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a b s t r a c t

Operator scaling random fields are useful for modeling physical phenomena with different
scaling properties in each coordinate. This paper develops a general parameter estimation
method for such fields which allows an arbitrary set of scaling axes. The method is based
on a new approach to nonlinear regression with errors whose mean is not zero.
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1. Introduction

Random fields are useful models for many natural phenomena (e.g., see Adler [1]). Self-similar random fields capture the
fractal properties observed in applications (e.g., see Embrechts and Maejima [9]). An application to ground water hydrology
laid out in Benson et al. [3] notes that the Hurst index of self-similarity can be expected to vary with the coordinate. In a
two-dimensional model of an alluvial aquifer, a Hurst index H1 ≥ 0.5 models the organization of a porous medium in the
natural direction of ground water flow, and another Hurst index H2 < 0.5 describes negative dependence in the vertical
direction, which captures the layering effect of the fluvial deposition process that created themedium structure. The scaling
axes of themodel often differ from the usual spatial coordinates. For example, there is often a dipping angle that tilts the first
coordinate downward. In applications to fracture flow, a set of non-orthogonal scaling axes represents fracture orientations
(e.g., see Ponson et al. [18] or Reeves et al. [19]).

To address such applications, Biermé et al. [6] developed a mathematical theory of operator scaling stable random fields
(OSSRFs), based on ideas from [3]. An OSSRF is a scalar-valued random field {B(x)}x∈Rd such that

{B(cEx)}x∈Rd , {cB(x)}x∈Rd for all c > 0, (1.1)
where E is a d × d scaling matrix whose eigenvalues have real part greater than zero, cE = exp(E log c), with exp(A) =

I +A+A2/2!+ · · · the usual matrix exponential, and , denotes equality of all finite-dimensional distributions. If the scaling
matrix E has a basis of eigenvectors E bi = aibi for i = 1, . . . , d, then cEbi = caibi for i = 1, . . . , d, and it follows immediately
from (1.1) that the one-dimensional slice Bi(t) := B(tbi) is self-similar with Hurst index Hi = 1/ai, i.e.,

{Bi(ct)}t∈R , {cHiBi(t)}t∈R for all c > 0.
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In particular, the Hurst indexHi of self-similarity varies with the coordinate, and the scaling axes b1, . . . , bd can be any basis
for Rd. The construction of the OSSRF in [6] ensures that the random field has stationary increments, i.e.,

{B(x + h)− B(h)}x∈Rd , {B(x)}x∈Rd for all h ∈ Rd,

and then it follows that any one-dimensional slice Bx,i(t) := B(x + tbi) − B(x) is self-similar with Hurst index Hi. If the
random field is Gaussian, then Bi(t) := B(tbi) is a fractional Brownian motion with Hurst index Hi = 1/ai, since this is the
only self-similar Gaussian process with stationary increments [20, Corollary 7.2.3]. OSSRFs were applied to ground water
hydrology by Hu et al. [12] to synthesize realistic porosity fields and hydraulic conductivity fields, consistent with aquifer
data. Themulti-scaling produces organized regions of high porosity (and/or conductivity) that create preferential flowpaths,
an important feature of realistic random field simulations that is not present in an isotropic model.

Practical applications of multi-scaling random fields require a method to estimate the parameters. For the special case
where the scaling axes equal the original Euclidean coordinates, estimationmethods have been developed by Beran et al. [4],
Boissy et al. [7], and Guo et al. [10]. However, applications to geophysics require a more general approach, with an arbitrary
set of scaling axes. This paper develops a general method for parameter estimation, which also estimates the appropriate
scaling axes. These axes need not be orthogonal. Our approach is based on a new method for nonlinear regression with
errors whose mean is not zero. This method for nonlinear regression may well have further applications in other areas.

In Section 2, we review OSSRFs and outline the parameter estimation problem, which involves a nonlinear regression
where the errors do not have a zero mean. In Section 3, we propose a new nonlinear regression method to handle the
nonzero mean error, and prove consistency and asymptotic normality for this estimator. In Section 4, we return to OSSRFs
and apply the proposed nonlinear regression method to estimate parameters. Section 5 summarizes the results of a brief
simulation study, to verify that the method gives reasonably accurate parameter estimates in practice. Some concluding
remarks are contained in Section 6.

2. Operator scaling random fields

In this section, we recall the spectral method for constructing OSSRFs; see Biermé et al. [6] for complete details. Then we
outline the proposed nonlinear regression method for parameter estimation.

Given a d × d scaling matrix E whose eigenvalues all have positive real part, we say that a continuous function
ψ : Rd

→ [0,∞) is ET -homogeneous if ψ(cE
T
ξ) = c · ψ(ξ) for all c > 0, ξ ∈ Rd. Then Theorem 4.1 in [6] shows

that there exists a stochastically continuous OSSRF

B(x) = Re


ξ∈Rd


ei⟨x,ξ⟩ − 1


ψ(ξ)−1−q/αWα(dξ)


, (2.1)

where q = trace(E), ⟨x, ξ⟩ =
d

i=1 xiξi and Wα(dξ) is a complex isotropic symmetric stable random measure with index
0 < α ≤ 2 and control measure m(dξ) = σ 2

0 dξ. If α = 2, then B(x) is a Gaussian random field, and for any Borel subset
A of Rd we have W2(A) = Z1 + iZ2, where Z1 and Z2 are independent and identically distributed (i.i.d.) Gaussian random
variables on R1 with mean zero and variance σ 2

0 |A|/2, so E[W2(A)2] = |A|, the Lebesgue measure of A. Corollary 4.2 in [6]
shows that the OSSRF (2.1) has stationary increments, and that the operator scaling property (1.1) holds. See for example
Samorodnitsky and Taqqu [20] for general details on stable stochastic integrals.

