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Heavy‐tailed travel distance in gravel bed transport:
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[1] Bed load transport, where particles move intermittently in frequent contact with the
bed, is the dominant mode of particle transport in gravel bed rivers and streams. Complex
fluid/particle and particle/particle interactions lead to a broad distribution of transport
behaviors under the same set of flow conditions. In this paper, we investigate the plausibility
of heavy‐tailed movements for particles in bed load transport using carefully controlled
flume experiments and theoretical analysis. In our experimental setting, we find travel
distances for particles of a given size follow an exponential distribution whose mean varies
with grain size. Building on previous work of Stark et al. (2009), we then develop a
probability model to show how heavy‐tailed distributions of travel distance can emerge from
a mixture of particle sizes. Heavy‐tailed travel distance can lead to anomalous diffusion in
bed load transport, modeled by fractional derivatives in the transport equation.
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1. Introduction

[2] Bed load transport is the dominant mode for particle
transport in gravel bed rivers and streams and for the motion
of smaller, sand‐sized particles under lower flow conditions.
As such, the prediction and understanding of bed load
transport under various flow conditions is important for a
broad array of problems, including river morphology, its
evolution, and stream restoration. In contrast with the relative
predictability of finer particles moving with the overlying
fluid in suspension, the movement of particles in bed load
transport takes place as a series of starts and stops. A particle
at rest on the bed has a finite probability of becoming en-
trained into motion. Once a particle is entrained, its motion
consists of a series of steps as the particle saltates, rolls, and/or
slides in frequent contact with the bed, until it becomes dis-
trained, and possibly buried beneath the surface [e.g., Drake
et al., 1988]. The complex movement arises from compli-
cated fluid/particle and particle/particle interactions, which
has hindered the development of a fully predictive model.
[3] Since Shields [1936] performed his classic experi-

ments, there have been various attempts to model bed load
transport. Historically, models developed for predicting
average transport rate hQbi of particles in bed load transport
have fit model parameters to field and laboratory flume data
as a function of shear stress [e.g., Meyer‐Peter and Müller,
1948; Ashida and Michiue, 1972; Engelund and Fredsoe,

1976; Fernandez Luque and van Beek, 1976; Wong and
Parker, 2006]. Two methods for data acquisition are promi-
nent. In the first method, all particles arriving at or crossing
a line are recorded, often by catching particles arriving at a
region of the bed using a device such as a Helley‐Smith bed
load sampler or a trap. In the second method, particles are
painted (or labeled with other methods, e.g., through the use
of radio‐tracking devices, as in the work of Habersack
[2001]) and placed in a bed, and their travel distances are
measured after one or more transport events. Here we use
travel distance to describe a displacement that can consist of
multiple steps, even during a single transport event (e.g.,
flood). In both methods, typically an average displacement,
effective velocity, and/or transport rate is computed and
compared with average transport conditions such as shear
stress. While these models often work well for the system in
which they were derived, when taken out of this context the
predictive power is somewhat limited. For example, when
comparing their predictions for transport under the same flow
conditions, they may differ from one another by orders of
magnitude.
[4] Because of complex particle/particle and fluid/particle

interactions, movement of particles in bed load transport is
essentially stochastic. Einstein [1937, 1950] models the ran-
dom motion of particles as intermittent movements, taking
into account a fixed finite probability of particle entrainment
at every time step. Once entrained, the particle moves a dis-
tance that scales with the size of the particle. Einstein’s model
for bed load transport treats these displacements as instanta-
neous and mutually independent, and models displacements
with a gamma distribution [Einstein, 1937].
[5] More recent advances take into account duration

of particle movement [Lisle et al., 1998], correlated parti-
cle movements [Ancey et al., 2008], turbulence statistics
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[Kleinhans and van Rijn, 2002; McEwan et al., 2004], and
spatial [Dancey et al., 2002] or temporal [Wong et al., 2007]
variability in bed elevation. Kleinhans and van Rijn [2002]
use a probability distribution function (pdf) to model vari-
ability of bed shear stress due to turbulent fluctuations, and
the resulting effect on particle transport. McEwan et al.
[2004] invoke variations in critical shear stress within each
size fraction to model variations in grain size distribution in
bed load transport. The stochastic model of Wong et al.
[2007] studies the link between temporal bed height fluc-
tuations, hydraulic parameters, and vertical and streamwise
displacements of tracer stones. Increased computer power has
allowed the implementation of computationally intensive
modeling techniques, such as the Discrete (or Distinct) Ele-
mentMethod (DEM) [Cundall and Strack, 1979], adapted for
bed load transport and other aspects of sediment transport
[Heald et al., 2004; Schmeeckle and Nelson, 2003;Gotoh and
Sakai, 1997;Haff and Anderson, 1993;Drake and Calantoni,
2001]. Recent technological developments allow these com-
putational and theoretical models to be tested against high‐
resolution data [Schmeeckle et al., 2007; Papanicolaou et al.,
2002].
[6] These models of bed load transport assume a thin‐tailed

pdf for travel distance or step length of individual particles
(e.g., exponential, normal, lognormal, gamma). In a provoca-
tive new approach,Ganti et al. [2010] in this volume propose
a heavy‐tailed model for particle step length, and discusses
the implications for long‐term transport. Here a heavy tail
means that the probability that a single particle travels a long
distance in a single step falls off like a negative power of the
step length. Based on a probabilistic Exner equation [e.g.,
Parker, 2008], they find that the long‐time dynamics of
particles with a thin‐tailed step length are governed by the
classical diffusion equation. For heavy‐tailed step lengths, a
fractional diffusion equation applies at late time. The frac-
tional diffusion equation models anomalous diffusion, where
particles spread faster than in the classical model [Benson
et al., 2000]. The underlying model of heavy‐tailed particle
motion is called a Lévy flight [Weeks et al., 1998].
[7] There is some indirect evidence that bed load transport

