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If X(cEt) and cHX(t) have the same finite-dimensional distributions for some pair 
of linear operators E and H, we say that the random vector field X(t) is operator 
self-similar. The exponents E and H are not unique in general, due to symmetry. 
This paper characterizes the possible set of range exponents H for a given domain 
exponent, and conversely, the set of domain exponents E for a given range exponent.
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1. Introduction

A random vector is called full if its distribution is not supported on a lower dimensional hyperplane. 
A random field X = {X(t)}t∈Rm with values in Rn is called proper if X(t) is full for all t �= 0. A linear 
operator P on Rm is called a projection if P 2 = P . Any nontrivial projection P �= I maps Rm onto a 
lower dimensional subspace. We say that a random vector field X is degenerate if there exists a nontrivial 
projection P such that X(t) = X(Pt) for all t ∈ Rm. We say that X is stochastically continuous if X(tn) →
X(t) in probability whenever tn → t. A proper, nondegenerate, and stochastically continuous random vector 
field X is called operator self-similar (o.s.s., or (E, H)-o.s.s.) if

{X(cEt)}t∈Rm � {cHX(t)}t∈Rm for all c > 0. (1.1)
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In (1.1), � indicates equality of finite-dimensional distributions, E ∈ M(m, R) and H ∈ M(n, R), where 
M(p, R) represents the space of real-valued p × p matrices, and cM = exp(M(log c)) =

∑∞
k=0(M log c)k/k!

for a square matrix M . We will assume throughout this paper that the eigenvalues of E and H have (strictly) 
positive real parts. This ensures that cEt and cHx tend to zero as c → 0, and tend to infinity in norm as 
c → ∞ for any t, x �= 0, see Theorem 2.2.4 in Meerschaert and Scheffler [23]. Then it follows from stochastic 
continuity that X(0) = 0 a.s. At the end of Section 2, we will discuss what happens if some eigenvalues 
of H have zero real part.

Operator self-similar random (vector) fields are useful to model long-range dependent, spatial and spatio-
temporal anisotropic data in hydrology, radiology, image processing, painting and texture analysis (see, for 
example, Harba et al. [14], Bonami and Estrade [6], Ponson et al. [25], Roux et al. [27]). For a stochastic 
process (with m = n = 1), the relation (1.1) is called self-similarity (see, for example, Embrechts and 
Maejima [13], Taqqu [29]). Fractional Brownian motion is the canonical example of a univariate self-similar 
process, and there are well-established connections between self-similarity and the long-range dependence 
property of time series (see Samorodnitsky and Taqqu [28], Doukhan et al. [12], Pipiras and Taqqu [24]).

The theory of operator self-similar stochastic processes (namely, m = 1) was developed by Laha and 
Rohatgi [19] and Hudson and Mason [15], see also Chapter 11 in Meerschaert and Scheffler [23]. Operator 
fractional Brownian motion was studied by Didier and Pipiras [9,10] (see also Robinson [26], Kechagias and 
Pipiras [17,18] on the related subject of multivariate long range dependent time series). For scalar fields (with 
n = 1), the analogues of fractional Brownian motion and fractional stable motion were studied in depth by 
Biermé et al. [5], with related work and applications found in Benson et al. [2], Bonami and Estrade [6], 
Biermé and Lacaux [4], Biermé, Benhamou and Richard [3], Clausel and Vedel [7,8], Meerschaert et al. [22], 
and Dogan et al. [11]. Li and Xiao [20] proved important results on operator self-similar random vector 
fields, see Theorem 2.2 below. Baek et al. [1] derived integral representations for Gaussian o.s.s. random 
fields with stationary increments.

Domain exponents E and range exponents H satisfying (1.1) are not unique in general, due to symmetry. 
More specifically, the set of domain or range exponents comprises more than one element if and only if 
the respective set of domain or range symmetries contains a vicinity of the identity. This paper describes 
the set of possible range exponents H for a given domain exponent E, and conversely, the set of possible 
domain exponents E for a given range exponent H. In both cases, the difference between two exponents 
lies in the tangent space of the symmetries. The corresponding result for o.s.s. stochastic processes, the case 
m = 1, was established by Hudson and Mason [15]. In the characterization of the sets of domain or range 
exponents, the key assumption is that of the existence of a range or a domain exponent, respectively. This 
allows us to make use of the framework laid out by Hudson and Mason [15], Li and Xiao [20] as well as 
that of Meerschaert and Scheffler [23], Chapter 5, the latter being more often used for establishing results 
for domain exponents. In addition, we provide a counterexample showing that the existence of one of the 
two exponents is a necessary condition for establishing the relation (1.1).

2. Results

This section contains the main results in the paper. All proofs can be found in Section 3.
The domain and range symmetries of X are defined by

Gdom
1 := {A ∈ M(m,R) : X(At) � X(t)},

Gran
1 := {B ∈ M(n,R) : BX(t) � X(t)}.

(2.1)

For the next proposition, let GL(k, R) be the general linear group on Rk.

Proposition 2.1. Let X = {X(t)}t∈Rm be a proper nondegenerate random field with values in Rn such that 
X(0) = 0 a.s. Then, Gran

1 is a compact subgroup of GL(n, R), and Gdom
1 is a compact subgroup of GL(m, R).
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The definition (1.1) is more general than it appears. Given E ∈ M(m, R), a proper nondegenerate random 
field X will be called E-range operator self-similar if there exist invertible linear operators B(c) ∈ M(n, R)
such that

{X(cEt)}t∈Rm � {B(c)X(t)}t∈Rm for all c > 0. (2.2)

Theorem 2.2. (Li and Xiao [20], Theorem 2.2) For any E-range operator self-similar random vector field X, 
there exists a linear operator H ∈ M(n, R) such that (1.1) holds.

Given H ∈ M(n, R), we say that a proper nondegenerate random vector field X is H-domain operator 
self-similar if there exists an invertible linear operator A(c) ∈ M(m, R) such that

{X(A(c)t)}t∈Rm � {cHX(t)}t∈Rm for all c > 0. (2.3)

Theorem 2.3. For any H-domain operator self-similar random vector field X, there exists a linear operator 
E ∈ M(m, R) such that (1.1) holds.

Remark 2.1. One could also consider a more general scaling relation X(A(c)t) � B(c)X(t), but this need 
not lead to an o.s.s. field even in the case m = n = 1. For example, let b, c0 > 1 be constants such that 
α := log c0/ log b ∈ (0, 1), and let φ(dy) be a discrete Lévy measure defined by φ({bk}) = c−k

0 , k ∈ Z. Now 
define a probability measure ν by means of its characteristic function expψ(θ), where

ψ(θ) =
∫
R

(eiθy − 1)φ(dy) =
∞∑

k=−∞
(eiθb

k − 1)c−k
0 .