Next, we review a spectral method for simulating the OSSRF (2.1), using a fast Fourier transform (FFT); see Kegel [15] for
complete details. This method yields a spatial regression model for OSSRFs that is the basis for our parameter estimation
scheme. To simplify the discussion, we focus on the case of Gaussian OSSRFs with α = 2 in two dimensions. However,
everything extends easily to stable OSSRFs on Rd with index 0 < α < 2. First, we approximate the stochastic integral
in (2.1) by a Riemann sum. Let D = [−A, A]

2
\ (−B, B)2 ⊂ R2 be a large square centered at the origin with radius A,

with a much smaller square of radius B deleted to form an annular region, such that B/A is a rational number. Select a
large integerM such that (B/A)M is also an integer. Next we subdivide the region D into small squares of size A/M . Define
I = {−M, . . . ,M − 1}2 and J = I \ {−(B/A)M, . . . , (B/A)M − 1}2, a collection of integer grid points in R2, and set
ξk = (A/M)k for k = (k1, k2) ∈ J. Now let 1ξk be the square of side A/M with the point ξk at its southwest corner, i.e.,
1ξk = [(A/M)k1, (A/M)(k1 + 1)] × [(A/M)k2, (A/M)(k2 + 1)]. Then we define

JD(x) =


k∈J


ei⟨x,ξk ⟩

− 1

ψ(ξk)

−1−q/2W2(1ξk), (2.2)

where the complex-valued random variables W2(1ξi) are i.i.d. with (σ0A/M)(Z1 + iZ2), and Z1 and Z2 are i.i.d. N (0, 1/2).
As M → ∞, the approximating sum JD(x) converges in probability to the stochastic integral

ID(x) =


ξ∈D


ei⟨x,ξ⟩ − 1


ψ(ξ)−1−q/2 W2(dξ),

since the integrand is continuous on the compact set D (e.g., see [16, Section 7.7]). Since the stochastic integral (2.1) exists,
ID(x) converges in probability to (2.1) as A → ∞ and B → 0.
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Next we write ID(x) in terms of discrete Fourier transforms. Set

g(k) =


ψ(ξk)

−1−q/2 for k ∈ J
0 for k ∈ I \ J

and ek = W2(1ξk). Then we can write JD(x) = J̄D(x)− J̄D(0), where

J̄D(x) =


k∈I

ei⟨x,ξk ⟩g(k)ek . (2.3)

For an arbitrary set of spatial coordinates {xk : k ∈ I}, we can then view {J̄D(xk) : k ∈ I} as the two-dimensional inverse
discrete Fourier transform of {g(k)ek : k ∈ I}. Then the FFT algorithm can be used to efficiently compute {J̄D(xk) : k ∈ I},
yielding the approximation B(xk) ≈ J̄D(xk) − J̄D(0), for all k ∈ I. If we take ψ(ξ) = ∥ξ∥H and E = (1/H)I , where I is the
identity matrix, then ψ(ξ)−1−q/2

= ∥ξ∥−H−d/2, and this reduces to the well-known spectral simulation method for a Lévy
fractional Brownian field with Hurst index 0 < H < 1 (e.g., see Voss [21]). Then (2.1) is the spectral representation for this
isotropic random field. The OSSRF model is an extension of the Lévy fractional Brownian field that allows the Hurst index H
to vary with the coordinate, in an arbitrary coordinate system.

Next,weoutline our proposedparameter estimationmethod,which is based on the spectral simulationmethoddescribed
above. Suppose that we are given a set of 2M × 2M spatial data {(xk, wk) : k ∈ I}, where the observation wk is located
at the spatial coordinates given by the vector xk . Since the random field model (2.1) has the property that B(0) = 0, we
suppose thatwk −w0 comes from a realization of the OSSRF (2.1). Using the discrete approximation, we therefore suppose
that wk = J̄D(xk). Compute {zk : k ∈ I} by taking the FFT of {wk : k ∈ I}. These Fourier transformed data {zk : k ∈ I}

satisfy a multiplicative model zk = g(k) · ek , where the coefficients g(k) := ψ(ξk)
−1−q/2I(k ∈ J) depend on the Fourier

filter ψ(ξ), and ek are i.i.d. complex-valued Gaussian with mean zero and E[|ek |2] = σ 2
0 (A/M)

2
= |1ξk |.