systems may exhibit power law statistics. Recent measure-
ments by Nikora et al. [2002] have identified anomalous
diffusion in some bed load systems. Average measured sed-
iment transport rate can vary like a power law in the time
interval over which the average is taken [Singh et al., 2009;
Bunte and Abt, 2005]. A theoretical discussion of Stark et al.
[2009] and a related discussion ofGanti et al. [2010] illustrate
how a power law pdf of step length for a mixture of grain sizes
can result from a thin‐tailed step length pdf for particles of a
given grain size, combined via the pdf of grain sizes. That
discussion will be revisited and expanded in section 4 of this
paper, where we will also discuss the relation between step
length and travel distance for heavy‐tailed movements.
[8] In this article, we investigate the travel distance pdf

of particles in bed load transport, both experimentally and
theoretically, to determine the plausibility of a heavy‐tailed
pdf for particle step length. We conduct our experiments
under lower‐regime plane‐bed equilibrium bed load transport
conditions to eliminate variability associated with bed
topography [Haschenburger and Wilcock, 2003]. We further
minimize spatial variability in bed composition by using a
gravel bed with a narrow distribution of grain sizes. This

simplified experimental system will be described in detail in
section 2. We monitor the displacements of particles as a
function of size, and report our findings in section 3. In
section 4, we consider a mix of particle sizes more typical of
that found in the field, and discuss a probability model
combining the travel distance pdf for any given grain size
according to the pdf of grain sizes. That model explain how a
power law pdf of travel distance can arise in practice. We also
discuss, in that section, a simple relation between step length
pdf and travel distance pdf that pertains in the heavy‐tailed
case. In section 5, we summarize the results of this paper, and
discuss future challenges and opportunities.

2. Experimental Arrangement

[9] The experiments reported here were conducted in a
27.5 m long flumewith a rectangular cross section 0.5mwide ×
0.9 m deep, operated with an erodible sediment bed and
nonerodible walls (the “sediment flume” at St. Anthony Falls
Laboratory at the University of Minnesota. Please see http://
www.safl.umn.edu/facilities/facilities.html for more details).
Sediment that traveled out of the flume was collected by a
sediment trap and recirculated back to the upstream end of the
flume. At this point, the sediment entered a separator box, and
was refed into the flume at a constant predetermined rate, to
create a sediment feed flume (see discussions of Parker and
Wilcock [1993] and Wong et al. [2007]) where water dis-
charge and sediment feed rate were controlled, so that bed
slope and water flow depth evolved depending on these two
parameters. As will be detailed below, the sediment size
distribution was relatively narrow, and unchanged over the
course of the experiments.
[10] To minimize complicating factors for this transport

study, we operated the flume in lower‐regime plane‐bed
equilibrium transport conditions, with a well‐sorted gravel
bed. The median grain size was d50 = 7.1 mm; the geometric
mean particle size was dg = 7.2 mm; the roughness height of
the bed is indicated by d90 = 9.6 mm; the geometric standard
deviation of the grain size distribution was 1.2, and the par-
ticle density was rs = 2550 kg/m3. Here dp denotes the pth
quantile of the particle size pdf, so that p% of the particles
have diameter less than or equal to dp. (Here, as is customary,
our pdf is according to particle weight, not number. See
Kellerhals and Bray [1971] for discussion.) We used tracer
particles primarily obtained from the bed using sieve sizes
4.0 mm, 5.6 mm, 6.3 mm, 8.0 mm, and 9.5 mm, though for
sufficient quantities of the 9.5mm particles we acquired some
from other sources. Tracer particles are grouped by the largest
sieve on which they were retained. Gravel tracers were col-
ored using paint and permanent markers for easy identifi-
cation, according to size and original placement in and on
the bed.
[11] To bring the flume to steady state conditions (i.e.,

mobile bed equilibrium) prior to an experimental run set, a
preparation time on the order of 50 h was needed, with water
and sediment fed at a constant rate. The exact time depended
on how close the prior flume conditions were to the desired
conditions. During the first and longest part of this prepara-
tion, water and sediment were fed until the volume of sedi-
ment leaving the flume was equal to the sediment feed rate,
verified by noting that the level in the separator box was
unchanging. (This assumes the packing fraction in the box is
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unchanging, which seems reasonable given that the condi-
tions of particle entrance into and exit from the box are
unchanging. Further, due to the narrow distribution of particle
sizes in the bed and the lack of any streamwise segregation
observed, we assume that the distribution of particle sizes
leaving and entering the flume is relatively constant. For a
wider distribution of particle sizes this may not be true and
periodic sorting and weighing of the particles leaving the
flume may be necessary to verify the steady state conditions.)
To further assure the steady state of the system, longitudinal
slopes of the bed surface and water surface were monitored to
assure they remained relatively constant in time and space.
Piezometers located every 0.5 m along the streamwise
direction of the flume were used to measure water surface
elevation along the flume. A point gauge was used to measure
the longitudinal profile of the bed at three different transverse
positions across the bed at every 0.5 m along the streamwise
direction of the flume. The latter was used both to determine
when the flume was at steady state and also to determine that
there were no bed forms present. For all experimental results
reported here, minimal or no bed forms were present during
the run. For the experiments reported in this study, the min-
imum and maximum channel averaged flow velocities were
0.69 m/s and 0.9 m/s, respectively, and d10 = 5.9 mm, well
within the range of lower‐regime plane‐bed conditions of
Southard [1991].
[12] A summary of the average experimental parameter

measurements for all runs sets discussed in this paper is
presented in Table 1. Table 1 indicates water discharge
Qw, sediment feed rate Qbf, experimental run duration t,
temperature of the water Tw, water height above the weir h,
nondimensionalized shear stress t*, and particle size distri-
bution in the tracer patches. Bed shear stress tb was non-
dimensionalized with the commonly used form:

�* ¼ �b
ð�s � �wÞgd50 ð1Þ

in terms of the water density rw, solid particle density rs,
gravitational acceleration g, and median grain size d50. This
nondimensionalized bed shear stress is also known as the
Shields number [Shields, 1936]. In laboratory open channel
flows, the bulk flow parameters are exposed to sidewall
friction effects. We used the sidewall correction procedure
introduced by Vanoni and Brooks [1957] to remove these
sidewall effects. The run duration of 4 min was chosen to
balance the number of moving particles with the number of
particles exiting the end of the flume. The bed shear stresses
were chosen to maintain plane bed conditions, taking into
account the number of particles exiting the flume during
the run. For the largest particles, at the smallest shear stress,
≈3% were entrained over the course of the experiment. At the
largest shear stress, 30% of these particles exited the flume.