Then, ψ(bθ) = c0ψ(θ), and thus νc0 = bν = c
1/α
0 ν (here, bν(dx) := ν(b−1dx), so that if ν is the probability 

measure of a random variable Y , then bν is the probability measure of the random variable bY ). Then, 
ν is a strictly (b, c0) semistable distribution with α = log c0/ log b. If {X(t)}t∈R is a Lévy process such that 
X(1) has distribution ν, it follows that X(c0t) � c

1/α
0 X(t), i.e., X is semi-self-similar (see Maejima and 

Sato [21]). Taking A(c) = c0 and B(c) = c
1/α
0 yields a process with the general scaling, but since the f.d.d. 

equality only holds for c = ck0 , k ∈ N, the process is not o.s.s.

Given an o.s.s. random field X with domain exponent E, the set of all possible range exponents H in 
(1.1) will be denoted by Eran

E (X). Given a range exponent H, we denote by Edom
H (X) the set of all possible 

domain exponents. Given a closed group G ⊆ GL(m, R), one can define its tangent space

T (G) =
{
A ∈ M(n,R) : A = lim

n→∞
Gn − I

dn
, for some {Gn} ⊆ G and some 0 �= dn → 0

}
. (2.4)

The next two theorems are the main results of this paper.

Theorem 2.4. Given an o.s.s. random vector field X with domain exponent E, for any range exponent H
we have

Eran
E (X) = H + T (Gran

1 ). (2.5)

Moreover, we can always choose an exponent H0 ∈ Eran
E (X) such that

H0A = AH0 for every A ∈ Gran
1 . (2.6)
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The nilpotent part of every H ∈ Eran
E (X) is the same, and it commutes with every element of the sym-

metry group Gran
1 . Furthermore, every matrix H ∈ Eran

E (X) has the same real spectrum (real parts of the 
eigenvalues).

Theorem 2.5. Given an o.s.s. random vector field X with range exponent H, for any domain exponent E
we have

Edom
H (X) = E + T (Gdom

1 ). (2.7)

Moreover, we can always choose an exponent E0 ∈ Edom
H (X) such that

E0B = BE0, for all B ∈ Gdom
1 . (2.8)

The nilpotent part of every E ∈ Edom
H (X) is the same, and it commutes with every element of the symmetry 

group Gdom
1 . Furthermore, every matrix E ∈ Edom

H (X) has the same real spectrum.

In the next example, and throughout the paper, O(k) denotes the orthogonal group in GL(k, R).

Example 2.1. Let X = {X(t)}t∈R2 be an R2-valued operator fractional Brownian field (OFBF), namely, 
a zero mean Gaussian, o.s.s., stationary increment random field with covariance function EX(s)X(t)∗ =
Γ(s, t), s, t ∈ R2. From the Gaussian assumption,

Gdom
1 = {A ∈ M(2,R) : Γ(As,At) = Γ(s, t), s, t ∈ R2},

Gran
1 = {B ∈ M(2,R) : BΓ(s, t)B∗ = Γ(s, t), s, t ∈ R2}.

In addition, assume that X has a spectral density fX(x) = ‖x‖−γI, x ∈ R2\{0}, 2 < γ < 4, where ‖ · ‖
denotes the Euclidean norm and I is the identity matrix. This means that its covariance function can be 
written as

Γ(s, t) = I

∫
R2

(ei〈s,x〉 − 1)(e−i〈t,x〉 − 1) 1
‖x‖γ dx, (2.9)

where 〈·, ·〉 is the Euclidean inner product. By (2.9) and a change of variables, X is (E, H)-o.s.s. with E = I, 
H = hI, where h = (γ − 2)/2. It is clear that H and E are commuting exponents (see (2.6) and (2.8)). 
Since Γ(s, t) is a scalar matrix for s, t ∈ R2, then the condition

AΓ(s, t)A∗ = Γ(s, t) (2.10)

for A ∈ GL(2, R) implies that AA∗ = I, namely, A ∈ O(2). Moreover, any A ∈ O(2) satisfies (2.10). Hence, 
Gran

1 = O(2). Now note that, by a change of variables in (2.9) and the continuity of the spectral density 
except at zero, A ∈ Gdom

1 ⇔ ‖A∗x‖ = ‖x‖, x ∈ Rm\{0}, i.e., A ∈ O(2). As a consequence, Gdom
1 = O(2). 

Therefore, from (2.5) and (2.7),

Eran
I (X) = hI + so(2), Edom

hI (X) = I + so(2),

where so(2) = T (O(2)) ⊆ M(2, R) is the space of 2 × 2 skew-symmetric matrices.
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Corollary 2.6. Given an o.s.s. random vector field X:

(a) If E1, E2 are two domain exponents for X, then for any H1 ∈ Eran
E1

(X) and H2 ∈ Eran
E2

(X) we have

Eran
E1

(X) −H1 = Eran
E2

(X) −H2. (2.11)

(b) If H1, H2 are two range exponents for X, then for any E1 ∈ Edom
H1

(X) and E2 ∈ Edom
H2

(X) we have

Edom
H1

(X) −E1 = Edom
H2

(X) −E2. (2.12)

Hudson and Mason [15] also considered o.s.s. stochastic processes for which the eigenvalues of the range 
exponent H can have zero real parts. In this case, the process can be decomposed into two component 
processes of lower dimension. One is associated with the eigenvalues of H with null real parts, and the 
resulting random field has constant sample paths; the other has a range exponent whose eigenvalues all 
have positive real parts, and equals zero at t = 0 a.s. Next we show that the same is true for random fields. 
Hence the condition assumed throughout the rest of this paper, that every eigenvalue of H has positive real 
part, entails no significant loss of generality.

Theorem 2.7. Let X be a proper, stochastically continuous random vector field that satisfies the scaling 
relation (1.1) for some E whose eigenvalues all have positive real part. Then, there exists a direct sum 
decomposition Rn = V1 ⊕V2 into H-invariant subspaces such that, writing X = X1 +X2 and H = H1 ⊕H2
with respect to this decomposition:

(i) X1 has constant sample paths; and
(ii) X2 is (E, H2)-o.s.s. with X2(0) = 0 a.s.