Next, we consider a simple parametric model for the Fourier filter. Suppose that the scaling matrix E has a basis of
eigenvectors b1, b2 with associated eigenvalues a1, a2 ∈ (0,∞). To reduce the number of parameters, we adopt the polar
representation b(vj) = (cos(vj), sin(vj))with angle vj ∈ [0, π] for j = 1, 2 instead of b1 and b2. Then it is not hard to check
that

ψ(ξ) =


C |⟨ξ, b(v1)⟩|2/a1 + |⟨ξ, b(v2)⟩|2/a2

1/2
(2.4)

is an ET -homogeneous function. Note also that q = trace(E) = a1 + a2. Substituting the Fourier filter (2.4) into the spectral
representation (2.1) gives a five-parameter family of OSSRF models with parameters a1, a2, v1, v2, and C . More general
models are developed in Clausel and Vedel [8], to allow complex and/or degenerate eigenvalues.

Assuming the Fourier filter (2.4), the Fourier transformed data follow a multiplicative model zk = g(k) · ek , which
converts to an additive nonlinear regression model

yk = log |zk | = log |g(k)| + log |ek |, (2.5)

and we will estimate the parameters a1, a2, v1, v2, and C by solving this nonlinear regression problem. The nonlinear
regression is complicated by the fact that the errors log |ek | do not have mean zero. Hence, we propose a new method
for nonlinear regression in Section 3 that allows i.i.d. errors with a nonzero mean, and we prove that this method leads to
consistent and asymptotically normal parameter estimates. Although the index k in (2.5) is a vector, this detail is irrelevant
to the nonlinear regression problem, and hence without loss of generality we consider the traditional form in which the
index is a positive integer.

3. Nonlinear regression

In this section, we develop a newmethod for nonlinear regression when the regression errors have a (possibly) nonzero
mean. We consider the following nonlinear regression model.

y(n)i = f (x(n)i ; θ)+ ϵ
(n)
i , for i = 1, 2, . . . , n; n = 1, 2, 3, . . . , (3.1)

where f (x; θ) is a nonlinear function on x ∈ D ⊂ Rd that depends on the parameter vector (θ1, . . . , θp)T := θ. To simplify
the notation, we suppress the index n throughout the remainder of the paper. We assume that, for every fixed n, the errors
ϵi are independent and identically distributed (i.i.d.) with E(ϵi) = µn and Var(ϵi) = σ 2 > 0. We assume that the variance
σ 2 is the same for all n, but we allow that µn varies with n. Next, we develop a new nonlinear regression estimator for the
parameter vector θ. We show that the resulting parameter estimates θ̂n are strongly consistent and asymptotically normal
as n → ∞. The model (3.1) arises naturally from a multiplicative model such as zi = g(xi, θ) · ei, where the multiplicative
errors ei are i.i.d. By taking absolute values and then logarithms on both sides, we obtain log |zi| = log |g(xi, θ)| + log |ei|,
which can be viewed as the model given in (3.1). The application to OSSRFs in Section 4 involves infill asymptotics, and
µn = E(log |ei|) → −∞ as n → ∞, which is permissible under our model.
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Since the error ϵi in (3.1) has nonzero mean, we propose a new least square estimator

θ̂n = argmin
θ∈Θ

Sn(θ), (3.2)

whereΘ is a parameter space, and

Sn(θ) =

n
i=1


yi − f (xi; θ)−

1
n

n
j=1


yj − f (xj; θ)

2

(3.3)

is the objective function. The idea is to minimize errors induced only by the model, since the mean of ϵi is removed by
subtracting its sample mean.

Remark 3.1. Bhattacharyya et al. [5] showed inconsistency of the least square estimator of a nonlinear regression model
withmultiplicative error. Note that the paper [5] considered the least square estimator of the originalmodel, that is, without
logarithmic transformation. That paper mentioned the strong consistency of the least square estimator after logarithmic
transformation, but the objective function is different from ours.

3.1. Strong consistency

Nowwewill prove the strong consistency of the proposed estimator (3.2). Note that Sn(θ) can bewritten in the following
matrix form:

Sn(θ) = (Y − f (θ))T

I −

1
n
11T


(Y − f (θ)) , (3.4)

where Y = (y1, . . . , yn)T , f (θ) = (f (x1; θ), . . . , f (xn; θ))T , I is the identity matrix, and 1 is a vector of 1s. Let ϵ =

(ϵ1, . . . , ϵn)
T and Σn = I −

1
n11

T . Define di(θ, θ′) = f (xi; θ) − f (xi; θ′) and Dn(θ, θ
′) = dTΣnd, where d = (d1(θ, θ′),

. . . , dn(θ, θ′))T . For the proof of strong consistency, we need the following assumption.

Assumption 1. Assume that

(i) D andΘ are compact,
(ii) f is continuous on D ×Θ ,
(iii) there exist functions Bγ (θ, θ′) for γ = 1, 2 such that

1
n

n
i=1

di(θ, θ′)γ → Bγ (θ, θ′) uniformly in θ, θ′
∈ Θ,

with B(θ, θ′) := B2(θ, θ
′)− B1(θ, θ

′)2 ≥ 0, and B(θ, θ′) = 0 if and only if θ = θ′.

Theorem 3.2. For the least square estimator given in (3.2), under Assumption 1, θ̂n → θ0 a.s., where θ0 is the true parameter
value.

The following lemma fromWu [22] will be used in the proof of Theorem 3.2.

