic sum (Np replaced with positive integer n) is

an OS vector (see, e.g., [10,31]).
Each component of an OGS vector may have different tail behavior, unlike GS

laws where the tail behavior is the same in every coordinate. All components of an
OGS law are dependent, unlike OS laws where the normal and heavy tailed
components are necessarily independent. When all components have finite variance,
an OGS vector has a skew Laplace distribution (see [14,23]). If the normalizing
operator Ap is a scalar, the OGS law is GS. If the normalizing operator Ap is

diagonal, the OGS law is marginally GS (all components have geometric stable
distributions).
Geometric summation arises naturally in various fields, including biology,

economics, insurance mathematics, physics, reliability and queuing theories among
others (see, e.g., [11]). Thus, as limits of random sums, OGS laws will undoubtedly
find numerous applications in stochastic modeling. Their infinite divisibility provides
for a natural model when the variable of interest can be thought of as a random sum
of small quantities, which is often the case in finance and insurance. Finally, OGS
laws can be asymmetric, which further adds to their modeling applicability.
Univariate and multivariate geometric stable distributions, and their special cases of
skew Laplace laws compete successfully with stable and other laws in modeling
financial asset returns (see, e.g., [14,21,23,24,26,28,34,39]). OGS models, which
extend this class to allow different tail behavior for each vector component, should
enhance their modeling potential.
The problems of geometric summation and geometric stability with operator

norming have also been considered for certain (noncommutative) groups that
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include finite dimensional real vector spaces as a special case. See [5–8] for details. As
we develop the theory of OGS laws in this paper, we will also point out the relations
between our results, and those obtained in the more abstract setting of probability
on groups. For the special case of finite dimensional real vector spaces treated in this
paper, our treatment using characteristic functions is simpler, and leads to several
new results.
In this paper we derive fundamental properties of OGS laws. We start in Section 2

with a brief recounting of essential ideas from the theory of operator stable laws. In
Section 3, we present the definition and characterization of OGS laws, their
(generalized) domains of attraction, infinite divisibility and stability, and we discuss
important special cases. In Section 4, we focus on marginally OGS laws with heavy
tail and finite variance components and present an OGS model for financial data. All
proofs are collected in Appendix A.

2. OS laws

Suppose X ;X1;X2;y are independent and identically distributed random vectors

on Rd with common distribution m and that Y0 is a random vector whose
distribution o is full, i.e., not supported on any lower dimensional hyperplane. We

say that o is OS if there exist linear operators An on Rd and nonrandom vectors

bnARd such that

An

Xn

i¼1
ðXi � bnÞ ) Y0: ð2:1Þ

In terms of measures, we can rewrite (2.1) as

Anmn � esn
) o ð2:2Þ

where AnmðdxÞ ¼ mðA�1
n dxÞ is the probability distribution of AnX ; mn is the nth

convolution power, and esn
is the unit mass at the point sn ¼ �nAnbn: In this case, we

say that m (or X ) belongs to the generalized domain of attraction of o (or Y0), and we
write mAGDOAðoÞ; or XAGDOAðY0Þ: Theorem 7.2.1 in [31] shows that the OS law
o is infinitely divisible and

ot ¼ tEo � eat
for all t40; ð2:3Þ

where E is a linear operator called an exponent of o; tE ¼ expðE log tÞ and expðAÞ ¼
I þ A þ A2=2!þ A3=3!þ? is the usual exponential operator. Further, the

characteristic function #oðxÞ ¼ E½ei/x;YS	 satisfies

#oðxÞt ¼ #oðtE�
xÞei/at;xS for all t40; ð2:4Þ

see, e.g., [18]. If (2.1) holds with all bn ¼ 0 we say that m belongs to the strict

generalized domain of attraction of o: In this case o is strictly OS, that is (2.3) holds
with all at ¼ 0:
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3. OGS laws

OGS laws arise as limits of convolutions with geometrically distributed number of
terms (see [13]). Let fNp; pAð0; 1Þg be a family of geometric random variables with

mean 1=p; so that

PðNp ¼ nÞ ¼ pð1� pÞn�1; n ¼ 1; 2;y: ð3:1Þ

Definition 3.1. A full random vector Y on Rd is OGS if for Np geometric with mean

1=p there exist i.i.d. random vectors X1;X2;y independent of Np; linear operators

Ap; and centering constants bpARd such that

Ap

XNp

i¼1
ðXi þ bpÞ ) Y as pk0: ð3:2Þ

If (3.2) holds we say that the distribution of X1 is weakly geometrically attracted to
that of Y ; and the collection of such distributions is called the generalized domain of

geometric attraction of Y :

The following result shows that there is a one to one correspondence between OS
and OGS laws, and provides a fundamental representation of OGS vectors in terms
of their OS counterparts. It is an analog of the relation between GS and stable
distributions (see, e.g., [21]).

Theorem 3.2. Let Y be a full random vector on Rd with distribution l and

characteristic function #lðtÞ ¼
R

ei/t;xSlðdxÞ: Then the following are equivalent:

(a) Y is OGS;

(b) Y ¼d ZEX þ aZ where X is OS with distribution o satisfying (2.3), Z is standard

exponential, and X ;Z are independent;

(c) Y ¼d LðZÞ where Z is standard exponential and fLðsÞ: sX0g is a stochastic

process with stationary independent increments, independent of Z; and such that

Lð1Þ is OS and Lð0Þ ¼ 0 almost surely;

(d) The distribution l has the form

lðdxÞ ¼
Z

N

0

oðdxÞtnðdtÞ; ð3:3Þ

where o is an OS probability distribution on Rd and nðdtÞ ¼ e�t dt;

(e) The characteristic function #l has the form

#lðtÞ ¼ ð1� log #oðtÞÞ�1; tARd ; ð3:4Þ

where #o is an OS characteristic function on Rd :
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Remark 3.3. Theorem 3.2 complements known characterizations of OGS laws that
follow from more general results on geometric stability on groups. To be more
specific, the equivalence of (a), (b) and (d) in Theorem 3.2 in the special case at ¼ 0 in
(2.3) for all t40 follows from Theorem 2.10 in [7]. See also Proposition 5.3 in [6] and
Chapter 2.13 in [8].

3.1. Special cases

Below we list important special cases of OGS laws.