3. Proofs

Lemmas 3.1–3.9, to be stated and proved next, will be used in the proofs of Proposition 2.1 and The-
orem 2.3. Define the operator norm ‖A‖ = sup{‖Aw‖ : ‖w‖ = 1} for any A ∈ M(m, R). Hereinafter the 

symbol X d= Y denotes the equality in distribution of two random vectors or variables X and Y .

Lemma 3.1. Let {Ak}k∈N ⊆ GL(m, R) such that ‖Ak‖ → ∞. Then, there exists a sequence {wk} ⊆ Sm−1
R :=

{w ∈ Rm : ‖w‖ = 1} such that A−1
k wk → 0.

Proof. By compactness and continuity, there exists a sequence {vk}k∈N ∈ Sm−1
R such that ‖Akvk‖ → ∞. 

Now let Akvk
‖Akvk‖ ∈ Sm−1

R . Then,

‖A−1
k wk‖ = 1

‖Akvk‖
→ 0, k → ∞,

which establishes the claim. �
Proof of Proposition 2.1. Since X is proper and nondegenerate, it is easy to check that Gdom

1 and Gran
1 are 

groups. Hence we need only establish their topological properties. We first look at Gran
1 . To show closedness 

(in the relative topology of GL(n, R), cf. Lemma 3.8), let Gran
1 
 Ak → A ∈ GL(n, R). Then,

(X(t1), . . . , X(tj))
d= (AkX(t1), . . . , AkX(tj))

P→ (AX(t1), . . . , AX(tj)), k → ∞,
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i.e., A ∈ Gran
1 . As for boundedness, by contradiction assume that there exists some {Ak}k∈N ⊆ Gran

1 such 

that ‖Ak‖ → ∞. Then, X(t0) 
d= A−1

k X(t0), t0 �= 0. Since we also have ‖A∗
k‖ → ∞, then by the auxiliary 

Lemma 3.1 there is a convergent subsequence {wk′} ⊆ Sn−1
R , wk′ → w0, such that (A∗

k′)−1wk′ → 0, k′ → ∞. 
Consequently,

w∗
0X(t0) ← w∗

k′X(t0)
d= w∗

k′A−1
k′ X(t0)

P→ 0.

This contradicts the properness of X(t0).
We now turn to Gdom

1 . To show closedness, take {Ak}k∈N ⊆ Gdom
1 such that Ak → A ∈ M(m, R). 

Consider any j-tuple t1, . . . , tj ∈ Rm. Then,

(X(t1), . . . , X(tj))
d= (X(Akt1), . . . , X(Aktj))

P→ (X(At1), . . . , X(Atj)),

where convergence follows from stochastic continuity. Then, A ∈ Gdom
1 . Since X is nondegenerate, then 

A ∈ GL(m, R). Thus, Gdom
1 is closed in the latter group.

To show boundedness, by contradiction suppose that there exists {Ak}k∈N ⊆ Gdom
1 such that ‖Ak‖ → ∞. 

By Lemma 3.1, there is a subsequence {wk′} ⊆ Sm−1
R , wk′ → w0, such that A−1

k wk′ → 0. Therefore, since 
X(0) = 0 a.s.,

0 = X(0) P← X(A−1
k′ wk′) d= X(wk′) P→ X(w0).

This contradicts the properness of X(w0). �
The next lemmas show that an H-domain o.s.s. random vector field X must satisfy a domain scaling 

law. For any λ > 0 and any Cλ ∈ GL(m, R) such that

X(C−1
λ t) � λHX(t), (3.1)

let Gλ denote the class of matrices defined by

Gλ = CλG
dom
1 �= ∅. (3.2)

Note that, since X is domain o.s.s., the set Gλ is not empty. Also, note that Gdom
1 = G1.

Lemma 3.2. A matrix D ∈ GL(m, R) satisfies

X(D−1t) � λHX(t) (3.3)

if and only if

D ∈ Gλ. (3.4)

Proof. Assume (3.3) holds. Then, X(D−1Cλt) � λHX(Cλt) � X(C−1
λ Cλt) = X(t) by (3.1). Therefore, 

C−1
λ D ∈ Gdom

1 , whence D ∈ CλG
dom
1 = Gλ. Conversely, assume (3.4) holds. Then, there exists S ∈ Gdom

1
such that D = CλS, and so X(D−1t) � X(S−1C−1

λ t) � X(C−1
λ t) � λHX(t). �

Lemma 3.3. For any matrix C ∈ Gλ we can write

Gλ = CGdom
1 . (3.5)

Moreover, for any choice of Cλ, Dλ ∈ GL(m, R) satisfying condition (3.1), Gλ = CλG
dom
1 = DλG

dom
1 .
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Proof. Let C ∈ Gλ. If D = CS for some S ∈ Gdom
1 , then by Lemma 3.2,

X(D−1t) � X(S−1C−1t) � X(C−1t) � λHX(t).

Thus, again by Lemma 3.2, D ∈ Gλ. This shows that CGdom
1 ⊂ Gλ.

Conversely, if D ∈ Gλ, then for any C ∈ Gλ we have X(D−1t) � λHX(t) � X(C−1t), by Lemma 3.2, 
which implies that X(C−1Dt) � X(D−1Dt) = X(t). Thus, C−1D ∈ Gdom

1 . Therefore, D ∈ CGdom
1 , proving 

Gλ ⊂ CGdom
1 and establishing (3.5).

Now let Cλ, Dλ ∈ GL(m, R) be two matrices satisfying (3.1). Lemma 3.2 implies that Cλ, Dλ ∈ Gλ. 
Thus, (3.5) implies that Gλ = CλG

dom
1 = DλG

dom
1 . �

Lemma 3.4. For any λ, μ > 0, if Gλ ∩Gμ �= ∅, then Gλ = Gμ.

Proof. Assume there exists A ∈ GL(m, R) such that A ∈ Gλ ∩Gμ = CλG
dom
1 ∩CμG

dom
1 for some Cλ, Cμ ∈

GL(m, R). Therefore, there exist Sλ, Sμ ∈ Gdom
1 such that A = CλSλ = CμSμ. Thus, Cμ = Cλ(SλS

−1
μ ). 

Consequently, for all Aμ ∈ Gμ, there exists SAμ
∈ Gdom

1 such that

Aμ = CμSAμ
= Cλ(SλS

−1
μ SAμ

),

where SλS
−1
μ SAμ

∈ Gdom
1 . Then Aμ ∈ Gλ, which shows that Gμ ⊆ Gλ. The same argument can be used for 

the converse. �
Lemma 3.5. For matrix classes Gλ, Gμ, λ, μ > 0, as in (3.2), define the product relation

GλGμ = {A ∈ M(m,R) : A = CλSλCμSμ, for some Sλ, Sμ ∈ Gdom
1 }, λ, μ > 0. (3.6)

Then, under (3.6), the set

G :=
⋃
λ>0

Gλ (3.7)

is a group of equivalence classes G• of matrices in GL(m, R).