Lemma 3.3. Let Θ be a parameter space, and let θ0 ∈ Θ be the true parameter value. Under Assumption 1(i) and (ii), suppose
that, for any δ > 0,

lim inf
n→∞

inf
∥θ−θ0∥≥δ

(Sn(θ)− Sn(θ0)) > 0 a.s. (3.5)

Then, for θ̂n given in (3.2), θ̂n → θ0 a.s. as n → ∞.

Proof. Lemma 1 inWu [22] is for the classic least square estimator of the nonlinear regressionmodel withmean zero errors.
That is, Sn(θ) =

n
i=1 (yi − f (xi; θ))2. However, the lemma still holds for our setting, since the proof does not make use of

any mean zero error assumption, and the lemma is applicable to any estimation procedure based on minimization of a
certain function, as Wu [22] noted. �

Proof of Theorem 3.2. Sn(θ)− Sn(θ0) can be written in a matrix form:

Sn(θ)− Sn(θ0) = dTΣnd − 2 dTΣnϵ.

Let ui = ϵi − µ and u = (u1, . . . , un)
T . Then, ui are i.i.d. with E(ui) = 0 and Var(ui) = σ 2. SinceΣn1 = 0, we have

Sn(θ)− Sn(θ0) = dTΣnd − 2 dTΣnu

= Dn(θ, θ0)


1 −

2
Dn(θ, θ0)

dTΣnu

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and

inf
∥θ−θ0∥≥δ

(Sn(θ)− Sn(θ0)) = inf
∥θ−θ0∥≥δ

Dn(θ, θ0)


1 −

2
Dn(θ, θ0)

dTΣnu

.

Then, by Lemma 3.3, it is enough to show that

sup
∥θ−θ0∥≥δ

|dTΣnu|

inf
∥θ−θ0∥≥δ

Dn(θ, θ0)
→ 0 as n → ∞, (3.6)

since (1/n)Dn → B by Assumption 1(iii).
Note that we have dTΣnu =

n
i=1 diui −

 1
n

n
i=1 di

 n
i=1 ui


. By the strong law of large numbers, 1

n


i ui → 0 a.s.,

and, by Assumption 1(iii),
 1
n


i di
 < ∞ uniformly in θ, θ0 ∈ Θ . Thus,

sup
∥θ−θ0∥≥δ


1
n

n
i=1

di


1
n

n
i=1

ui


→ 0 a.s.

To show that 1
n

n
i=1 diui → 0 a.s., we apply a theorem of Jenrich [14, Theorem 4]. Note that l ≡ (ui)i=1,2,... satisfies

assumption (a) on p. 633 of [14] and that g ≡ (di(θ, θ0))i=1,2,... satisfies

[g, g] ≡ lim
n→∞

1
n


i

di(θ, θ0)
2

→ B2(θ, θ0)

uniformly in θ, θ0 ∈ Θ . Then, [14, Theorem 4] implies that, almost surely, 1
n

n
i=1 diui → 0 uniformly in θ, θ0 ∈ Θ as

n → ∞. That is, almost surely, supθ,θ′
∈Θ

1
n

n
i=1 diui → 0, which implies that

sup
∥θ−θ0∥≥δ

1
n

n
i=1

diui → 0, a.s.

Therefore, in view of Assumption 1(iii), (3.6) holds. �

3.2. Asymptotic normality

To show asymptotic normality, wemake further assumptions on f . If f is twice differentiable, let fk(θ) = (∂ f (x1; θ)/∂θk,
. . . , ∂ f (xn; θ)/∂θk)

T , fks(θ) = (∂2f (x1; θ)/∂θk∂θs, . . . , ∂
2f (xn; θ)/∂θk∂θs)

T , Ḟ(θ) = (f1, . . . , fp), and F̈(θ) = Block(fks); that
is, F̈ is a p n × p block matrix whose (k, s)th block is fks. Also, let N (µ,Σ) denote the Gaussian or normal distribution with
mean µ and covariance matrixΣ . Now, we consider the following assumption for asymptotic normality.

Assumption 2. Assume further the following.

(i) The true parameter θ0 is in the interior of Θ, and f (xi; θ) is twice differentiable with respect to θ near θ0 for all i.
(ii) There exists a positive definite matrix Γ such that 1

n Ḟ(θ0)
TΣnḞ(θ0) → 0 as n → ∞.

(iii) Ḟ(θ1)
TΣnḞ(θ1)


Ḟ(θ0)

TΣnḞ(θ0)
−1

converges to the identity matrix uniformly as n → ∞ and ∥θ1 − θ0∥ → 0.
(iv) There exists a δ > 0 such that

lim sup
n→∞

1
n

n
i=1

sup
|θ−θ0|≤δ


∂2f (xi; θ)

∂θk∂θs

2

< ∞

for all k, s = 1, . . . , p.