Using relations presented by Parker et al. [2003] and Parker
[2008], we calculated that the range of dimensionless shear
stress in this experimental set was 3–4 times the critical
Shields stress, t*ci, for each size tracer particle.
[13] Experimental conditions in this study were compara-

ble to bankfull conditions in several natural gravel bed
streams [Church and Rood, 1983] (see Figure 1). The alluvial
river channel data ofChurch and Rood [1983] were compiled
from various sources on 284 streams and rivers. The data
shown in Figure 1 only include gravel bed channels, with
gravel or bedrock banks, and bed shear stresses at bankfull or
2 year recurrence interval flood discharge. The bed slopes for
our experiments were somewhat steeper than those ofChurch
and Rood [1983] for the same shear stress. However, both our
bed slopes and dimensionless bed shear stress values lie well
within the range of that data set.
[14] Once we verified a state of mobile bed equilibrium, we

temporarily shut down the flume for the placement of tracer
particles in several streamwise and transverse patches. The
patches consisted of 2–3 layers of tracer particles (depending
on the shear stress) to assure that all particles moving from a
particular position in the flume could be monitored. As long
as no particles from the bottom layer moved, we judged that
all particles entrained from an initial location were accounted
for. During our experiments, there was very little movement
from any subsurface layer, even at the highest shear stress. To
place the particles in patches, we first carefully excavated a
small patch of particles with a surface area of 10 cm × 10 cm,
to a depth of integral multiples of ∼12 mm (to slightly exceed
d90), verified by surveying the excavated region with a point
gage. The local patch of particles was replaced with an equal
volume of tracer particles, in layers of thickness of ∼12 mm.
Each layer was leveled and surveyedwith a point gage, so that
the thickness of each layer was fairly uniform, and the top of
the patch remained level with the surface of the bed. A simple
schematic of the two‐dimensional cross‐sectional profile of a
volume of planted tracer particles is shown in Figure 2.
[15] Once the tracers were placed, water and sediment feeds

were restarted under equilibrium conditions established prior
to the run. This start up was performed carefully, to minimize
the effect of unsteady conditions during start up. The water

Table 1. Experimental Conditions for the Four Run Setsa

Run
Set

Qw

(m3/s)
Qbf

(m3/s)
S0
(%)

SW
(%)

h
(m)

Tw
(°C)

t
(s) t* GSD

1 0.0235 0.0075 1.29 1.28 0.070 10.0 240 0.0756 mono
2 0.0307 0.027 1.22 1.20 0.086 25.0 240 0.0900 mono
3 0.0415 0.064 1.15 1.15 0.10 8.0 240 0.101 mono
4 0.0307 0.027 1.22 1.20 0.086 25.0 240 0.0900 mixed

aVariable definitions are given in the text.

Figure 1. Shields stress (t*) of 2 year recurrence interval
and bankfull discharges of gravel bed streams as a function
of channel slope for experiments presented in this paper
(closed squares) and from the database of Church and Rood
[1983] (open squares).
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feed was brought up slowly, until particles just barely started
to move; then the sediment feed was started, and the water
flow rate was brought rather quickly to that of steady state
conditions. This last part typically took ∼20–30s, or ∼10% of
the duration of our 4 min. runs. The “clock”was started when
the water flow rate had reached steady state conditions. The
flume ran for 4min, and was then stopped. The 4min duration
was chosen so that, under the conditions imposed, most of the
tracers stopped before reaching the end of the flume. The final
locations of all tracer particles in the bed were recorded
according to how far the particles traveled downstream,
and whether or not they were buried beneath the surface. A
maximum loss of 0.2% of tracer was recorded in our exper-

imental runs, so that essentially all of the tracer particles were
recovered.

3. Experimental Results and Analysis

[16] In this section, we summarize the results from our
flume experiment. Our focus is on the pdf of travel distance
and how it relates to particle size. Prompted by these results,
in section 4, we will develop a probability model of travel
distance that pertains to a mixture of grain sizes using the data
from the flume experiment.

3.1. Travel Distance pdf for Particles of a Given Size

[17] Figures 3, 4, and 5 show the relative frequency data for
tracer particle travel distance for runs 1, 2, and 3, respectively.
These runs are for mono‐sized tracer particle patches. The
shape of the data for all cases is similar, and resembles a
gradual decay of probability with distance, with the shortest
travel distances most likely. Several different alternative
models were selected to fit the data for each particle size and
shear stress, guided by previous literature. Einstein [1937] fit
a gamma pdf to measured travel distance, and a Poisson
distribution to resting times between movements. Hassan
et al. [1991] also fit a gamma pdf to travel distance for a
wide range of field data. We fit a Poisson distribution, a
power law, a gamma, and an exponential to our measured
travel distance. For our experimental data, we obtained a
good fit with an exponential pdf:

f ðxÞ ¼ �e��x ð2Þ

Figure 2. Schematic of the placement of tracer particles in
layers.

Figure 3. Plots showing empirical probability distribution functions of travel distances (x) for four differ-
ent sized tracer particles during 4 min experiments. These plots contain particle travel distance data from run
set 1 (t* = 0.076). In each case, the solid line is the truncated exponential pdf le−lx/[1 − exp(−lxmax)] for the
experimentally obtained data (points) for the tracers of sizes noted in an inset in each plot. In each case xmax

is taken as 15 m; 1/l is plotted (as L) in Figure 8.
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Figure 4. Empirical probability distribution functions of travel distances from run set 2 (t* = 0.090). As in
Figure 3 the results shown are the truncated exponential pdf le−lx/[1 − exp(−lxmax)] (solid line) for the
experimentally obtained data (points) for the tracers of sizes noted in an inset in each plot.