3.1.1. Strictly OGS laws

If the OS law given by the characteristic function #o in (3.4) is strictly OS, then the
distribution given by #l is called strictly OGS. For the strictly OGS laws, convergence
in (3.2) holds with bp ¼ 0: We also have the representation

Y ¼d ZEX ; ð3:5Þ

where Z is a standard exponential variable and X is strictly OS with exponent E (and
independent of Z).

3.1.2. GS laws

When the operators in (3.2) are of the form Ap ¼ apId ; where ap40 and Id is a d-

dimensional identity matrix, then the limiting distributions are called GS laws (see,
e.g., [16,41], and also [27] for a summary of their properties, applications, and
references). The characteristic function of a GS law is of form (3.4) where #o is the

characteristic function of some a-stable distribution in Rd ; so that

#lðtÞ ¼ ð1þ IaðtÞ � i/t;mSÞ�1; tARd ; ð3:6Þ

where mARd is the location parameter (the mean if a41) and

IaðtÞ ¼
Z

Sd

oa;1ð/t; sSÞCðdsÞ: ð3:7Þ

Here, Sd is the unit sphere in Rd ; C is a finite measure on Sd ; called the spectral

measure, and

oa;bðuÞ ¼
juja 1� ib signðuÞtan pa

2

� �� �
for aa1;

juj 1þ ib
2

p
signðuÞlogjuj

� �
for a ¼ 1:

8>><
>>: ð3:8Þ

When a ¼ 2 we obtain the special case of multivariate Laplace distribution (see
below), while when ao2; the probability PðYj4xÞ associated with each component
of a GS random variable Y decreases like the power function x�a as x increases to
infinity. As in the stable case, the spectral measure controls the dependence among
the components of Y (which are dependent even if C is discrete and concentrated on
the intersection of Sd with the coordinate axes, in which case the coordinates of the
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corresponding stable vector are independent). Note that (3.5) still holds with
E ¼ 1=a: In one dimension the characteristic function (3.6) reduces to

#lðtÞ ¼ EeitY ¼ ð1þ saoa;bðtÞ � imtÞ�1; ð3:9Þ

where the parameter a is the index of stability as before, bA½�1; 1	 is a skewness
parameter, the parameters mAR and s40 control the location and the scale,
respectively, and oa;b is given by (3.8). Although GS distributions have the same type

of tail behavior as stable laws, their densities are more peaked near the mode. Since
such sharp peaks and heavy tails are often observed in financial data, GS laws have
found applications in the area of financial modeling (see, e.g., [21,26,34,35,42]).

3.1.3. Skew Laplace distributions

When the variables Xi in (3.2) are in the (classical) domain of attraction of the
normal law (for example, if they have finite second moments), then the characteristic
function #o in (3.4) corresponds to a multivariate normal distribution, so that

#lðtÞ ¼ 1

1þ 1
2
/t;StS� i/m; tS

; tARd ; ð3:10Þ

where mARd and S is a d  d nonnegative definite symmetric matrix. These are
multivariate Laplace distributions (see [23]). In the symmetric case ðm ¼ 0Þ; we obtain
an elliptically contoured distribution with the density

gðyÞ ¼ 2ð2pÞ�d=2jSj�1=2ð/y;S�1yS=2Þv=2
Kvð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/y;S�1yS

q
Þ;

where v ¼ ð2� dÞ=2 and KvðuÞ is the modified Bessel function of the third kind (see,
e.g., [1]). In one dimension we obtain a univariate skew Laplace distribution (with an
explicit density) studied in [22]. More information on theory and applications of
Laplace laws can be found in [14].

3.1.4. Marginally GS laws

If the operators Ap in (3.2) are diagonal matrices diagðap1;y; apdÞ for some
positive api’s, then the one-dimensional marginals of the limiting OGS vector Y are

geometric stable with characteristic function (3.9) and possibly different values of a:
The characteristic function of Y is given by (3.4) where this time #o corresponds to a
marginally stable OS random vector X introduced in [43] and studied in [3,30] (see
also [37]). If the values of a for all marginal distributions are strictly less than 2, then
the characteristic function of Y takes the form:

#lðtÞ ¼ 1þ
Z

Sd

Z
N

0

ei/t;rE sS � 1� i/t; rEsS

1þ jjrEsjj2

 !
dr

r2
GðdsÞ � i/t;mS

 !�1

;

ð3:11Þ

where E is a diagonal matrix

E ¼ diagð1=a1;y; 1=adÞ; 0oaio2; i ¼ 1;y; d; ð3:12Þ
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called the exponent of Y ; the power rE is a diagonal matrix diagðjrj1=a1 ;y; jrj1=ad Þ;
the vector mARd is the shift parameter, and as for the GS vectors, the spectral

measure G is a finite measure on the unit sphere Sd in Rd : As in the stable and GS
cases, the spectral measure determines the dependence structure among the
components of a marginally GS vector. The fact that these distributions allow for
a different tail behavior for their marginals makes them, along with marginally stable
laws, attractive in financial portfolio analysis (see [35,39]).

3.2. Divisibility and stability properties

Since OS laws are infinitely divisible, and so is exponential distribution n; in view
of (3.3) we conclude that OGS laws are infinitely divisible as well (see, e.g., Property
(e), XVII.4 of [4]). Their Lévy representation can be obtained as a special case of the
result below, where n is any infinitely divisible law on Rþ: In this general case, it
follows from Theorem 2, XIII.7 of [4] that the Laplace transform *n of n has the form

*nðzÞ ¼
Z

N

0

e�ztnðdtÞ ¼ exp

Z
½0;NÞ

e�zs � 1
s

dKðsÞ
 !

ð3:13Þ

where K is nondecreasing, continuous from the right, and fulfillsZ
N

1

1

s
dKðsÞoN: ð3:14Þ

(When s ¼ 0 the integrand in (3.13) is extended by continuity to equal �z:) Using
this representation, we obtain the following result, which is an extension of one-
dimensional cases studied in [9,25].