Proof. Let C ∈ Gλ and λ > 0. Since X is nondegenerate, there exist Cλ and SC ∈ Gdom
1 such that

X(t) = X(C−1Ct) = X(S−1
C C−1

λ Ct) � X(C−1
λ Ct) � λHX(Ct).

Thus, C−1 ∈ G1/λ, which implies that G−1
λ ⊆ G1/λ. By taking σ = 1/λ, this in turn implies that 

G1/σ ⊆ G−1
σ , and therefore G1/λ ⊆ G−1

λ . As a consequence,

G−1
λ = G1/λ ∈ G. (3.8)

Now take C ∈ Gλ, D ∈ Gμ. Then

X(D−1C−1t) � μHX(C−1t) � μHλHX(t) = (μλ)HX(t).

Thus, CD ∈ Gμλ and, consequently, GλGμ ⊆ Gλμ. By taking r = 1/λ, s = λμ, we also obtain that 
G1/rGrs ⊆ Gs. Expression (3.8) then implies that G−1

r Grs ⊆ Gs. Thus, Grs ⊆ GrGs. Therefore,

GμGλ = Gμλ ∈ G. (3.9)

Consequently, G is a group, as claimed. �
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Lemma 3.6. For λ �= μ, Gλ ∩Gμ = ∅.

Proof. We argue by contradiction. By Lemma 3.4, if Gλ∩Gμ �= ∅, then Gλ = Gμ. Without loss of generality, 
assume that λ < μ. By (3.9), for any t > 0, Gtμ = GtGμ = GtGλ = Gtλ. By taking t = 1/μ, we obtain 
Gλ/μ = G1. Thus, for any t > 0, Gtλ/μ = Gt. By taking t = λk/μk, we obtain a system of equalities leading 
to the conclusion that Gλk/μk = G1, k ∈ N. Thus,

X(t) = X(It) �
(λk

μk

)H

X(t).

Since every eigenvalue of H has positive real part, a straightforward computation using the Jordan de-
composition of H shows that cHx → 0 as c → 0 for any x ∈ Rn, see Theorem 2.2.4 in Meerschaert and 
Scheffler [23]. It follows that 

∥∥(λk/μk)HX(t)
∥∥ P→ 0, k → ∞. We arrive at a contradiction because X is 

proper. �
Lemma 3.7. The mapping ζ : G → R+ defined by ζ(C) = λ when C ∈ Gλ is a group homomorphism.

Proof. Lemma 3.6 shows that ζ is well-defined. Suppose that C ∈ Gλ, D ∈ Gμ. Then Lemma 3.5 shows 
that CD ∈ Gλμ, and ζ(CD) = ζ(C)ζ(D). �

Given a topological space Z, the subspace (or relative) topology on a subset U ⊆ Z consists of all sets 
O ∩U where O is an open subset of Z. For example, if Z = R and U = [0, ∞), then [0, 1) is an open subset 
of U in this topology. For another example, the set U = {λI : λ > 0} is not a closed subset of M(m, R). 
However, by considering sequences of matrices in U , it can be seen that the latter is a closed subset of 
Z = GL(m, R) in the relative topology, thus implying that Z \ U is an open subset of Z.

Lemma 3.8. The group G in (3.7) is a closed subgroup of GL(m, R) in the relative topology, and ζ is a 
continuous function.

Proof. Suppose that {Dk}k∈N ⊆ G and that Dk → D in GL(m, R) as k → ∞. Then, for all k, Dk ∈ Gλk

for some λk > 0. We first need to show that D ∈ G.
If for some subsequence {λk′}, λk′ → ∞ as k′ → ∞, then λ−H

k′ → 0 by Theorem 2.2.4 in Meerschaert and 
Scheffler [23], since every eigenvalue of H has positive real part. Moreover, for t �= 0, stochastic continuity 

yields X(D−1
k′ t) d→ X(D−1t) as k′ → ∞. Therefore, in view of (3.1) we have X(t) d= λ−H

k′ X(D−1
k′ t) P→ 0, 

which contradicts properness. Therefore, {λk} is relatively compact and there is a convergent subsequence 

such that λk′ → λ0 as k′ → ∞. If λ0 = 0, then for any t0 �= 0 we have X(D−1t0) 
P← X(D−1

k′ t0) 
d=

λH
k′X(t0) 

P→ 0, which again contradicts properness. Therefore, λ0 > 0 and

X(D−1t) P← X(D−1
k′ t) d= λH

k′X(t) P→ λH
0 X(t).

Thus, D ∈ Gλ0 , and by Lemma 3.5, G is a closed subgroup of GL(m, R) in the relative topology, as stated.
Let us turn back to the original sequence {λk}k∈N of scalars associated with {Dk}k∈N. We claim that 

there does not exist a convergent subsequence {λk∗} ⊆ {λk} such that λk∗ → μ �= λ0. Otherwise, D ∈
Gλ0 ∩ Gμ = ∅ by Lemma 3.6, which is a contradiction. As a consequence, for any subsequence {λk′}, 
by relative compactness there exists a further subsequence {λk′′} ⊆ {λk′} such that λk′′ → λ0. This is 
equivalent to saying that ζ(Dk) = λk → λ0 = ζ(D) as k → ∞, i.e., the mapping ζ is continuous. �
Lemma 3.9. Gdom

1 is not a neighborhood of I in G.
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Proof. We need to build a sequence of matrices Dk in G\Gdom
1 such that Dk → I as k → ∞. So, let 

rk = 1 + 1
k , k ∈ N. Since Gr �= ∅, we can choose Ck ∈ Grk such that

X(C−1
k t) � rHk X(t), k ∈ N.

Assume by contradiction that {C−1
k } is not relatively compact in the relative topology of GL(m, R). This 

means that 
∥∥C−1

k

∥∥ → ∞, because by Lemma 3.8, G is a closed subgroup of GL(m, R) in the same topology. 
So, by Lemma 3.1, there exists a sequence {tk′} ⊆ Sm−1

R such that Ck′tk′ → 0 and tk′ → t0 �= 0. By (3.8), 
stochastic continuity and the assumption that X(0) = 0 a.s.,

0 = X(0) d← X(Ck′tk′) d= (r−1
k′ )HX(tk′) d→ X(t0), k′ → ∞.