Figure 5. Empirical probability distribution functions of travel distances from run set 3 (t* = 1.01). As in
Figure 3 the results shown are the truncated exponential pdf le−lx/[1 − exp(−lxmax)] (solid line) for the
experimentally obtained data (points) for the tracers of sizes noted in an inset in each plot.
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where l was treated as a fitting parameter, with units of
1/length. The exponential pdf fit significantly better than the
Poisson distribution, and somewhat better than a power law,
judged on the basis of mean squared error. A gamma dis-
tribution fit the data only marginally better than the expo-
nential, and contains one additional fitting parameter.
Therefore, we chose the exponential distribution in this
study, for simplicity.
[18] Since our travel distance measurements are truncated

due to finite flume length, we accounted for this in our fitting.
In particular, we note that the data is cut off at some distance
xmax, which we take to be the maximum observed travel
distance for each case. The truncation effect is negligible in
most cases, but significant in cases like Figure 5d, where a
significant number of particles exited the flume, and the
resulting graph does not tend to zero as observed travel dis-

tance increases. We fit the exponential pdf to the observed
travel distance data as follows. After determining the fraction
fi of particles that travel a distance xi, we considered a theo-
retical pdf f(x) given by equation (2), and chose the fitting
parameter l to minimize the sum of squared errors:

X
i

fi � f ðxiÞ
1� expð��xmaxÞ

� �2

ð3Þ

where the denominator

1� expð��xmaxÞ ¼
Z xmax

0
f ðyÞ dy

corrects for the truncation. If X denotes travel distance, then
the fraction in (3) represents the conditional density of X
given X < xmax. Based on this fitting procedure, the resulting
exponential pdf for each case was plotted against the data in
Figures 3, 4, and 5.
[19] It is reasonable to ask why the exponential pdf might

fit these data, and whether some plausible probability model
for the underlying motions could lead to an exponential pdf
for travel distance. Travel distance is composed of some
unknown random number of step lengths, representing the
number of entrainments of a particle. The theory of random
sums shows that, for any step length pdf with a finite mean, a
geometric random number N of steps with P(N = n) = p(1 −
p)n−1 for some 0 < p < 1 and n ≥ 1, will result in an overall
travel distance that is approximately exponential [Kotz et al.,
2001, p. 30]. Indeed, if the step length is exponential, and the
number of steps is geometric, then the travel distance is also
exponential. Geometric sums occur frequently in applications
to physics, biology, economics, and insurance mathematics
[Kalashnikov, 1997]. It would be interesting to investigate
the underlying model further, especially if one could gather
appropriate data on the number of entrainments (e.g., using
radio‐tagged particles).
[20] To further test the exponential model of travel distance

pdf, we performed a similarity collapse for each experimental
Shields stress using the mean travel distance L = 1/l, in the
following manner. The pdf of travel distance f(x) is approx-
imated by data in Figures 3, 4, and 5. Let xi denote distance
and fi the corresponding fraction of particles that traveled this
distance. The data points (xi, fi) were plotted in Figures 3, 4,
and 5. Since the exponential fit to the random travel distance
X has mean L, the rescaled travel distance X′ = X/L has
mean 1. The density of X′ is f ′(x) = Lf(Lx). This is approxi-
mated by a plot with value f ′i = Lfi at location x′i = xi/L.
Expanding the heights while contracting the spacings by
the same factor preserves the area (probability) under the
curve. The results from this similarity collapse are shown in
Figure 6. It appears that the fit is quite good, providing
additional evidence in favor of an exponential travel distance
pdf for particles of any given grain size in our experiment.
[21] As further verification, we tested the exponential fit

using standard statistical tools. Figure 7 shows a probability
plot comparing the raw data summarized in Figure 5a with the
best fitting exponential distribution, found by the method of
maximum likelihood. The fitted parameter by maximum
likelihood is l = 0.34, which is close to the value of l = 0.36
obtained by least squares. A good fit is indicated if the data
follow the reference line (quantiles of the theoretical pdf).

Figure 6. Results from the parametric collapse described in
the text for the data shown in Figures 3–5, where t* is noted
in the inset for each plot.
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Here the fit is excellent. The lack of fit on the left is due to the
resolution of the measurements (all these data values equal
0.05). To improve the fit in this high‐resolution method, we
allowed a small shift in the data, less than the granularity of
the data. The optimal shift is 0.048, as shown in Figure 7. A
slight lack of fit on the right is due to truncation effects (finite
flume size). A more sophisticated fitting by maximum like-
lihood would take into account the truncation. A similar fit-
ting for truncated power law data was recently accomplished
by Aban et al. [2006]. It would be interesting to extend this
approach to truncated exponential data.
[22] We also examined the travel distance data for particles

found buried in the bed, versus those found on the surface (not
shown). Both follow roughly the same shape as the combined
data. Smaller particles were buried at a somewhat higher rate
than larger particles. Further, for higher shear stress, the burial
rate was higher for all transported particles. This suggests that
some kinetic sieving occurred, with smaller particles more
likely to find holes in which they can rest for longer periods.
Burial statistics are related to waiting times between transport
events [Schumer and Jerolmack, 2009; Ganti et al., 2010]
which in turn can affect both average transport and diffusion.
In this paper, we investigate the relation between particle size
distribution and displacement statistics, leaving a full inves-
tigation of burial rates and their impact on transport as an
interesting direction for future research.
[23] In summary, we conclude that travel distances for

single‐sized particles can be accurately characterized by an
exponential pdf, equation (2), with a rate parameter l that
varies with particle size and experimental flow conditions,
especially shear stress. However, typically there is a distri-
bution of particle sizes in the field, and associated mixing
over different particle sizes tends to broaden the distribution
of travel distance. To see the form this may take, we need
to consider how the travel distance pdf varies with particle
size, and then how particle size varies in the field. Hence in
section 3.2 we study the dependence of mean travel distance

1/l on grain size, and then in section 4 we investigate the
impact of a mixture of grain sizes on the overall pdf of travel
distance for particles of all sizes.