Theorem 3.4. Let o be a full OS law with exponent E and let gðs; xÞ denote the

Lebesgue density of os for any s40: Assume further that n is infinitely divisible and

that (3.13) holds, where dKðsÞ has no atom at zero. Then

l ¼
Z

N

0

otnðdtÞ

is infinitely divisible with Lévy representation ½a; 0;f	; where

a ¼
Z

N

0

Z
Rd

x

1þ jjxjj2
gðs; xÞ dx

1

s
dKðsÞ ð3:15Þ

and dfðxÞ ¼ hðxÞ dx with

hðxÞ ¼
Z

N

0

gðs; xÞ 1
s

dKðsÞ: ð3:16Þ

Remark 3.5. To obtain the Lévy measure of an OGS distribution l; use the above
result with standard exponential distribution n; so that dKðsÞ ¼ e�s ds (no atom at
zero!)
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Remark 3.6. Under the conditions of Theorem 3.4, l has no normal component. If
dKðsÞ has an atom b40 at zero then (3.13) becomes

*nðzÞ ¼ exp

Z
½0;NÞ

e�zs � 1
s

dKðsÞ
 !

¼ exp �bz þ
Z
ð0;NÞ

e�zs � 1
s

dKðsÞ
 !

;

so that #lðxÞ ¼ *nðcðxÞÞ ¼ e�bcðxÞ #l1ðxÞ where �cðxÞ is the log-characteristic function
of o and l1 is infinitely divisible with Lévy representation ½a; 0;f	 as described in
Theorem 3.4. If o has Lévy representation ½a2;Q2;f2	 then l is infinitely divisible
with Lévy representation ½a þ ba2; bQ2;fþ bf2	: For example, take Z standard
exponential, b40; n the distribution of b þ Z; o strictly operator stable with
exponent E and X ;X1 i.i.d. with distribution o: Then the mixture l defined by (3.3) is
the distribution of bEX þ ZEX1; the sum of two independent infinitely divisible laws.

Remark 3.7. Theorem 3.4 can be obtained as a special case of Theorem 30.1 in Sato
[45] for subordinated Lévy processes. Since Sato uses a different form of the Lévy
representation, his formula for the centering constant is different.

3.2.1. Geometric infinite divisibility

A random vector Y (and its probability distribution) is said to be geometric

infinitely divisible if for all pAð0; 1Þ we have

Y ¼d
XNp

i¼1
Ypi; ð3:17Þ

where Np is geometrically distributed random variable given by (3.1), the variables

Ypi are i.i.d. for each p; and Np and ðYpiÞ are independent (see, e.g., [12]). Since
geometric infinitely divisible laws arise as the weak limits of triangular arrays with
geometric number of terms in each row, it follows that the OGS distributions are
geometric infinitely divisible.

Proposition 3.8. Let Y be OGS given by the characteristic function (3.4). Then, Y is

geometric infinitely divisible and relation (3.17) holds where the Ypi’s have the

characteristic function of the form

#lpðtÞ ¼ ð1� log #opðtÞÞ�1: ð3:18Þ

3.2.2. Stability with respect to geometric summation

The following characterization of strictly OGS distributions extends similar
properties of GS and Laplace distributions (see, e.g., [12,14,16]).

Theorem 3.9. Let Y ; Y1; Y2;y be i.i.d. random variables in Rd ; and let Np be a

geometrically distributed random variable independent of the sequence ðYiÞ: Then

Sp ¼ Ap

XNp

i¼1
Yi ¼d Y ; pAð0; 1Þ; ð3:19Þ
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with some operators Ap on Rd if and only if Y is strictly OGS, in which case Y admits

the representation (3.5) for some OS random variable X with exponent E and Ap ¼ pE

for pAð0; 1Þ:

Remark 3.10. Theorem 3.9 also follows from a more general result on strict
geometric stability on nilpotent Lie groups, see Theorem 2.12 in [7] and Theorem 4.3
in [6]. We give a simpler proof using characteristic functions.

The above result can be somewhat strengthened if the operators in (3.19)
correspond to diagonal matrices. The following result follows from Theorem 3.9
combined with similar result for GS distributions (see [15, Theorem 3.2]), when we
take into account that the stability relation (3.20) holds for each coordinate of Y :

Theorem 3.11. Let Y ; Y1; Y2;y be i.i.d. random variables in Rd ; and let Np be a

geometrically distributed random variable independent of the sequence ðYiÞ: Then

Sp ¼ Ap

XNp

i¼1
ðYi þ bpÞ¼d Y ; pAð0; 1Þ; ð3:20Þ

with some diagonal Ap’s and bpARd if and only if Y is marginally strictly GS with

representation (3.5), where E is the diagonal matrix (3.12), Z is standard exponential

variable, and X is marginally strictly stable with indices a1;y; ad : Moreover, we must

necessarily have bp ¼ 0 and Ap ¼ pE for each p:

4. Infinitely divisible laws with Laplace and Linnik marginals and an application in

financial modeling

Here we consider marginally GS laws discussed in Section 3.1.4, whose
characteristic exponent (3.12) contains some ai’s less than two and some equal to
two. For simplicity, we focus on a bivariate symmetric case with a1 ¼ 2 and
0oa2o2: It is well known that a symmetric bivariate OS r.v. X ¼ ðX1;X2Þ with the
characteristic exponent (3.12) and the above ai’s has independent components (see
[43]) with characteristic functions

EeitX1 ¼ e�s2t2 ; tAR; ð4:1Þ

(normal distribution with mean 0 and variance 2s2) and

EeisX2 ¼ e�Zajsja ; sAR; ð4:2Þ

(symmetric a stable with scale parameter Z40), respectively. Consequently, the ch.f.
of X ¼ ðX1;X2Þ is

#oðt; sÞ ¼ EeiðtX1þsX2Þ ¼ e�s2t2�Zajsja ; ðt; sÞAR2; ð4:3Þ
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and the corresponding OGS ch.f. (3.4) takes the form

#lðt; sÞ ¼ 1

1þ s2t2 þ Zajsja; ðt; sÞAR2: ð4:4Þ

The marginal distributions of the OGS r.v. Y ¼ ðY1;Y2Þ with the above ch.f. are
classical Laplace and symmetric GS (also called Linnik) distributions with
characteristic functions