Theorem 3.4. Let θ̂n be the strongly consistent estimator (3.2) for model (3.1). Then, under Assumption 2,

√
n

θ̂n − θ0


d

→ N

0, σ 20−1 . (3.7)

Proof. Note that the first two derivatives of Sn(θ) are

Ṡn(θ) = 2Ḟ(θ)TΣn (d − ϵ) (3.8)

and

S̈n(θ) = 2Ḟ(θ)TΣnḞ(θ)+ 2F̈(θ)T (I ⊗ (Σn(d − ϵ))). (3.9)
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Since θ̂n → θ0 a.s., by the mean value theorem, we have

Ṡn(θ0) = S̈n(θ̃n)(θ0 − θ̂n), (3.10)

where θ̃n lies on a line segment between θ0 and θ̂n. Eq. (3.10) can be rewritten as

(θ̂n − θ0) = Zn

Ḟ(θ0)

TΣnḞ(θ0)
−1 Ḟ(θ0)

TΣnu, (3.11)

where

Zn =


Ḟ(θ̃n)

TΣnḞ(θ̃n)+ F̈(θ̃n)
T (I ⊗ (Σn(d − u)))

−1 
Ḟ(θ0)

TΣnḞ(θ0)

. (3.12)

Note thatΣnϵ in (3.11) and (3.12) is replaced byΣnu = Σn(ϵ − µ1), sinceΣn1 = 0. It is enough to show that

Zn −→ I a.s. (3.13)

and 
Ḟ(θ0)

TΣnḞ(θ0)
−1/2 Ḟ(θ0)

TΣnu
d

−→ N

0, σ 2I


(3.14)

to complete the proof.
Since (3.13) is equivalent to Z−1

n −→ I a.s., we consider Z−1
n , which can be rewritten as

Z−1
n =


Ḟ(θ0)

TΣnḞ(θ0)
−1 Ḟ(θ̃n)

TΣnḞ(θ̃n)+

Ḟ(θ0)

TΣnḞ(θ0)
−1 F̈(θ̃n)

T (I ⊗ (Σnd))

−

Ḟ(θ0)

TΣnḞ(θ0)
−1 F̈(θ̃n)

T (I ⊗ (Σnu)).

By condition (ii) of Assumption 2, the first term of Z−1
n converges to I almost surely. By conditions (i), (ii) and (iv) of

Assumption 2 and the Cauchy–Schwarz inequality, the second term of Z−1
n converges to zero almost surely. To show that

the third term of Z−1
n converges to zero a.s., it is enough to show that, for all k, s = 1, . . . , p,

1
n
fks(θ)TΣnu −→ 0

uniformly on S = {θ ∈ Θ : ∥θ − θ0∥ ≤ δ} with probability 1, because of conditions (i) and (ii) of Assumption 2. Now
1
n fks(θ)Σnu is decomposed into two parts, so

1
n
sup
θ∈S

|fks(θ)Σnu| ≤
1
n
sup
θ∈S

 n
i=1

∂2f (i; θ)

∂θk∂θs
ui

+ 1
n
sup
θ∈S

 n
i=1

∂2f (i; θ)

∂θk∂θs


1n

n
i=1

ui

 . (3.15)

Then, by condition (iv) of Assumption 2, the first termof (3.15) converges to zero a.s., which can be shown in amanner similar
to that of Wu [22, p. 509]. By the strong law of large numbers, condition (iv) of Assumption 2, and the Cauchy–Schwarz
inequality, the second term of (3.15) converges to zero almost surely.

To show (3.14), we use a lemma of Huber [13, Lemma 2.1]. The condition of that lemma in our setting isḞ(θ0)
TΣnḞ(θ0)

−1/2 Ḟ(θ0)
T


∞

−→ 0 as n → ∞, (3.16)

where ∥A∥∞ = max1≤i≤p,1≤j≤q |aij| for a p × qmatrix A. Note that for a p × q matrix A and a q × r matrix B, we have

∥AB∥∞ ≤ q ∥A∥∞∥B∥∞.

Since

Ḟ(θ0)

TΣnḞ(θ0)
−1/2

is a p × p matrix and Ḟ(θ0)
T is a p × nmatrix, we haveḞ(θ0)

TΣnḞ(θ0)
−1/2 Ḟ(θ0)

T


∞

≤ p
Ḟ(θ0)

TΣnḞ(θ0)
−1/2


∞

Ḟ(θ0)
T


∞

≤ (p/
√
n)
Ḟ(θ0)

TΣnḞ(θ0)/n
−1/2


∞

Ḟ(θ0)
T


∞
.

Then conditions (i) and (ii) of Assumption 2 imply thatḞ(θ0)
TΣnḞ(θ0)/n

−1/2


∞

and
Ḟ(θ0)

T


∞

are bounded, so (3.16) holds, which leads to the asymptotic normality in (3.14). �
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4. Parameter estimation for OSSRFs

Now, we apply the nonlinear regression estimator in Section 3 to develop a practical method for OSSRF parameter
estimation. Theorem 3.4 requires a twice differentiable objective function, but the filter (2.4) contains absolute values.
Hence, we consider a smoothed version of log |g(k)|, by setting

f (ξ, θ) :=


−

1
2

−
a1 + a2

2


log


lε(C |⟨ξ, b(v1)⟩|2/a1)+ lε(|⟨ξ, b(v2)⟩|2/a2)