3.2. Size Dependence of Average Travel Distances

[24] In section 3.1 we found that travel distance for a given
grain size and shear stress follows an exponential distribution
whose pdf, equation (2), depends on the parameter l. Of
course the best fitting l varies with particle size and shear
stress. Here we investigate the relation between travel dis-
tance and particle size. For readability, it is simplest to focus
on the mean travel distance L = 1/l, which is measured in the
same units (m) as the data.
[25] Figure 8 shows the mean travel distance L = 1/l

determined from the best exponential fit to each data set in
Figures 3, 4, and 5, for each particle size. For the small range

Figure 7. Probability plot for the data in Figure 5a compared to the best fitting exponential pdf model. Data
is shifted slightly to obtain the best fit.

Figure 8. Mean travel distance L (in meters) as a function of
tracer particle sizeD (in mm) along with the regression model
L = kDq for each Shields stress: t* = 0.076 (diamonds), t* =
0.090 (squares), and t* = 0.101 (triangles). Fitted values of k
and q are given in the text. We also showmean travel distance
for set 4 (crosses), with a narrow mixture of grain sizes used.
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of shear stresses examined in our simple system, the mean
travel distance increases with increasing particle size D. Note
that the results obtained using patches of a relatively narrow
distribution of different grain sizes, run set 4, is similar to the
results obtained using patches of mono‐sized grains under the
same conditions, run set 2.
[26] Next we consider the functional relation between

average travel distance L and particle size D. In the existing
literature, a linear relation between grain size and mean travel
distance was reported by Tsujimoto [1978], while a nonlinear
relation we found to be more representative in the works of
Church and Hassan [1992] and Ferguson and Wathen
[1998]. There are a number of differences between the two
sets of data, including the steadiness in the flow.Motivated by
this, we consider both a linear relation L = cD and a power law
relation L = kDqwhere q > 0, and plot the best fits in Figure 8.
For all sets, a power regression gives the better fit. For set 1
(t* = 0.076) a power regression L = kDq with k = 0.240 and
q = 1.36 provides the best fit, with R2 = 0.88 indicating
an adequate fit. For set 2 (t* = 0.090) a power regression
L = kDq with k = 0.209 and q = 1.71 provides the best fit,
with R2 = 0.92. For set 3 (t* = 0.101) a power regression
with k = 0.147 and q = 2.18 gives the best fit with R2 =
0.80. For case 3 we did not include the largest grain size
(8.0 mm) in the regression, since the scatter in the data and the
relatively lower fitted value of l rendered the estimated mean
travel distance somewhat unreliable. If that point is included,
we find k = 0.0048, q = 4.37 and R2 = 0.81 in the resulting
power law trend line. We note that the parameter q increases
with shear stress.
[27] In our experiments, larger particles travel farther than

small particles, once entrained. While not common, this is not
a unique observation. Similar observations have been docu-
mented in the field and laboratory by a number of authors
[Brummer and Montgomery, 2003; Tsujimoto, 1978; Straub,
1935; Kodama et al., 1992]. For example, Brummer and
Montgomery [2003] found larger particles travel farther
than small particles in the field in steep sediment transport
systems, andMiller and Byrne [1966] found this to be true in
debris fields. However, observations such as these have been
rare [Solari and Parker, 2000]. Empirical relations for mean
travel distance as a function of particle size vary across the
literature. Einstein [1937] found a wide range of travel dis-
tances but no clear relation between travel distance and par-
ticle size in flume studies.Hassan et al. [1991] and Ashworth
and Ferguson [1989] found similar results in natural rivers
using tracer particles. Most natural rivers and streams exhibit
downstream fining which, in some cases, seems to be driven
by size‐dependent particle mobility [Paola et al., 1992].
Church and Hassan [1992] compiled data from a number of
tracer particle studies in streams and rivers, and found mean
travel distance decreases with particle size as a general rule.
Ferguson and Wathen [1998] drew similar conclusions.
Solari and Parker [2000] found they could control which
particles traveled farther in their flume experiments by
varying the slope. In their system, large particles traveled
farther, a phenomenon they referred to as “reverse mobility,”
when the slope was sufficiently high. They argued that this
can happen when a steep slope enables large particles to roll
more easily out of a local pocket. Solari and Parker [2000]
showed that, in their system, mobility reversal occurred at

slopes above 0.02–0.03. DellAngelo [2007] found that, in a
more well‐sorted system, the predicted reversal point occurs
at even flatter slopes, consistent with the experimental results
reported here. Another possible explanation for reverse
mobility involves the point of distrainment rather than
entrainment and the relative roughness of the bed. Finer
particles “see” a rougher bed, relative to their size. This could
cause larger particles, once entrained, to roll farther along
the bed.
[28] In summary, we find that in our experimental setup,

travel distance for particles of a given size follow an expo-
nential distribution, where the mean travel distance increases
like a power law function of the grain size. Other studies
report a decrease in mean travel distance with grain size.
Section 4 develops a probability model to explain how a
typical mix of particle sizes found in the field can broaden the
travel distance pdf. There we consider a general model L =
kDq where large particles travel farther, as in our study, as
well as an alternative (downstream fining) model L = k/Dq

where smaller particles travel farther. In both cases, it turns
out that a typical pdf of grain sizes can sometimes lead to
heavy‐tailed particle motions.