#l1ðtÞ ¼ EeitY1 ¼ 1

1þ s2t2
; tAR ð4:5Þ

and

#l2ðsÞ ¼ EeisY2 ¼ 1

1þ Zajsja; sAR; ð4:6Þ

respectively (see, e.g., [14]). The respective densities are

f1ðxÞ ¼
1

2s
e�jxj=s; xAR; ð4:7Þ

and

f2ðyÞ ¼
1

Z

Z
N

0

z�1=apa
y

Zz1=a

� �
e�z dz

¼
sin pa

2

pZ

Z
N

0

va expð�vjyj=ZÞ dv

1þ v2a þ 2va cospa
2

; ya0; ð4:8Þ

where pa is the density of standard symmetric stable law (with ch.f. (4.2) where
Z ¼ 1). We shall refer to the above distribution as an OGS law with marginal
Laplace and Linnik distributions (in short: MLL distribution), denoting it by
MLLaðs; ZÞ:
Since both Laplace and Linnik distributions have been found useful in modeling

univariate data (see, e.g., [14] and references therein), multivariate laws with these
marginals will also be valuable for modeling data with both power and exponential
tail behavior of one-dimensional components. Many financial data exhibit features
characteristic of Laplace and Linnik laws—high peak at the mode and relatively
slowly converging tail probabilities. We first collect basic properties of bivariate
MLL distributions, some of which illustrate results of previous sections, and then fit
a bivariate MLL model to foreign currency exchange rates and compare its fit with
that of an OS model.

4.1. Basic properties

The following representation that follows from our Theorem 3.2(b) plays an
important role in studying bivariate MLL distributions.

Theorem 4.1. If Y ¼ ðY1;Y2Þ has an MLLaðs; ZÞ distribution given by the ch.f.

(4.4), then

Y ¼d ðZ1=2X1;Z1=aX2Þ; ð4:9Þ
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where the variables Z; X1; X2 are mutually independent, Z is standard exponential, and

X1; X2 have normal and symmetric stable distributions with ch.f.’s (4.1) and (4.2),
respectively.

Our next result gives the joint density of an MLL random vector.

Theorem 4.2. The distribution function and density of Y ¼ ðY1;Y2ÞBMLLaðs; ZÞ
are, respectively,

Fðy1; y2Þ ¼
Z

N

0

F
y1ffiffiffiffiffi
2z

p
s

� �
Ca

y2

z1=aZ

� �
e�z dz; ðy1; y2ÞAR2; ð4:10Þ

and

f ðy1; y2Þ ¼ Cs;Z

Z
N

0

z�1=2�1=ae�z�
y2
1

4s2zpa
y2

z1=aZ

� �
dz; ðy1; y2Það0; 0Þ; ð4:11Þ

where F is the standard normal distribution function, Ca and pa are the distribution

function and the density of standard symmetric a-stable distribution with ch.f.

expð�jtjaÞ; and

Cs;Z ¼
1

2
ffiffiffi
p

p
sZ

ð4:12Þ

The Lévy representation of MLL ch.f. follows from Theorem 3.4.

Theorem 4.3. The ch.f. of Y ¼ ðY1;Y2ÞBMLLaðs; ZÞ admits Lévy representation

½ða1; a2Þ; 0;f	; where

ai ¼
Z

N

0

Z
R

Z
R

xi

1þ x21 þ x22
gðs; x1; x2Þ dx1 dx2

1

s
e�s ds; i ¼ 1; 2; ð4:13Þ

and dfðxÞ ¼ hðxÞ dx; where

hðx1; x2Þ ¼
Z

N

0

gðs; x1;x2Þ
1

s
e�s ds: ð4:14Þ

Here,

gðs; x1; x2Þ ¼ 2
ffiffiffi
p

p
sZs1=2þ1=ae

x2
1

4s2s

 !�1

pa
x2

s1=aZ

� �
; ð4:15Þ

where pa is the density of standard symmetric a-stable distribution with ch.f. expð�jtjaÞ:

MLL distributions have the stability property (3.20) with Ap ¼ diagðp1=2; p1=aÞ
and bp ¼ 0: The following result is an extension of corresponding stability pro-

perties of univariate and multivariate Laplace and Linnik distributions (see,
e.g., [14]).
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Theorem 4.4. Let Y ; Y1; Y2;y be i.i.d. symmetric bivariate random vectors whose

first components have finite variance, and let Np be a geometrically distributed random

variable independent of the sequence ðYiÞ: Then

Sp ¼ Ap

XNp

i¼1
ðYi þ bpÞ¼d Y ; pAð0; 1Þ; ð4:16Þ

with some diagonal Ap’s and bpAR2 if and only if Y has an MLL distribution given by

the ch.f. (4.4). Moreover, we must necessarily have bp ¼ 0 and Ap ¼ diagðp1=2; p1=aÞ for

each p:

Our next result shows that like Laplace and Linnik laws, the conditional
distributions of Y2jY1 ¼ y and of Y1jY2 ¼ y are scale mixtures of stable and normal
distributions, respectively.

Theorem 4.5. Let Y ¼ ðY1;Y2ÞBMLLaðs; ZÞ:
ðiÞ The conditional distribution of Y2jY1 ¼ ya0 is the same as that of

ðU þ VyÞ1=aS; ð4:17Þ

where the variables U ; Vy; and S are mutually independent, U is gamma distributed

with density

fUðxÞ ¼
1

Gð1=2Þ x�1=2e�x; x40; ð4:18Þ

Vy has inverse Gaussian distribution with density

fyðxÞ ¼
jyjejyj=s
2
ffiffiffi
p

p
s

x�3=2e
� y2

4s2xþx

� �
; x40; ð4:19Þ

and S is symmetric stable with the ch.f. (4.2).
ðiiÞ The conditional distribution of Y1jY2 ¼ ya0 is the same as that of

Z1=2
y X ; ð4:20Þ

where X and Zy are independent, X is normally distributed with mean zero and

variance 2s2; and Zy has a weighted exponential distribution with density

fyðxÞ ¼
oðxÞe�xR

N

0 oðxÞe�x dx
; x40: ð4:21Þ

The weight function in (4.21) is

oðxÞ ¼ x�1=apa
y

Zx1=a

� �
; x40; ð4:22Þ

where pa is the density of standard symmetric a-stable distribution.