, (4.1)

with parameter vector θ = (a1, a2, v1, v2, C)T . Here, for a given small ε > 0, the function lε(·) is a smooth cutoff function
such that lε(x) = x for x > ε and lϵ(0) = 0. The smooth cutoff function is for mathematical convenience. It has no impact
on the estimation method, since in practice M is fixed, so we can choose ε < A/M , and then f (ξk, θ) = log |g(k)| for all
k ∈ I. To ease notation, index the grid points k = k(i), where i = 1, 2, . . . , n := (2M)2, and write zi = zk(i), and so forth.
Then the nonlinear regression model (2.5) can be written in the form

yi = f (ξi, θ)+ ϵi, (4.2)

where ϵi = log |ei|. Write ei = (σ0A/M)Zi, where Zi are i.i.d. complex-valued Gaussian with E[Zi] = 0 and E[|Zi|2] = 1.
Then µn = E(ϵi) = log(σ0A/M) + E(log |Zi|) → −∞ as n = (2M)2 → ∞. However, the error variance σ 2

= Var(ϵi) =

Var(log |Zi|) does not depend on n. Hence we can estimate the parameter vector θ of this OSSRF model by a nonlinear
regression (3.2), and use the theory in Section 3 to get the asymptotics. For our OSSRF estimator, we consider the compact
parameter space

Θ = {(a1, a2, v1, v2, C)|1 ≤ a1, a2 ≤ amax, v1, v2 ∈ [0, π], v1 < v2, |v1 − v2| ≥ δ0, c−1
0 ≤ C ≤ c0},

where amax > 1, and δ0 > 0 and c−1
0 > 0 are small. These restrictions on the parameter space are for mathematical

convenience, and they pose no limitations in terms of practical applications. Note that, since Hi = a−1
i ≤ 1 is the Hurst

scaling index in the ith coordinate direction, it suffices to consider ai ≥ 1.

Theorem 4.1. Under the assumptions detailed above, the nonlinear regression estimator θ̂n for the OSSRF parameter vector
θ = (a1, a2, v1, v2, C) is strongly consistent and asymptotically normal. That is, we have

θ̂n → θ0 a.s. as n → ∞,

where θ0 is the vector of true parameter values, and also
√
n

θ̂n − θ0


d

→ N

0, σ 20−1

in distribution. The matrix 0 has (i, j)th entry given by (4.3) with θ = θ0, and σ 2
= Var(log(Z2

1 + Z2
2 )), where Z1, Z2 are i.i.d.

N (0, 1/2). The matrix 0 is positive definite, and 1
n Ḟ(θ0)

TΣnḞ(θ0) → 0 as n → ∞.

Proof. To prove strong consistency of the estimator θ̂, we need to check Assumption 1(iii). This requires the following
lemma.

Lemma 4.2. For the parameter estimation of OSSRFs, we have, for γ = 1, 2,

1
n

n
i=1

di(θ, θ′)γ → Bγ (θ, θ′) uniformly in θ, θ′
∈ Θ,

as n → ∞, where

Bγ (θ, θ′) =
1

(2A)2


[−A,A]2


f (ξ, θ)− f (ξ, θ′)

γ dξ.

Moreover, B(θ, θ′) = B2(θ, θ
′)− B1(θ, θ

′)2 ≥ 0 and B(θ, θ′) = 0 if and only if θ = θ′.

Proof. We have

1
n


i

d2i =
1
|I|


k∈I


f (ξk, θ)− f (ξk, θ

′)
2

=
1

(2A)2


A
M

2
k∈I


f (ξk, θ)− f (ξk, θ

′)
2
.
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As n → ∞, we haveM → ∞, and hence
A
M

2
k∈I


f (ξk, θ)− f (ξk, θ

′)
2

→


[−A,A]2


f (ξ, θ)− f (ξ, θ′)

2 dξ.
Similarly,

1
n


i

di =
1
|I|


k∈I


f (ξk, θ)− f (ξk, θ

′)


→
1

(2A)2


[−A,A]2


f (ξ, θ)− f (ξ, θ′)


dξ.

Thus

1
n

n
i=1

d2i −

1
n

n
i=1

di
2

→ B

pointwise as n → ∞. Uniform convergence in θ, θ′
∈ Θ follows from the uniform continuity of f (ξ, θ) in ξ ∈ [−A, A]

2 and
θ ∈ Θ by a standard argument. Also, observe that, by the Cauchy–Schwarz inequality, B(θ, θ′) ≥ 0 and B(θ, θ′) = 0 if and
only if f (ξ, θ)− f (ξ, θ′) = constant for all ξ ∈ D , which holds if and only if θ = θ′. �

In order to apply the results of Section 3.2 in this particular case, observe that the function (4.1) is continuous over
(ξ, θ) ∈ [−A, A]

2
×Θ , and that f (ξ, θ) is twice differentiable with respect to θ near θ0 for all ξ ∈ [−A, A]

2 such that, for all
1 ≤ i, j ≤ p = 5,

∂ f
∂θi
(ξ, θ) : [−A, A]

2
−→ R

∂2f
∂θi∂θj

(ξ, θ) : [−A, A]
2

−→ R

are continuous functions of ξ ∈ [−A, A]
2 (and hence uniform continuous, by compactness of [−A, A]

2).
Next, we verify that the function (4.1) satisfies Assumption 2, so the least squares estimator is asymptotically normal,

i.e., (3.7) holds.
For θ near θ0 and i, j = 1, . . . , p = 5, define

Γ (θ)i,j =
1

(2A)2


[−A,A]2

∂ f (ξ, θ)
∂θi

∂ f (ξ, θ)
∂θj

dξ −


1

(2A)2


[−A,A]2

∂ f (ξ, θ)
∂θi

dξ


1
(2A)2


[−A,A]2

∂ f (ξ, θ)
∂θj

dξ

. (4.3)

Lemma 4.3. Γ (θ) is positive definite for all θ near θ0.