4. Theoretical Discussion

[29] In section 3 we found that, for a particular Shields
stress and particle size, the travel distance of a given particle
during the course of our experiment follows an exponen-
tial pdf, equation (2). Thus the probability that a particle
of size D travels farther than a distance x > 0 downstream
is given by

PðX > xjDÞ ¼
Z 1

x
L�1e�y=Ldy ¼ e�x=L ð4Þ

where the mean travel distance L depends on the particle size,
and y is a dummy variable standing in for travel distance x in
the integral. In this section, prompted by the experimental
results in section 3, we will construct a probability model to
determine the effect of grain size mixtures on travel distance.
This depends on two ingredients: the relation between mean
travel distance L and grain size D; and the pdf of grain sizes.
Our model shows how a heavy‐tailed pdf of travel distance
for a mixture of grain sizes could emerge under natural
conditions. At the end of this section, we will consider the
implications for particle transport, based on the model of
Ganti et al. [2010]. At that point, we will also discuss the
relation between travel distance and step length in the case of
heavy‐tailed movements.
[30] Denote by g(r) the pdf of grain size D, so that

P(D = r) = g(r)dr. Then, using equation (4) along with the law
of total probability, we can write the probability that a particle
travels farther than a distance x > 0 downstream as

PðX > xÞ ¼
Z 1

0
PðX > xjD ¼ rÞgðrÞdr ¼

Z 1

0
e�x=LgðrÞdr ð5Þ

In order to determine the (unconditional) probability distri-
bution of travel distance from equation (5), it is necessary to
substitute the model of mean travel distance L as a function of
grain size, as well as the pdf of grain sizes, and then analyze
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the resulting integral. A power law distribution of travel dis-
tance can emerge under appropriate conditions.
[31] Many authors [e.g., Wilcock and Southard, 1989;

Garcia, 2008; Lanzoni and Tubino, 1999;Parker, 2008] have
used a lognormal PDF for grain size

gðrÞ ¼ 1

r�
ffiffiffiffiffiffi
2�

p e�
1
2
ðln r��Þ2

�2 ð6Þ

where m, s are the mean and standard deviation of the normal
random variable lnD. In this case, the overall (unconditional)
travel distance distribution is given by

PðX > xÞ ¼
Z 1

0
e�x=L 1

r�
ffiffiffiffiffiffi
2�

p e�
1
2
ðln r��Þ2

�2 dr ð7Þ

but this integral is challenging. Stark et al. [2009] suggest the
gamma pdf

gðrÞ ¼ �	

Gð	Þ r
	�1e��r ð8Þ

as a possible alternative with similar shape characteristics. In
this case, assuming the simple model L = k/D, the integral (5)
can be computed explicitly to reveal a power law tail for travel
distance:

PðX > xÞ ¼
Z 1

0
e�xr=k �	

Gð	Þ r
	�1 exp ��rð Þ dr

¼ 1þ x

k�

� ��	

ð9Þ

as x → ∞. Furthermore, it is not necessary that g(r) be a
gamma pdf, only that the behavior of the pdf near zero is
asymptotically a power law. Moreover, a power law pdf for
travel distance can emerge if we assume that smaller particles
travel farther (downstream fining) according to the more
general model L = k/Dq for any q > 0. For mathematical de-
tails, see Appendix A.
[32] Ganti et al. [2010] consider a simple alternative model

L = kD for the case when larger particles travel farther, con-
sistent with the experimental results of section 3. In that case,
Ganti et al. [2010] use an inverse gamma pdf of grain sizes
and a change of variables y = 1/r in equation (5) to compute

PðX > xÞ ¼
Z 1

0
e�x=kr �	

Gð	Þ r
�	�1 exp ��

r

� �
dr

¼
Z 1

0
e�xy=k �	

Gð	Þ y
	�1 expð��yÞ dy

¼ 1þ x

k�

� ��	

ð10Þ

using equation (9). Assuming, more generally, that larger
particles travel farther according to the model L = kDq for any
q > 0, a power law travel distance pdf emerges whenever the
grain size pdf follows a power law at large grain sizes, see
Appendix A for details.
[33] In conclusion, a heavy‐tailed power law pdf for travel

distance can emerge when particles of a given size travel an
exponential distance downstream, and a mixture of grain
sizes pertains. Given a power law model for the mean travel
distance L as a function of the grain size D, the heavy tail
results from the influence of particles that travel farthest.With

a downstream fining model L = k/Dq where small particles
travel farther, a heavy‐tailed pdf of travel distance emerges if
the pdf of small grain sizes follows a power law. With the
alternative model L = kDqwhere large particles travel farther,
as found in our experiments reported in section 3, a heavy‐
tailed pdf of travel distance emerges if the pdf of large grain
sizes follows a power law. Of course it is possible that neither
situation occurs, in which case the overall pdf of travel dis-
tance for a mixture of grain sizes could follow some light‐
tailed pdf, e.g., the normal distribution.
[34] Ganti et al. [2010] in this volume discuss the im-

plications of power law step lengths for bed load particle
transport. In short, a step length S that satisfies P(S > x) ≈Cx−b
for x large can result in anomalous superdiffusion at late time,
in which sets of particles diverge from one another faster than
the classical diffusion model predicts. The nature of this
spreading can be captured by an anomalous diffusion equa-
tion that employs a fractional derivative of order 1 < b < 2 in
place of the usual second derivative [Benson et al., 2000].
This can affect sediment transport in ways that are still being
investigated, including the rate and nature of size segregation,
and bed topography.
[35] While Ganti et al. [2010] build on the pdf of step

length, our experimental results measure the pdf of travel
distance. Indeed, it is not easy to distinguish individual steps
in the naturally stochastic and intermittent system of bed
load transport. Fortunately, there is a mathematical result
[Kozubowski et al., 2003, theorem 4.1] which guarantees that,
under the modeling assumptions of Ganti et al. [2010], a
power law step length pdf leads to a power law travel dis-
tance, and vice versa. Specifically, when we add a random
number of power law steps, and assuming that the random
number of steps has a finite mean, the resulting travel distance
has the same power law character as the individual steps,
with the same power law index. In the work of Ganti et al.
[2010] the number of steps in a fixed finite time interval (in
section 3 the time interval was fixed at 4 min) has a Poisson
distribution. Then the results of this section can be used to
determine when the anomalous diffusion model of Ganti
et al. [2010] is in effect. For a downstream fining system in
which the mean travel distance for particles of diameter D is
given by L = k/Dq, the tail estimate in equation (A4) shows
that anomalous diffusion pertains when 1 < a/q < 2, if the cdf
of small grain sizes follows a power law with index a near the
origin (or, equivalently, the pdf follows a power law with
index a − 1). For a system in which the mean travel distance
for particles of diameter D is given by L = kDq, anomalous
diffusion pertains when 1 < a/q < 2 if the cdf of large grain
sizes follows a power law with index −a near infinity (or,
equivalently, the pdf follows a power law with index −a − 1).
Given this result, and the profound implications of anomalous
transport on the evolution of bed load transport, it becomes
very important to develop better models and collect higher‐
resolution data on the grain size distribution in natural sys-
tems. For this purpose, a simple sieving method provides
insufficient resolution to distinguish between power law and
other distributional forms.