This contradicts the properness of X(t0).
As a consequence, there is a subsequence {C−1

k′ } such that C−1
k′ → C−1, where C ∈ G by Lemma 3.8. 

Stochastic continuity then yields

X(t) d← rHk′X(t) d= X(C−1
k′ t) P→ X(C−1t).

This implies that C ∈ Gdom
1 . Define Dk′ = C−1

k′ C. Then, Dk′ → I and Dk′ ∈ Gr−1
k′

. By Lemma 3.6, 
Dk′ /∈ Gdom

1 , k′ ∈ N, which concludes the proof. �
Proof of Theorem 2.3. Although our result complements that of Li and Xiao [20], it builds upon domain-
based (as opposed to range-based) concepts, and thus is closer in spirit to Meerschaert and Scheffler [23], 
Chapter 5. By Lemma 3.8, G(
 I) is a subgroup of GL(m, R) which is closed in the relative topology of the 
latter. Then, the image of T (G) under the exponential map exp(·) (as defined by the matrix exponential) 
is a neighborhood of I in G (e.g., see Meerschaert and Scheffler [23], Proposition 2.2.10.d). By Lemma 3.9, 
Gdom

1 is not a neighborhood of I in G; therefore, there exists A ∈ T (G) such that eA /∈ Gdom
1 . Recall the 

function ζ from Lemma 3.7 and define the mapping R 
 s �→ f(s) := log ζ(esA). Then, by Lemma 3.7,

f(s + r) = log ζ(e(s+r)A) = log ζ(esAerA) = log ζ(esA) + log ζ(erA) = f(s) + f(r),

for s, r ∈ R. Therefore, f is a continuous additive homomorphism. Thus, there exists β ∈ R such that 
f(s) = βs (e.g., see Hudson and Mason [15], p. 288). Moreover, if β = 0, then e1A = eA ∈ Gdom

1 , which is 
a contradiction. Thus, β �= 0, and we can take E := β−1A to obtain log ζ(rE) = log r for r > 0. Therefore, 
rE ∈ Gr for r > 0. By Lemma 3.2, (1.1) holds. �
Proof of Theorem 2.4. Let

Gran
λ = {Aλ ∈ GL(n,R) : X(λEt) � AλX(t)}, λ > 0,

Gran =
⋃
λ>0

Gran
λ .

Since X is E-range o.s.s., Gran
λ �= ∅, λ > 0.

By the proof of Theorem 2.1 in Li and Xiao [20], p. 1190, Gran is a subgroup of GL(n, R) which is closed 
in the relative topology. Moreover, by Lemmas 3.3 and 3.5 in Li and Xiao [20],

ξ : Gran → R, ξ(A) = log(s) if A ∈ Gran
s , (3.10)

is a well-defined, continuous homomorphism.
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Now define the continuous group mapping L : T (Gran) → R by the relation

L(Q) = log(ξ(exp(Q))), Q ∈ T (Gran).

In view of (3.10), the mapping L is well-defined, since exp(Q) ∈ Gran for Q ∈ T (Gran), see for example 
Meerschaert and Scheffler [23], Proposition 2.2.10.c. By the same argument as on p. 137 of Meerschaert and 
Scheffler [23], the mapping L is linear; moreover, L characterizes the tangent space of the symmetry group 
Gran

1 as T (Gran
1 ) = {Q ∈ T (Gran) : L(Q) = 0}. We would like to show that

Eran
E (X) = {Q ∈ T (Gran) : L(Q) = 1}. (3.11)

For any H ∈ Eran
E (X), X(λEt) � λHX(t), λ > 0. Therefore, λH ∈ Gran

λ ⊆ Gran, and from the definition (2.4), 
H ∈ T (Gran). Consequently, ξ(eH log λ) = ξ(λH) = λ, implying that L(H) = log ξ(λH)

∣∣∣
λ=e

= 1. Now pick 

H ∈ T (Gran) such that L(H) = 1. Then, Hs ∈ T (Gran), s ∈ R, whence exp(Hs) ∈ Gran. Since (3.10)
is a continuous homomorphism, the mapping s �→ ξ(exp(Hs)) is a continuous additive homomorphism. 
Therefore, there is some β ∈ R such that log ξ(eHs) = βs. Since log ξ(eH) = 1, then β = 1. Therefore, 
log ξ(exp(H log λ)) = log λ, whence λH ∈ Gran

λ , λ > 0. In other words, H ∈ Eran
H (X). This proves (3.11).

By the linearity of L, for any H such that L(H) = 1, L(Q) = L(H) + L(Q −H), where L(Q −H) = 0. 
This yields

{Q ∈ T (Gran) : L(Q) = 1} = H + {Q ∈ T (Gran) : L(Q) = 0},

which establishes the relation (2.5).
To prove the existence of a commuting exponent, let A ∈ Gran

1 , H ∈ Eran
E (X). A simple computation 

shows that λAHA−1 = AλHA−1, and since A−1X(t) � X(t), it follows that λAHA−1
X(t) = AλHX(t) �

AX(λEt) � X(λEt) � λHX(t). Then,

AHA−1 ∈ Eran
E (X). (3.12)

Let

H0 =
∫

A∈Gran
1

AHA−1H(dA),

where H is the Haar measure on the compact group Gran
1 , so that H(S dA) = H(dA) for any S ∈ Gran

1 . By the 
established relation (2.5), Eran

E (X) is closed and convex. So, from (3.12), we conclude that H0 ∈ Eran
E (X). 

Moreover, it is easy to check (compare Meerschaert and Scheffler [23], p. 138) that AH0A
−1 = H0 for 

A ∈ Gran
1 , whence (2.6) follows. The last statement is akin to Theorem 5.2.14, Meerschaert and Scheffler [23], 

and can be proved in the same way. �
Proof of Theorem 2.5. The proof is similar to Meerschaert and Scheffler [23], pp. 137–138. We outline the 
main steps, and point out some minor differences.

Recall the definitions of G and Gλ in expressions (3.7) and (3.2), respectively, and the mapping ζ(·) from 
Lemma 3.15. As in the proof of Theorem 2.4, define the continuous group mapping L : T (G) → R by the 
relation

L(B) = log(ζ(exp(−B))), B ∈ T (G).