Proof. Observe that, for λ1, . . . , λp ∈ R, the quantity

p
i,j=1

λiλjΓ (θ)i,j =
1

(2A)2


[−A,A]2


p

i=1

λi
∂ f (ξ, θ)
∂θi

2

dξ −


1

(2A)2


[−A,A]2

p
i=1

λi
∂ f (ξ, θ)
∂θi

dξ

2

is greater than or equal to zero, by the Cauchy–Schwarz inequality. Moreover, if at least one λi ≠ 0, then the function

ξ →

p
i=1

λi
∂ f (ξ, θ)
∂θi

is not constant on D , and hence Γ (θ) is positive definite. �

By enlarging Θ if necessary, we can assume that θ0 is in the interior of Θ, and hence Assumption 2(i) holds true. For the
proof of (ii), first note that, for θ near θ0, we have

Ḟ(θ)TΣnḞ(θ) = Ḟ(θ)T Ḟ(θ)−
1
n


Ḟ(θ)T1


1T Ḟ(θ)


.

Now, for i, j = 1, . . . , p we have

1
n


Ḟ(θ)T Ḟ(θ)


i,j =

1
n

n
l=1

∂ f (ξl, θ)
∂θi

∂ f (ξl, θ)
∂θj
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Fig. 1. Typical OSSRF realization with parameters a1 = 2.0, a2 = 3.1, v1 = 0.17, v2 = 2.3, and C = 3.0. The angles v1 and v2 determine the orientation
of the random field, with Hurst index H1 = 1/a1 and H2 = 1/a2 in those directions.

=
1

(2A)2


A
M

2
k∈I

∂ f (ξk, θ)
∂θi

∂ f (ξk, θ)
∂θj

→
1

(2A)2


[−A,A]2

∂ f (ξ, θ)
∂θi

∂ f (ξ, θ)
∂θj

dξ.

Similarly, we get1
n
Ḟ(θ)T1


i
→

1
(2A)2


[−A,A]2

∂ f (ξ, θ)
∂θi

dξ.

Hence

1
n
Ḟ(θ)TΣnḞ(θ) → Γ (θ) as n → ∞. (4.4)

Observe that, by compactness of D and uniform continuity, the convergence in (4.4) is uniform in θ near θ0. Hence
Assumption 2(ii) holds.

To prove Assumption 2(iii), note that, in view of (4.4) and Lemma 4.3, we get

Ḟ(θ1)
TΣnḞ(θ1)


Ḟ(θ0)

TΣnḞ(θ0)
−1

→ Γ (θ1)Γ (θ0)
−1 as n → ∞

uniformly in θ1 near θ0. Since θ → Γ (θ) is continuous, Assumption 2 (iii) holds.
Finally, since θ0 is assumed to be in the interior of Θ, there exists a δ > 0 such that {θ : |θ − θ0| ≤ δ} lies in the interior

of Θ and f (ξ, θ) is twice continuously differentiable in θ on that set. For k, s = 1, . . . , p fixed, let

h(ξ) = sup
|θ−θ0|≤δ


∂2f (ξ, θ)
∂θk∂θs

2

,

which is a continuous function on D . Then

1
n

n
i=1

sup
|θ−θ0|≤δ


∂2f (ξi, θ)
∂θk∂θs

2

=
1
n

n
i=1

h(ξi) →
1

(2A)2


[−A,A]2

h(ξ) dξ < ∞,

so Assumption 2(iv) holds true. Now the proof is complete. �

Remark 4.4. The spectral representation (2.1) can be extended to a broad range of infinitely divisible random measures
(e.g., tempered stable) for suitable Fourier filter functions ψ(ξ). Unless the measure is stable, the operator scaling is lost.
However, the model may still be useful in some applications (e.g., see [11]). The parameter estimation scheme detailed here
applies equally well to such models, since we only need that the random variables log |Wα(1ξi)| are i.i.d. with the same
variance for all n.

5. Simulation study

In this section, we present the results of a small simulation study of the proposed estimation method for OSSRFs. We
simulated R = 1000 realizations of the random field (2.1) using method (2.3) with Fourier filter function ψ(ξ) given by
(2.4). The parameters a1 = 2.0, a2 = 3.1, v1 = 0.17, v2 = 2.3, and C = 3.0 were used, we took σ0 = 1, and we set
M = 256, so n = 262144 = (2M)2 points were generated for the random field. A typical realization is shown in Fig. 1. The
parameter values are within the range of applications in ground water hydrology. In those applications, the random field
represents some scalar-valued physical property of an underground aquifer, such as hydraulic conductivity, the reciprocal
of the resistance that a fluid encounters while passing through the porous medium. The connected regions of high or low
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Table 1
Statistical summary of R = 1000 simulation results.