5. Conclusions

[36] We have presented the results from a controlled
experimental study of gravel particles in bed load transport
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through a gravel bed flume in the plane bed equilibrium
transport regime. We have shown that the transport distance
for particles of a given size follows an exponential pdf whose
mean varies with particle size and experimental conditions,
most notably shear stress. We have also developed a proba-
bility model to explain how, if these experimental results are
extended to a system with a typical grain size distribution,
travel distance of all particles can have a heavy, power law
probability tail. In our experiments, larger particles are found
to travel farther, a phenomenon termed reverse mobility by
Solari and Parker [2000]. More commonly, smaller particles
travel farther (downstream fining). In either case, our prob-
ability model indicates that a heavy‐tailed pdf of travel dis-
tance can pertain to a mixture of grain sizes. This result
suggests that power laws could emerge in many typical
experimental or natural settings, related to familiar distribu-
tional models. As detailed in a separate paper in this volume
[Ganti et al., 2010], this wide distribution of particle dis-
placements can lead to anomalous diffusion of particles
downstream, when particles spread faster and farther than the
classical diffusion model predicts. The model of Ganti et al.
[2010] is based on step length, while we measure travel dis-
tance. However, under the model assumptions of Ganti et al.
[2010], we argue that power law travel distance implies
power law step length, and vice versa.
[37] Clearly, there are additional questions to be addressed,

and we intend our results to motivate further study. This
experimental study uses a fairly narrow set of particle sizes.
While a narrow size distribution may occur in limited settings
such as very short well‐sorted reaches of gravel bed rivers or
gravel patches along river beds, particle size distributions
over a longer river reach in the field are broader. In these
cases, predicting transport is further complicated by sorting of
particles [see, e.g., DellAngelo, 2007; Paola and Seal, 1995;
K. Hill et al., Mobility reversal, particle size distribution, and
slope, manuscript in preparation, 2010]. Additionally, under
different flow conditions, the bed morphologymay be variable
and include relief, for example in the form of bars and dunes.
Even under the simplest conditions, prediction of particle
transport should consider the possible effects of power law
distributions. The data and theory presented herein provide a
framework for addressing additional complicating effects that
may exist in other flume studies and in the field.
[38] A central finding of this paper is a probability model

that explains how power laws can emerge from an expo-
nential travel distance pdf for particles of a given grain size,
combined with a typical pdf of grain sizes in natural systems.
Power laws emerge when the portion of the grain size pdf
with the longest mean travel distance has a power law char-
acter. For example, in a system with downstream fining,
where smaller particles travel farther, power laws emerge if
the grain size pdf follows a gamma distribution, or a Weibull
distribution, or a beta distribution. Hence the appearance of
power law distributions of particle displacements in sediment
transport is completely consistent with previous theory and
experimental data. Certainly there is a need for additional
research to investigate the possibility of power law statistics
in natural and laboratory systems. We also note that it may be
possible to infer power law behavior indirectly from mea-
surements such as sediment load and bed topography. In
the same spirit, the paper of Schumer and Jerolmack [2009]

in this volume considers evidence for power law waiting
time statistics in the geological record. Further experimental
research, and model development, seems warranted to inves-
tigate these issues.

Appendix A: Travel Distance Distributions
for a Mix of Particle Sizes

[39] In this appendix, we provide mathematical details to
argue that a power law pdf of travel distance, for a mixture of
grain sizes, can emerge from an exponential pdf of travel
distance for grains of a given size D, combined according to
an appropriate pdf of grain sizes. We begin with the uncon-
ditional probability that a particle travels farther than a dis-
tance x > 0 downstream, given by equation (5) in terms of the
pdf of grain size, g(r), and the mean travel distance L for
particles of a given size. To show that this expression can
exhibit power law behavior, it is useful to apply Karamata’s
Tauberian Theorem [Feller, 1971, theorem 3, p. 445]. Write
the cumulative distribution function (cdf) of grain sizes

GðxÞ ¼
Z x

0
gðrÞ dr

so that G(x) = P(D ≤ x). Denote the Laplace transform of the
density g(r) by

~gðsÞ ¼
Z 1

0
e�srgðrÞ dr

Karamata’s Tauberian theorem states that

~gðsÞ � Cs�p as s ! 1 () GðxÞ � Cxp

Gðpþ 1Þ as x ! 0

ðA1Þ
Here we assume p ≥ 0, and g1(x) ∼ g2(x) means that the ratio
g1(x)/g2(x)→ 1. For example, x2 + 3x ∼ x2 as x→∞, since the
linear term is negligible compared to the x2 term for large
values of x. The essential reasoning behind (A1) is that letting
s→ ∞ in the exponential term e−sx can be balanced by letting
x → 0.
[40] Equation (9) shows that, when g(r) follows the gamma

pdf in equation (8), and the average travel distance L is related
to the grain size D by L = k/D, the expression in equation (5)
can be explicitly computed to show that the probability of a
travel distance greater than x falls off like x−a where a is
the shape parameter of the gamma pdf. Alternatively, we can
use equation (A1) to obtain the same asymptotic result. Since
e−br ∼ 1 for r → 0 the gamma cdf satisfies