By the same argument as on p. 137 of Meerschaert and Scheffler [23], the mapping L is linear; moreover, 
L characterizes the tangent space of the symmetry group Gdom

1 in the sense that T (Gdom
1 ) = {B ∈ T (G) :



1460 G. Didier et al. / J. Math. Anal. Appl. 448 (2017) 1450–1466
L(B) = 0}. We need to characterize the set of all exponents in terms of the function L(·), namely, we will 
show that

Edom
H (X) = {B ∈ T (G) : L(B) = 1}. (3.13)

The argument resembles that for establishing (3.11), but we lay it out for the reader’s convenience. For 
any B ∈ Edom

H (X), X(λBt) � λHX(t), λ > 0. Therefore, λ−B ∈ Gλ ⊆ G. Consequently, ζ(e−B log(λ)) =
ζ(λ−B) = λ, implying that L(B) = log(ζ(λ−B))

∣∣∣
λ=e

= 1. Now pick B ∈ T (G) such that L(B) = 1. 
Then, −Bs ∈ T (G), s ∈ R, whence exp(−Bs) ∈ G, and ζ(exp(−Bs)) is well defined. As in the proof of 
Theorem 2.3, Lemmas 3.7 and 3.8 imply that the mapping s �→ log(ζ(exp(−Bs))) is a continuous additive 
homomorphism; therefore, there exists β ∈ R such that log(ζ(e−Bs)) = βs. Since log(ζ(e−B)) = 1, then 
β = 1. Therefore, log(ζ(exp(−B log(λ)))) = log(λ), whence λ−B ∈ Gλ, λ > 0. In other words, B ∈ Edom

H (X). 
This proves (3.13).

By the linearity of L, for any E such that L(E) = 1, L(B) = L(E) + L(B − E), where L(B − E) = 0. 
This yields

{B ∈ T (G) : L(B) = 1} = E + {B ∈ T (G) : L(B) = 0},

which establishes the relation (2.7).
We now prove the existence of a commuting exponent. Notice that for any A ∈ Gdom

1 , B ∈ Edom
H (X), 

X(λABA−1
t) � X(λBt) � λHX(t), λ > 0, so that

ABA−1 ∈ Edom
H (X). (3.14)

Let

B0 =
∫

A∈Gdom
1

ABA−1H(dA),

where H is the Haar measure on the compact group Gdom
1 . By the relation (2.7), Edom

H (X) is closed and 
convex. So, from (3.14), we conclude that B0 ∈ Edom

H (X). Moreover, the same argument as in Meerschaert 
and Scheffler [23], p. 138, yields AB0A

−1 = B0, from which (2.8) follows.
The last statement is akin to Theorem 5.2.14, Meerschaert and Scheffler [23], p. 139, and can be proved 

in the same way. �
Proof of Corollary 2.6. Equation (2.11) follows easily from (2.5), and equation (2.12) is a direct result 
of (2.7). �

Finally we come to the proof of Theorem 2.7, where we relax the assumption that every eigenvalue 
of H has positive real part. For this purpose, in the sequel we will state and prove Proposition 3.10 and 
Lemmas 3.11–3.15.

Proposition 3.10. Suppose X is a proper, stochastically continuous random vector field that satisfies the 
scaling relation (1.1). Then:

(i) There is no pair of eigenvalues e and h for E and H, respectively, whose real parts have opposite signs;
(ii) If every eigenvalue of H has positive real part, then every eigenvalue of E has positive real part;
(iii) If X(0) = 0 a.s., and if every eigenvalue of E has positive real part, then every eigenvalue of H has 

positive real part.
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Proof. (i) Without loss of generality, assume by contradiction that there are eigenvalue e and h of E and H, 
respectively, such that �(e) > 0 and �(h) < 0; otherwise, we can pick the pair of exponents (−E, −H), 
instead. Let {ck}k∈N be a sequence of positive numbers such that ck → ∞. Then, ‖cEk ‖ → ∞, since the 
eigenvalue cek of cEk goes to infinity in C. By Lemma 3.1, there is a subsequence {tk′} ⊆ Sm−1

R such that 
c−E
k′ tk′ → 0. Choose a further subsequence {tk′′} such that tk′′ → t0, for some t0 ∈ Sm−1

R . For notational 
simplicity, we drop the superscript and write k. By operator self-similarity, cHk X(c−E

k tk) 
d= X(tk). The 

Jordan form H = PJHP−1 yields

cJH

k P−1X(c−E
k tk)

d= P−1X(tk).

Let Y (c−E
k tk) = P−1X(c−E

k tk) ∈ Cn. There is a j×j Jordan block Jh in JH associated with the eigenvalue h; 
for simplicity, we can assume that Jh occupies the upper left j × j block in JH . Let π≤j be the projection 
operator onto the first j entries of a vector in Cn. By the continuity in probability of the random field X, 
Y (c−E

k tk) 
P→ P−1X(0), k → ∞. Since �(h) < 0,

0 P← π≤j [cJH

k Y (c−E
k tk)]

d= π≤j [P−1X(tk)]
P→ π≤j [P−1X(t0)],

which contradicts the properness of X(t0).
(ii) Suppose that e = ib is an eigenvalue of E with zero real part. The Jordan form of the matrix 

exponential cE = PcJEP−1, P ∈ GL(n, C), reveals that cE cannot converge to 0 as c → 0+, since its 
eigenvalue ce = cib remains bounded from below (and above). Therefore, there exist c0, m > 0 and t0 �= 0
such that ‖cEt0‖ > m for all 0 < c < c0. Since {cEt0 : 0 < c < c0} is relatively compact, there exists 
a sequence ck → 0 such that cEk t0 → t1 �= 0, and then X(cEk t0) → X(t1) in distribution, where X(t1) is 
full. If every eigenvalue of H has positive real part, then ‖cH‖ → 0 as c → 0, and hence cHX(t0) → 0 in 
probability, which is a contradiction.

(iii) If every eigenvalue of E has positive real part, then ‖cE‖ → 0 as c → 0, and hence X(cEt) → 0
in probability as c → 0 for any t ∈ Rm. Suppose that h = ia is an eigenvalue of H with zero real part, 
and hence also an eigenvalue of the transpose H∗, the linear operator such that the inner product relation 
〈Hx, y〉 = 〈x, H∗y〉 holds for all x, y ∈ Rn. As in (ii), it follows that there exists a vector x0 and a sequence 
ck → 0 such that cH∗

k x0 → x1 �= 0. Then 〈x0, cHk X(t)〉 = 〈cH∗

k x0, X(t)〉 → 〈x1, X(t)〉 in distribution, and 
since X(t) is full, we arrive at a contradiction. �

For the next lemma, recall that O(n) denotes the orthogonal group in GL(n, R).