Remark 4.6. Using the results of [17], we can obtain the weighted exponential r.v. Zy

with density (4.21) from a standard exponential r.v. Z via the transformation
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Zy ¼d qðZÞ; where q ¼ qðzÞ is the unique solution of the equationZ
N

q

oðxÞe�x dx ¼ e�z

Z
N

0

oðxÞe�x dx: ð4:23Þ

The following two results deal with tail behavior and joint moments of MLL
variables. In the first result we present the exact tail behavior of linear combinations
of the components of an MLL r.v., showing that they are heavy tailed with the same
tail index a:

Theorem 4.7. Let Y ¼ ðY1;Y2ÞBMLLaðs; ZÞ and let ða; bÞAR2 with a2 þ b240:
Then, as x-N; we have

PðaY1 þ bY24xÞB
1
p Z

ajbjaGðaÞ sin pa
2

x�a for aAR; ba0;

1
2
e
� x
jajs for aa0; b ¼ 0:

(
ð4:24Þ

Finally we give condition for the existence of joint moments of MLL random
vectors.

Theorem 4.8. Let Y ¼ ðY1;Y2ÞBMLLaðs; ZÞ and let a1; a2X0: Then the joint

moment EjY1ja1 jY2ja2 exists if and only if a2oa; in which case we have

EjY1ja1 jY2ja2 ¼
2a1sa1Za2ð1� a2ÞG a1

2
þ a2

a þ 1
� �

G a1
2
þ 1
2

� �
G 1� a2

a

� �
ffiffiffi
p

p
ð2� a2Þ cos pa22

; ð4:25Þ

where for a2 ¼ 1 we set ð1� a2Þ=cos pa22 ¼ 2=p:

Remark 4.9. Note that for a2 ¼ 0 we obtain absolute moments of classical Laplace
distribution (see, e.g., [14]) and for a1 ¼ 0 we get fractional absolute moments of a
symmetric Linnik distribution:

eða2Þ ¼ EjY2ja2 ¼
Za2ð1� a2ÞG a2

a þ 1
� �

G 1� a2
a

� �
ð2� a2Þ cos pa22

: ð4:26Þ

The above formula is useful in estimating the parameters of Linnik laws (see,
e.g., [14]).

4.2. MLL model for financial asset returns

To illustrate the modeling potential of OGS laws, we fit a portfolio of foreign
exchange rates with an MLL model and compare the fit with that of an OS model.
We use the data set of foreign exchange rates presented in [32]. The data contains
2853 daily exchange log-rates for the US Dollar versus the German Deutsch Mark
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ðX1Þ and the Japanese Yen ðX2Þ: In order to unmask the variations in tail behavior,
we transform the original vector of log-returns using the same linear transformation
as in [32] to obtain

Z1 ¼ 0:69X1 � 0:72X2 and Z2 ¼ 0:72X1 þ 0:69X2:

The tail parameters were estimated in [32] to be 1.998 for Z1 and 1.656 for Z2;
indicating that Z1 fits a finite variance model, whereas Z2 is heavy tailed. The
operator stable model assumes Z1 normal and Z2 stable. The OGS model will fit Z1

with a Laplace and Z2 with a Linnik law. We estimate all parameters of normal and
Laplace models using standard maximum likelihood techniques. The Linnik and
stable models are estimated using moment type estimators.
Since we assume symmetry around zero, we only need to estimate the scale of the

normal and Laplace (s in (4.5)) fit. These were 0.999 and 0.7296, respectively. Scale
parameters for the stable and Linnik (Z in (4.6)) distributions are estimated to be
1.404 and 1.571, respectively. The scale estimator for the Linnik distribution is based
on formula (4.26). Because of symmetry, the location and skewness for the stable
model are taken as zero. The scale for the stable model (Z in (4.2)) is estimated based
on the moment formula 1.2.17 in [44].
The goodness-of-fit was assessed using the Kolmogorov distance (KD) and the

Anderson-Darling (AD) statistics for the fitted marginals. The former is defined as

KD ¼ sup
x

jFðxÞ � FnðxÞj;

where Fn and F are the empirical and the fitted distribution functions, respectively.
The latter statistic is

AD ¼ sup
x

jFðxÞ � FnðxÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðxÞð1� FðxÞÞ

p ;

and measures the goodness-of-fit in the tails. The results are summarized in Table 1.
The KD statistics for Z1 and Z2 under the OGS model are about half of those

under the operator stable model. The AD statistics are also smaller under the OGS
model, indicating that the OGS distribution provides a better fit to this data. Figs. 1
and 2 compare the fit of both distributions to the data. It is clear from the graphs
that the OGS model fits the sharp central peak better than the OS model. In

ARTICLE IN PRESS

Table 1

The Goodness-of-fit statistics (KD—Kolmogorov distance and AD—Anderson-Darling) for OS and OGS

models

Operator stable OGS model

Z1 Z2 Z1 Z2

KD 0.04620 0.08825 0.02538 0.05091

AD 2.167 0.183 0.064 0.124

In the stable model, the variables Z1 and Z2 have normal and stable distributions, respectively. In the OGS

model, they have Laplace and Linnik laws, respectively.
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conclusion, both quantitative and graphical evidence show that the OGS laws have
high potential in modeling and in this case outperform the best OS models.

Remark 4.10. From the view point of risk management, the investor is interested in
the distribution of the original log returns X1 and X2: Since the Xi’s are linear
functions of the Zi’s, we can recover their density by change of variables in the
density of the Zi’s. In the above MLL model, the joint density of X1 and X2 is
estimated as

gðx1; x2Þ ¼ f ð0:69x1 � 0:72x2; 0:72x1 þ 0:69x2Þ;

where f is the MLL density (4.11) with a ¼ 1:656; s ¼ 0:7296; and Z ¼ 1:571:
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Fig. 1. Histogram of Z1 with pdf’s of normal (dashed line) and Laplace (solid line) models.
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Fig. 2. Histogram of Z2 with pdf’s of stable (dashed line) and Linnik (solid line) models.
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Remark 4.11. To compare the fits of stable and Linnik models, for consistency we
used the same method of moments to estimate the parameters, although for stable
parameters, maximum likelihood estimators (MLEs) are also available (see, e.g.,
[2,29] for the symmetric case and [36,38] for the skew case). Numerical routines for
stable MLEs are available at John P. Nolan website (http://academic2.american.edu/
~jpnolan/), and also from Bravo Risk Management Group. We used MLEs to
estimate stable parameters of Z2 under the operator stable case as well, obtaining
essentially the same results as above; the goodness-of-fit statistics for Z2 were KD ¼
0:0774 and AD ¼ 0:183:
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Appendix A

A.1. Auxiliary results

The following two results taken from [18] will be needed to prove Theorem 3.2.