Statistic a1 a2 v1 v2 C

True value 2.0 3.1 0.17 2.3 3.0
Sample mean 1.998 3.092 0.170 2.300 3.005
Standard deviation 0.013 0.047 0.008 0.004 0.045

Fig. 2. Relative error for OSSRF parameter estimates, showing that the nonlinear regression method gives accurate estimates. A statistical summary for
the same data is given in Table 1.

conductivity, called facies, control the ground water flow. Areas of high conductivity (red) form preferential paths for flow,
leading to superdispersion. Areas of low conductivity (blue) lead to subdiffusion, as fluid that diffuses into the region cannot
easily flowback out. Both are commonly observed in real-world experiments [2,3]. The vertical axis represents depth, and the
horizontal axis is oriented in themean flowdirection. TheHurst indexH2 = 1/a2 = 0.323 in the v2 direction causes layering,
since a fractional Brownianmotionwith Hurst index in the range (0, 0.5) exhibits negative dependence. The ‘‘dipping angle’’
v1 is typically nonzero, since the horizontal deposition of aquifer material is followed by geological changes that tilt or fold
the aquifer. The structural features shown in Fig. 1 closely resemble a cut-out hillside exposed during road construction, or
a river canyon, with strong anisotropy, and an orientation that differs from the gravity gradient. For the chosen parameter
values, it was found that setting A = 30.0 and B < A/(2M) (small enough so that the filter is set to zero only at the
single point k = 0) was sufficient to simulate the random field, i.e., increasing A or M or decreasing B made no apparent
difference in the resulting graph. The nonlinear regression model (2.5) was then applied to estimate the parameters for
each realization, treating them as unknown. The same value of Awas used in the estimation procedure. The simulation and
nonlinear regression were coded in MATLAB, using the command fmincon to solve the constrained optimization problem
(3.2), where Sn(θ) is given by (3.3) and (4.1), over the parameter spaceΘ defined by 1 ≤ a1, a2 ≤ 40, 0 ≤ v1, v2 ≤ π , and
1/200 ≤ C ≤ 200. Codes are available from the authors upon request.

Table 1 gives a statistical summary of the resulting parameter values from R = 1000 repeated simulations. The sample
means of estimated parameter values are close to the true values, and the sample standard deviations are all less than
0.05. Fig. 2 shows a boxplot of relative error ((estimated − actual)/actual) for each parameter. The relative errors are
small, indicating that the estimated parameter values are generally quite close to the assumed parameter values. This is
also supported by the results in Table 1. The best accuracy is for the parameter estimates of the angles v1 and v2, which is
gratifying, since identifying the coordinate axes b(v1) and b(v2) along which the Hurst indices H1 = 1/a1 and H2 = 1/a2
pertain was the main goal of this research.

Fig. 3 shows a histogram of simulation outputs for the v1 estimates, with the best-fitting Gaussian density superimposed.
Fig. 4 shows the corresponding probability plot (data versus model quantiles). Both plots strongly support the conclusion
that the nonlinear regression estimates are normally distributed, consistent with the theory in Theorem 4.1. These data pass
the Anderson–Darling test for normality (p = 0.057). Results for the remaining four parameters are similar (not shown).

6. Discussion

To our knowledge, the nonlinear regression approach developed in this paper is the first available method for estimating
the parameters of anisotropic random fieldswhose Hurst index varieswith the coordinate, in an arbitrary coordinate system
that need not be orthogonal. Since such random fields are often encountered in practical applications (e.g., in ground water
hydrology), the results of this paper can be applicable to those areas. In practical applications to real data, the parameters
A and M should be chosen such that the approximation JD(x) − JD(0) ≈ B(x) that relates (2.1) to (2.2) is sufficiently
accurate. The sample size of the data need not be as large as n = (2M)2, but rather, its FFT needs to span a sufficient range of
frequencies to accurately capture the shape of the Fourier filter ψ(ξ) given by (2.4). The data need not be on a square grid,
or evenly spaced. Theorem 4.1 can be used to determine confidence intervals for the parameter estimates. Of course, in real
data applications, appropriate diagnostics should be employed to test the goodness of fit for model (2.5).
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Fig. 3. Histogram of v1 parameter estimates with the best-fitting Gaussian density function. The true parameter value was v1 = 0.17.

Fig. 4. Probability plot of v1 parameter estimates, comparing data quantiles to model quantiles for the best-fitting Gaussian distribution. Since the plotted
points show no systematic from the reference line (data = model), the fit is deemed adequate.

The methods of this paper can also be extended to a wider range of filters. The filter (2.4) is the Fourier symbol of an
operator stable law with independent components in the eigenvector directions. Relaxing the independence assumption
leads to a larger class of filters, discussed in [3] and applied to groundwater hydrology inMonnig et al. [17], Reeves et al. [19],
and Zhang et al. [23]. The approach in this paper applies to any parametric family of ET -homogeneous filters ψ(ξ), so all of
those applications can be addressed. The explicit computation of those filters was discussed in Clausel and Vedel [8], and it
would be interesting to apply the results of this paper with their filters.
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