Lemma 3.11. Let H ∈ M(n, R) be a diagonalizable matrix (over C) whose eigenvalues have zero real parts. 
Then, there exists a Gaussian random vector X such that

rHX
d= X, r > 0. (3.15)

Proof. The proof is by construction. By the Jordan decomposition of H over the field R (see Meerchaert 
and Scheffler [23], Theorem 2.1.16), there exists a conjugacy P ∈ GL(n, R) such that H = PJH,RP

−1, where 
JH,R = diag(J1, . . . , Jq). Each block Jj , j = 1, . . . , q, is either the scalar zero or has the form

Jj =
(

0 −θj
θj 0

)
.
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Therefore, exp{c diag(J1, . . . , Jq)} ∈ O(n) for any c ∈ R. In particular, this holds for c = 1. Now let X = PZ, 
where Z ∼ N(0, I). Then, (3.15) holds, since

OZ
d= Z for any O ∈ O(n). � (3.16)

Remark 3.1. In Lemma 3.11, the Gaussian distribution is not essential. The argument holds with any random 
vector Z displaying a spherical distribution, namely, one that satisfies (3.16). For example, for n = 2, Z can 
have density fZ(z) = C(1 + ‖z‖β)−1 for a normalizing constant C > 0 and some β > 2, where ‖ · ‖ denotes 
the Euclidean norm.

Lemma 3.12. Assume that X is a proper, stochastically continuous, random vector field that satisfies the scal-
ing relation (1.1) for some E whose eigenvalues all have positive real part. Let f be the minimal polynomial 
of H, and write

f = f1f2, (3.17)

where the roots of f1 have zero real part, and the roots of f2 have positive real part. Write the direct sum 
decomposition Rn = V1⊕V2 where V1 = Ker f1(H), V2 = Ker f2(H). Write X = X1 +X2 and H = H1⊕H2
with respect to this direct sum decomposition. Then, X2 is a proper (E, H2)-o.s.s. random field on V2.

Proof. Let π2 : Rn → V2 denote the projection operator defined by π2(v) = v2, where v = v1 + v2, for some 
unique v1 ∈ V1 and v2 ∈ V2 by the direct sum decomposition. Then Hv = Hv1 +Hv2 = H1v +H2v. Hence 
π2(Hv) = Hv2 = H2v, which leads to the commutativity relation π2c

H = cH2π2. This in turn implies that

{π2X(cEt)}t∈Rm � {cH2π2X(t)}t∈Rm .

Therefore, X2 = π2X is a proper, stochastically continuous (E, H2)-o.s.s. random field on V2. �
The next lemma uses non-Euclidean polar coordinates as in Jurek and Mason [16], Proposition 3.4.3, 

see also Meerschaert and Scheffler [23] and Biermé et al. [5]. Suppose the real parts of the eigenvalues of 
E ∈ M(m, R) are positive. Then, there exists a norm ‖ · ‖0 on Rm for which

Ψ : (0,∞) × S0 → Rm\{0}, Ψ(r, θ) := rEθ, (3.18)

is a homeomorphism, where S0 = {x ∈ Rm : ‖x‖0 = 1}. One can then uniquely write the polar coordinates 
representation

Rm\{0} 
 x = τE(x)ElE(x), (3.19)

where τE(x) > 0, lE(x) ∈ S0 are called the radial and directional parts, respectively. One such norm ‖ · ‖0
may be calculated explicitly by means of the expression

‖x‖0 =
1∫

0

∥∥tEx∥∥∗ dt

t
, (3.20)

where ‖ · ‖∗ is any norm in Rm. The uniqueness of the representation (3.19) yields

τE(cEx) = cτE(x), lE(cEx) = lE(x). (3.21)
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Lemma 3.13. Suppose that every eigenvalue of E has positive real part. Then the following are equivalent:

(i) H ∈ Eran
E (X) for some E-range operator self-similar random field X;

(ii) every eigenvalue of H has nonnegative real part, and every eigenvalue with null real part is a simple 
root of the minimal polynomial of H.

Proof. The proof is a direct extension of the argument in Hudson and Mason [15], Theorem 3. First we 
show that (i) implies (ii). Since we assume that every eigenvalue of E has positive real part, then by 
Proposition 3.10, (i), it follows that every eigenvalue of H has nonnegative real part. Then we just need 
to show that every eigenvalue of H having null real part is a simple root of the minimal polynomial of H. 
For m = 1, our proof is mathematically equivalent to Theorem 3 in Hudson and Mason [15], although we 
substantially simplify the technical phrasing of the argument.

Suppose by contradiction that some eigenvalue h = ib of H is not a simple root of the minimal polynomial 
of H = PJHP−1. Then, in the Jordan decomposition of H there is a non-diagonal j × j Jordan block JH,h

associated with h. We can assume that JH,h corresponds to the upper left j × j block. Let {tk}k∈N ⊆ Rm

be a sequence such that tk → 0. Consider the polar decomposition tk = τE(tk)ElE(tk). By the compactness 
of S0, we can assume, without loss of generality, that lE(tk) → l0 ∈ S0 as k → ∞. By operator self-similarity, 
(τE(tk)−1)HX(tk) 

d= X(lE(tk)). Therefore,

(τE(tk)−1)JHP−1X(tk)
d= P−1X(lE(tk)).

Let Y (tk) = P−1X(tk) ∈ Cn, Y (lE(tk)) = P−1X(lE(tk)) ∈ Cn, and let π≤j be the projection operator on 
the first j entries of a vector in Cn. Then,

π≤j [(τE(tk)−1)JHY (tk)]
d= π≤j [Y (lE(tk))], (3.22)

where, by continuity in probability, π≤j[Y (lE(tk))] 
P→ π≤j [Y (l0)] as k → ∞. Moreover, by the expression 

for the matrix exponential (see, for instance, Didier and Pipiras [9], p. 31, expression (D2)),

π≤j [(τE(tk)−1)JHY (tk)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
log τE(tk)−1 1 0 . . . 0
log2 τE(tk)−1

2! log τE(tk)−1 1 . . . 0
...

. . . . . . . . . 0
logj−1 τE(tk)−1

(j−1)!
logj−2 τE(tk)−1

(j−2)! . . . log τE(tk)−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Y1(tk)
Y2(tk)

...
Yj−1(tk)

⎞
⎟⎟⎟⎟⎠ .