Theorem A.1. Suppose that XAGDOAðY0Þ and (2.1) holds. If Nn are positive integer-

valued random variables independent of ðXiÞ with Nn-N in probability, and if

Nn=kn ) Z for some random variable Z40 with distribution n and some sequence of

positive integers ðknÞ tending to infinity, then

Akn

XNn

i¼1
ðXi � bkn

Þ ) Y ðA:1Þ

where Y has distribution

lðdxÞ ¼
Z

N

0

oðdxÞtnðdtÞ ðA:2Þ

and o is the distribution of Y0:

Theorem A.2. Suppose that ðXiÞ are independent, identically distributed random

vectors on Rd ; Mn are positive integer-valued random variables independent of ðXiÞ
with Mn-N in probability, and

Bn

XMn

i¼1
ðXi � anÞ ) Y ðA:3Þ

for some random vector Y with distribution l and some linear operators Bn on Rd and

centering constants anARd : Then there exists a sequence of positive integers ðknÞ
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tending to infinity such that for any subsequence ðn0Þ there exists a further subsequence

ðn00Þ; a random variable Z40 with distribution n; and a random vector Y0 with

distribution o such that Mn00=kn00 ) Z;

Bn00
Xkn00

i¼1
ðXi � an00 Þ ) Y0; ðA:4Þ

and (A.2) holds.

Remark A.3. Theorem A.1 is also called Gnedenko’s transfer theorem and has been
generalized to various algebraic structures including locally compact groups. See
Section 1 in [5] and Chapter 2.12 in [8] for details. The assertion of Theorem A.2 is
also known as Szasz’s compactness theorem, see [46] for the real valued case. It has
been generalized to nilpotent Lie groups in [7].

A.2. Proof of Theorem 3.2

If (d) holds, take Z a random variable with distribution n and let Np be a geometric

random variables with mean 1=p: Then Np-N a.s. and pNp ) Z as p-0: Take

Y0;X1;X2;y i.i.d. as o: Since o is OS, (2.3) shows that

ðX1 þ?þ XnÞ¼
d

nEY0 þ an

so that (2.1) holds with An ¼ n�E and bn ¼ n�1an: Given a sequence pn-0 let
kn ¼ ½1=pn	 and write Nn ¼ Npn

so that kn-N and

Nn

kn

¼ pnNpn

pn½1=pn	
) Z

where Z is standard exponential. Then Theorem A.1 shows that (A.1) holds
where the limit Y has distribution (A.2). Condition on the value of Z and use
(2.3) to show that (b) holds. Since this is true for any sequence pn-0; (a) also
holds.
If (d) holds, take Z standard exponential and fLðsÞ : s40g a stochastic process

with stationary independent increments independent of Z such that LðsÞ has
characteristic function #oðtÞs: Then LðZÞ has characteristic function

E½E½ei/t;LðZÞSjZ		 ¼
Z

N

0

#oðtÞs
e�s ds ¼ #lðtÞ ðA:5Þ

so that (c) and (d) are equivalent. Let c be the log-characteristic function of #oðtÞ as
in Definition 3.1.1 of [32], so that #oðtÞs ¼ escðtÞ: Then (A.5) implies

#lðtÞ ¼
Z

N

0

escðtÞe�s ds ¼ 1

1� cðtÞ ¼
1

1� log #oðtÞ; ðA:6Þ
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so that (d) and (e) are equivalent. Note that ReðcðtÞÞp0 since jecðtÞjp1: To see that
(b) implies (d) choose any Borel set MCRd and use (2.4) to compute

PfYAMg ¼PfZEX þ aZAMg

¼
Z

N

0

PfZEX þ aZAMjZ ¼ tgnðdtÞ

¼
Z

N

0

ðtEo � atÞðMÞnðdtÞ

¼
Z

N

0

otðMÞnðdtÞ

so that (d) holds.
Finally we show that (a) implies (e). The proof is similar to the special case of

geometric stable laws (see [33]). Condition on Np in (3.2) and take characteristic

functions to obtain

p #mpðtÞ
1� ð1� pÞ #mpðtÞ

-#lðtÞ as pk0; ðA:7Þ

where #mpðtÞ ¼ #mðA�
ptÞ � eApbp

is the characteristic function of ApðX þ bpÞ and #l is the
characteristic function of Y : Relation (A.7) can be written equivalently as

1� 1� ð1� pÞ #mpðtÞ
p #mpðtÞ

-1� 1

#lðtÞ
as pk0 ðA:8Þ

assuming that #lðtÞa0; which we will verify at the end of the proof. Simplifying we
obtain

#mpðtÞ � 1
p #mpðtÞ

-1� 1

#lðtÞ
as pk0; ðA:9Þ

and also

#mpðtÞ � 1
#mpðtÞ

����
����-0; as pk0: ðA:10Þ

Now, by (A.10), we conclude that #mpðtÞ-1; which combined with (A.9) produces

#mpðtÞ � 1
p

-1� 1

#lðtÞ
as pk0: ðA:11Þ

Letting p ¼ 1=n; (A.11) takes the form

nð #mðA�
1=ntÞ � eA1=nb1=n

� 1Þ-1� 1

#lðtÞ
ðA:12Þ

which implies that

ð #mðA�
1=ntÞ � eA1=nb1=n

Þn-exp 1� 1

#lðtÞ

 !
: ðA:13Þ
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Since the left-hand side of (A.13) is the characteristic function of the centered and
operator normalized partial sums of a sequence of i.i.d. random vectors, the right-
hand side of (A.13) must be the characteristic function #o of some operator stable
law. Solving

exp 1� 1

#lðtÞ

 !
¼ #oðtÞ ðA:14Þ

for #lðtÞ shows that (e) holds. To verify that #lðtÞa0; take an arbitrary sequence
pn-0 and apply (3.2) to see that (A.3) holds with Mn ¼ Npn

; Bn ¼ Apn
and an ¼

�bpn
: Then Theorem A.2 implies that there exists a sequence of positive integers

ðknÞ tending to infinity such that for any subsequence ðn0Þ there exists a further
subsequence ðn00Þ; a random variable Z40 with distribution n; and a random
vector Y0 with distribution o such that Npn00 =kn00 ) Z and (A.4) holds where o
related to l via (A.2). Since the limit Y0 in (A.4) is the weak limit of a triangular
array, o is infinitely divisible (cf. Theorem 3.3.4 in [31]). Since Npn00 =kn00 ) Z; the

law n of Z is infinitely divisible as the weak limit of infinitely divisible laws.
Since (A.2) holds with both o and n infinitely divisible, l is also infinitely divisible
(see, e.g., Property (e), XVII of [4]). Then it follows from the Lévy representation (cf.