GðxÞ ¼
Z x

0

�	

Gð	Þ r
	�1e��r dr

�
Z x

0

�	

Gð	Þ r
	�1 dr

¼ �	

Gð	Þ
x	

	
¼ �	x	

Gð	þ 1Þ as x ! 0

Then equation (A1) implies that

PðX > xÞ ¼ ~gðx=kÞ � �	ðx=kÞ�	 as x ! 1 ðA2Þ

Furthermore, it is not necessary that g(r) be a gamma pdf,
only that the behavior of the pdf near zero is asymptotically a
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power law. For example, if we use aWeibull distribution with
the model L = k/D, then

GðxÞ ¼ 1� expð�ðx=�Þ	Þ ¼ 1� 1� ðx=�Þ	 þ � � �ð Þ � ðx=�Þ	
as x ! 0

and we immediately conclude from (A1) that

PðX > xÞ ¼ ~gðx=kÞ � Gð	þ 1Þðx=k�Þ�	 as x ! 1

For a beta distribution

GðxÞ ¼
Z x

0

Gð	þ �Þ
Gð	ÞGð�Þ y

	�1ð1� yÞ��1 dy

�
Z x

0

Gð	þ �Þ
Gð	ÞGð�Þ y

	�1 dy

¼ Gð	þ �Þ
Gð	þ 1ÞGð�Þ x

	 as x ! 0

and then (A1) implies that

PðX > xÞ ¼ ~gðx=kÞ � Gð	þ �Þ
Gð�Þ ðx=kÞ�	 as x ! 1

[41] More generally, if we assume that smaller particles
travel farther (downstream fining) according to the model L =
k/Dq for some q > 0, then any grain size cdf withG(x) ∼Cxp as
x → 0 leads to a power law. To see this, let Y = Dq so that
F(y) = P(Y ≤ y) = P(Dq ≤ y) = G(y1/q). Now f(y) = F′(y) =
g(y1/q)y−1+1/q/q. Then equation (5) and a substitution y = rq

leads to

PðX > xÞ ¼
Z 1

0
e�xrq=kgðrÞ dr

¼
Z 1

0
e�xy=k f ðyÞdy

¼ ~f ðx=kÞ

and, since F(y) = G(y1/q) ∼ Cyp/q as y → 0, equation (A1)
yields

PðX > xÞ � Gð1þ p=qÞCðx=kÞ�p=q as x ! 1 ðA3Þ

For example, if the grain size follows a gamma pdf, and if
mean travel distance is related to grain size by L = k/Dq,
then we find a power law distribution of travel distance
with

PðX > xÞ � Gð1þ 	=qÞ
Gð1þ 	Þ �	ðx=kÞ�	=q as x ! 1 ðA4Þ

Here the power law tail index a/q depends on both the
grain size pdf and the model for mean travel distance.
[42] For the simple alternative model L = kD when larger

particles travel farther, equation (10) shows that the proba-
bility of a travel distance greater than x falls off like x−awhen
a is the shape parameter of the inverse gamma pdf for particle
size. Again, we may invoke equation (A1) to obtain the same
asymptotic result. First we generalize to the model L = kDq

used in section 3. Now any grain size cdf with 1 −G(x) ∼Cx−p

as x → ∞ leads to a power law. To see this, let Y = D−q so
that F(y) = P(Y ≤ y) = P(D−q ≤ y) = 1 − G(y−1/q). Now f(y) =
F′(y) = g(y−1/q)y−1−1/q/q and equation (5) along with a sub-
stitution y = 1/rq leads to

PðX > xÞ ¼
Z 1

0
e�x=krqgðrÞ dr

¼
Z 1

0
e�xy=k f ðyÞdy

¼ ~f ðx=kÞ

and, since F(y) = 1 −G(y−1/q) ∼ Cyp/q as y→ 0, equation (A1)
yields

PðX > xÞ � Gð1þ p=qÞCðx=kÞ�p=q as x ! 1 ðA5Þ

For example, if the grain size follows an inverse gamma pdf,
and if mean travel distance is related to grain size by L = kD,
then

1� GðxÞ ¼
Z 1

x

�	

Gð	Þ r
�	�1 exp ��

r

� �
dr

�
Z 1

x

�	

Gð	Þ r
�	�1 dr

¼ �	

Gð	Þ
x�	

	
¼ �	x�	

Gð	þ 1Þ as x ! 1

andwe find the same power law distribution of travel distance
as for the gamma pdf with the downstream fining model
(equation (A4) with q = 1). This is no coincidence, but rather a
result of the fact that, if D has a gamma pdf, then D−1 has an
inverse gamma pdf.

Notation

c fitting parameter used in linear regression between
L and D.

C theoretical fitting parameter used in exponential
particle size cdf.

D particle size.
dp pth quantile of the particle size pdf (p% of the particles

have diameter d ≤ dp).
fi size fraction i.
g gravitational acceleration.

g(r) pdf of grain size distribution.
~g(s) Laplace transform of g(r).
G(x) cdf of grain size distribution.

h water height above the weir.
k fitting parameter used in power regression between
L and D.

L mean travel distance.
p theoretical fitting parameter used in exponential

particle size cdf.
q fitting parameter used in power regression between

L and D.
Qb bed load transport rate.
Qbf sediment feed rate.
Qw water discharge.
t experimental run duration.

Tw temperature of the water.
Xi measured travel distance of particles of size frac-

tion i.
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xmax maximum possible travel distance.
X theoretical travel distance.
X′ normalized theoretical travel distance.
a fitting parameter of the gamma distribution func-

tion of particle size.
b fitting parameter of the gamma distribution func-

tion of particle size.
G gamma function.
l fitting parameter of the exponential distribution

function of travel distance.
m mean of the normal random variable lnD.
s standard deviation of the normal random variable

lnD.
rs solid particle density.
rw water density.
t* nondimensionalized shear stress.

t*ci critical Shields stress.
tb bed shear stress.
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