Looking at the first two entries of (3.22), we arrive at the system

(
Y1(tk)

− log τE(tk) Y1(tk) + Y2(tk)

)
d=
(
Y1(lE(tk))
Y2(lE(tk))

)
. (3.23)

Since the term − log τE(tk) → ∞ as k → ∞ and Y (lE(tk)) 
P→ Y (l0), we have Y1(tk) 

P→ 0. In view of the 
first entry of the relation (3.23), this contradicts the properness of Y (l0).

The proof that (ii) implies (i) is by construction. Write the direct sum decomposition Rn = V1 ⊕ V2
as in Lemma 3.12. Write H = H1 ⊕ H2 with respect to this direct sum decomposition, so that H1 is 
semisimple (diagonalizable over C). Since every eigenvalue of H1 has zero real part, the closure of the family 
{rH1 : r > 0} in the operator topology is a compact group of linear operators on V1.
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Now let X1, X2 be two independent random vectors which are full and take values in V1 and V2, respec-
tively. By Lemma 3.11, we can further assume that the distribution of X1 is invariant under the group

{rH1 : r > 0}. (3.24)

Since the eigenvalues of E have positive real parts, we can define the random field X = {X(t)}t∈Rm by

X(t) = X(τE(t)ElE(t)) := τE(t)H(X1 + X2), t ∈ Rm\{0}, X(1) = X1.

In particular, X(θ) = X1 + X2, θ ∈ S0, and

X(t) = τE(t)H1X1 + τE(t)H2X2
d= X1 + τE(t)H2X2, t �= 0, (3.25)

where the second equality in law follows from the invariance of the distribution of X1 under the group (3.24)
and the independence between X1 and X2. The random field X is proper, satisfies the scaling relation 
X(cEt) � cHX(t), c > 0, and is continuous in probability at every t ∈ Rm\{0}. Now take a sequence 
{tk}k∈N ⊆ Rm\{0}, tk → 0, k ∈ N. Then, by (3.25) at tk and the fact that the eigenvalues of H2 have 

positive real parts, X(tk) 
d→ X1 as k → ∞, i.e., X is continuous in law at every t ∈ Rm. �

Lemma 3.14. Assume that X is a proper, stochastically continuous random vector field that satisfies the 
scaling relation (1.1) for some E whose eigenvalues all have positive real part. Then, every eigenvalue of H
has real part equal to zero if and only if X(0) is full.

Proof. Assume that the distribution of X(0) is full, and suppose by contradiction that some eigenvalue 
of H, and thus of H∗, has real part different from zero. Then, by Lemma 3.13–(ii), such an eigenvalue has 
positive real part. As a consequence, there is v ∈ Rn\{0} such that limc→0+ cH

∗
v = 0. Therefore, for t �= 0, 

and by the assumption that min�(eig(E)) > 0,

v∗X(0) d← v∗X(cEt) d= v∗cHX(t) → 0∗X(t) = 0, c → 0+.

This contradicts the properness of X(0).
Conversely, assume every eigenvalue of H has real part equal to zero, and suppose by contradiction that 

the distribution of X(0) is not full. Then, there is v �= 0 such that v∗X(0) = 0. But by Lemma 3.13 the 
eigenvalues of H are simple roots of the minimal polynomial of H. Therefore, {cH : c > 0} has a compact 
closure in GL(n, R), whence one can pick a sequence {ck} such that ck → 0+ and cHk → A ∈ GL(n, R). 
Thus, since every eigenvalue of E has positive real part,

X(0) P← X(cEk t)
d= cHk X(t) d→ AX(t).

We arrive at 0 = v∗X(0) d= v∗AX(t), which contradicts the properness of X. �
Lemma 3.15. Assume that X is a proper, stochastically continuous random vector field that satisfies the 
scaling relation (1.1) for some E whose eigenvalues all have positive real part. If X(0) is full, there is a 
version of X with constant sample paths.

Proof. Under the assumptions, by Lemma 3.14, every eigenvalue of H has zero real part. So, by Lemma 3.13, 
the eigenvalues of H are simple roots of the minimal polynomial of H. Consequently, H is diagonalizable 
over C with all roots having zero real parts. The group {cH : c > 0}, where the closure is taken in GL(n, R), 
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is then compact. We can pick a sequence {ck}k∈N, such that ck → 0+ and cHk → A for some A ∈ GL(n, R). 
Then, for an arbitrary q-tuple t1, . . . , tq ∈ Rm, q ∈ N,

(X(0), . . . , X(0)) P← (X(cEk t1), . . . , X(cEk tq))
d= (cHk X(t1), . . . , cHk X(tq))

P→ (AX(t1), . . . , AX(tq)).

In particular, A−1X(0) d= X(t) P→ X(0), as t → 0. Thus, {X(t)}t∈Rm � {X(0)}t∈Rm . Now let Z(t) = X(0), 
t ∈ Rm. Then,

Z = {Z(t)}t∈Rm � {X(t)}t∈Rm (3.26)

and Z has constant sample paths. Consider Qn and define the set of functions (sample paths)

D =
⋂

s∈Qn

{f : Rm → Rn : f(s) = f(0)}.

Then, P ({X(t)} ∈ D) = P ({Z(t)} ∈ D) = 1, by (3.26). In particular, for t0 ∈ Qn, P (X(t0) = X(0) =
Z(t0)) = 1. For t′0 /∈ Qn, consider a sequence {tk} ⊆ Qn such that tk → t′0. Then, Z(t′0) = X(0) = X(tk) →
X(t′0) in probability, where the equalities hold a.s. and the limit is a consequence of continuity in probability. 
Therefore, Z(t′0) = X(t′0) a.s., i.e., P (Z(t) = X(t)) = 1, t ∈ Rm, as claimed. �
Proof of Theorem 2.7. The proof is akin to Theorem 4 in Hudson and Mason [15]. We provide the details 
for the reader’s convenience. Recall the decomposition (3.17) of the minimal polynomial of H, where the 
roots of f1 have zero real parts. Let π2 be the projection operator onto V2 defined by the direct sum 
decomposition. By Lemma 3.12, the restriction {π2X(t)} is (E, H2)-o.s.s. on V2. Since every eigenvalue of 
H1 has real part zero, it follows from Lemma 3.14 that π1X(0) is full in V1. Hence, by Lemma 3.15, there 
is a version {X1(t)} of {π1X(t)} with constant sample paths. Moreover, every eigenvalue of E has positive 
real part, and every eigenvalue of H2 has positive real part,

π2X(0) P← π2X(cEt) d= π2c
HX(t) d→ 0, c → 0+.

This establishes (i) and (ii). �
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