Theorem 3.1.11 in [31]) that #lðtÞa0 so that the right-hand side in (A.8) is well-
defined.

A.3. Proof of Theorem 3.4

Let #oðxÞ ¼ e�cðxÞ; where �cðxÞ is the log-characteristic function of o: Then

#lðxÞ ¼
Z

N

0

#oðxÞtnðdtÞ ¼
Z

N

0

e�tcðxÞnðdtÞ ¼ *nðcðxÞÞ: ðA:15Þ

Moreover, since e�scðxÞ is the characteristic function of os; we have

e�scðxÞ ¼
Z
Rd

ei/x;xSgðs; xÞ dx:

Hence, by (3.13) and (A.15), we have

#lðxÞ ¼ exp
Z

N

0

ðe�scðxÞ � 1Þ 1
s

dKðsÞ
� �

¼ exp
Z

N

0

Z
Rd

½ei/x;xS � 1	gðs; xÞ dx
1

s
dKðsÞ

� �
:

Note that

FðxÞ ¼
Z

N

0

ðe�scðxÞ � 1Þ1
s

dKðsÞ ¼
Z

N

0

Z
Rd

½ei/x;xS � 1	gðs; xÞ dx
1

s
dKðsÞ
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exists and is the log-characteristic function of the infinitely divisible law l: Write

FðxÞ ¼
Z

N

0

Z
Rd

ei/x;xS � 1� i/x; xS

1þ jjxjj2

" #
gðs; xÞ dx

1

s
dKðsÞ þ i/a; xS

¼ IðxÞ þ i/a; xS

where a is given by (3.15). We will show below that IðxÞ exists for all xARd : Then,

since FðxÞ exists, it follows that aARd exists.
Now let

hðx; xÞ ¼ ei/x;xS � 1� i/x; xS

1þ jjxjj2

and note that jhðx; xÞjpC1jjxjj2 for jjxjjp1 and jhðx; xÞjpC2 for all xARd ; where
C1 and C2 are some constants. In order to show that IðxÞ exists, it suffices to
show thatZ

N

0

Z
Rd

jhðx; xÞjgðs; xÞ dx
1

s
dKðsÞoN: ðA:16Þ

For d40 write the LHS of (A.16) asZ d

0

Z
Rd

jhðx; xÞjgðs; xÞ dx
1

s
dKðsÞ þ

Z
N

d

Z
Rd

jhðx; xÞjgðs; xÞ dx
1

s
dKðsÞ ¼ I1 þ I2:

In view of (3.14), we have

I2p
Z

N

d

Z
Rd

C2gðs;xÞ dx
1

s
dKðsÞ ¼ C2

Z
N

d

1

s
dKðsÞoN:

On the other hand,

1

s

Z
Rd

jhðx; xÞjgðs; xÞ dx ¼ 1
s

Z
Rd

jhðx; xÞj dosðxÞ

p
1

s

Z
Rd

f ðxÞ dosðxÞ;

where f is a bounded CN-function such that f ð0Þ ¼ 0 and jhðx; xÞjpf ðxÞ for all
xARd : Note that fADðAÞ; where A is the generator of the continuous convolution
semigroup ðotÞt40: Hence

lim
sk0

1

s

Z
Rd

f ðxÞ dosðxÞ ¼ Að f Þ:

Therefore, for some d40; we have
1

s

Z
Rd

f ðxÞ dosðxÞpM

for all 0osrd: Consequently,

I1pM

Z d

0

dKðsÞ ¼ MðKðdÞ � Kð0ÞÞoN;
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and (A.16) follows.
Since IðxÞ exists, it follows from Fubini’s theorem that

IðxÞ ¼
Z
Rd

ei/x;xS � 1� i/x; xS

1þ jjxjj2

" # Z
N

0

gðs; xÞ 1
s

dKðsÞ
� �

dx

¼
Z
Rd

ei/x;xS � 1� i/x; xS

1þ jjxjj2

" #
hðxÞ dx;

where

hðxÞ ¼
Z

N

0

gðs; xÞ1
s

dKðsÞ

exists. Therefore, the log-characteristic function F of l has the form

FðxÞ ¼ i/a; xSþ
Z
Rd

ei/x;xS � 1� i/x; xS

1þ jjxjj2

" #
dfðxÞ;

where dfðxÞ ¼ hðxÞ dx: This concludes the proof.

A.4. Proof of Proposition 3.8

Writing relation (3.17) in terms of the characteristic functions, we obtain

p#lpðtÞ
1� ð1� pÞ#lpðtÞ

¼ #lðtÞ; pAð0; 1Þ; tARd ; ðA:17Þ

where #l and #lp are the characteristic functions of Y and Ypi; respectively.

Substituting (3.18) into (A.17) and noting that #lðtÞ ¼ ð1� log #oðtÞÞ�1 we
immediately obtain the validity of (A.17).

A.5. Proof of Theorem 3.9

Assume that Y is strictly OGS so that the representation (3.5) holds for some OS
random variable X with exponent E: Conditioning on Np we write the characteristic

function of the LHS in (3.19) as follows:

E½ei/t;SpS	 ¼
XN
n¼1

E½ei/t;Ap

Pn

i¼1 YiS	ð1� pÞn�1
p

¼
XN
n¼1

½#lðA�
ptÞ	nð1� pÞn�1

p

¼
p#lðA�

ptÞ
1� ð1� pÞ#lðA�

ptÞ
; ðA:18Þ
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where #l is the characteristic function of Y : Now, since #lðtÞ ¼ ð1� log #oðtÞÞ�1; where
#o is the characteristic function of a strictly OS law, the above equals:

p#lðA�
ptÞ

1� ð1� pÞ#lðA�
ptÞ

¼
p½1� log #oðA�

ptÞ	�1

1� ð1� pÞ½1� log #oðA�
ptÞ	�1

¼ 1

1� p�1 log #oðA�
ptÞ:

ðA:19Þ

Substituting Ap ¼ pE into (A.19) we obtain the characteristic function of Y ; since the

OS characteristic function #o satisfies the relation #oðpE�
tÞ ¼ ½ #oðtÞ	p for each p40:

Conversely, assume that relation (3.19) holds. Then, by definition, Y must be OGS

with the characteristic function #l of the form (3.4) with some OS characteristic
function #o: Following the above calculations, we write relation (3.19) in terms of the
characteristic functions as follows:

p#lðA�
ptÞ

1� ð1� pÞ#lðA�
ptÞ

¼ #lðtÞ; pAð0; 1Þ; tARd : ðA:20Þ

Substituting #lðtÞ ¼ ð1� log #oðtÞÞ�1 we obtain the following relation for #o:

#oðA�
ptÞ ¼ ½ #oðtÞ	p; pAð0; 1Þ; tARd ; ðA:21Þ

which essentially holds only for strictly OS characteristic function #o with some

exponent E and Ap ¼ pE :

A.6. Proof of Theorem 4.2

To obtain (4.10) use representation (4.9) coupled with independence of X1 and X2;
and apply a simple conditioning argument:

Fðy1; y2Þ ¼
Z

N

0

PðY1py1;Y2py2 j Z ¼ zÞe�z dz

¼
Z

N

0

P X1p
y1ffiffiffi

z
p

� �
P X2p

y2

z1=a

� �
e�z dz: ðA:22Þ

Since X1 and X2 have normal and stable laws with ch.f.’s (4.1), (4.2), respectively, we
obtain (4.10). To obtain (4.11), differentiate the above function with respect to y1
and y2: Alternatively, apply standard transformation theorem for functions of
random vectors to obtain the density of Y directly from the joint density of Z; X1;
and X2:

A.7. Proof of Theorem 4.5

We start with Part (i). Proceeding as in the proof of relation (5.1.7) from [44], we
obtain the following expression for the ch.f. of the conditional distribution of
Y2jY1 ¼ y:

#l2j1ðsÞ ¼ EðeisY2 jY1 ¼ yÞ ¼
R
R

e�ity #lðt; sÞ dt

2pf1ðyÞ
; ðA:23Þ
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where #l is the joint ch.f. (4.4) and f1 is the marginal (Laplace) density of Y1 given by

(4.7). Upon factoring #l

#lðt; sÞ ¼ 1

1þ Zajsja
1

1þ s2s t2
; ðA:24Þ

where

ss ¼
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Zajsja
p ; ðA:25Þ

we apply Fourier inversion formula

1

2p

Z
R

e�ityð1þ s2s t2Þ�1 dt ¼ 1

2ss

e�jyj=ss ; ðA:26Þ

obtaining after some algebra

#l2j1ðsÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Zajsja
p e�

jyj
s ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1þZajsja

p
�1Þ: ðA:27Þ

To finish the proof apply the representation of n-stable random variables (see, e.g.,
[20, Theorem 3.1]) noting that

#l2j1ðsÞ ¼ gð�log #fðsÞÞ; ðA:28Þ

where

gðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p e�
jyj
s ð
ffiffiffiffiffiffi
1þs

p
�1Þ ðA:29Þ

is the Laplace transform of the distribution of U þ Vy while #f is the ch.f. (4.2) of the
a-stable r.v. X2:
We now move to Part (ii). The characteristic function of the conditional

distribution of Y1 given Y2 ¼ y is

#l1j2ðtÞ ¼ EðeitY1 jY2 ¼ yÞ ¼
R
R

eituf ðu; yÞ du

f2ðyÞ
; ðA:30Þ

where f is the joint density (4.11) of Y1 and Y2 and f2 is the marginal Linnik density
(4.8) of Y2: Substituting these into (A.30) and changing the order of integration we
obtain after some elementary algebra:

#l1j2ðtÞ ¼
R
R

e�zt2s2oðzÞe�z dzR
R
oðzÞe�z dz

; ðA:31Þ

with o as in (4.22). Thus, we have

#l1j2ðtÞ ¼ hð�log #fðtÞÞ; ðA:32Þ

where h is the Laplace transform of the positive r.v. with density (4.21) and #f is the
normal ch.f. (4.1). By the representation of n-stable r.v.’s cited above, we obtain the
variance mixture (4.20) of normal distributions. This concludes the proof.
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A.8. Proof of Theorem 4.7

For b ¼ 0 and aa0 we obtain Laplace variable with the survival function

PðaY14xÞ ¼ 1

2
e
� x

jajs; x40:

For ba0 we note that the power tail of the Linnik variable bY2 dominates the
exponential tail of aY1:

lim
x-N

PðaY14xÞ
PðbY24xÞ ¼ 0:

Consequently, the tail behavior of aY1 þ bY2 is the same as that of bY2 (see Lemma
4.4.2 of [44]). The latter follows from more general results for univariate n-stable laws
(see, e.g., [19]).

A.9. Proof of Theorem 4.8

Apply representation (4.9) to obtain

jY1ja1 jY2ja2 ¼d Z
a1
2
þa2
a jX1ja1 jX2ja2 : ðA:33Þ

Since all positive absolute moments of Z and X1 exists, it is clear that the joint
absolute moment of Y1 and Y2 exists if and only if the absolute moment of X2 of
order a2 exists. The latter exists if and only if a2oa and equals (see, e.g., [44]):

EjX2ja2 ¼
Za2ð1� a2ÞG 1� a2

a

� �
ð2� a2Þcos pa22

: ðA:34Þ

The moments of exponential and normal distributions are straightforward to
compute and well known:

EZ
a1
2
þa2
a ¼ G

a1
2
þ a2

a
þ 1

� �
; ðA:35Þ

EjX1ja1 ¼
1ffiffiffi
p

p 2a1sa1G
a1
2
þ 1
2

� �
: ðA:36Þ

The result follows.
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