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a b s t r a c t

Previous work [Y. Zhang, M.M. Meerschaert, B. Baeumer, Particle tracking for time-
fractional diffusion, Phys. Rev. E 78 (2008) 036705] showed how to solve time-fractional
diffusion equations by particle tracking. This paper extends the method to the case where
the order of the fractional time derivative is greater than one. A subordination approach
treats the fractional time derivative as a random time change of the corresponding Cauchy
problem, with a first derivative in time. One novel feature of the time-fractional case of
order greater than one is the appearance of clustering in the operational time subordinator,
which is non-Markovian. Solutions to the time-fractional equation are probability densities
of the underlying stochastic process. The processmodelsmovement of individual particles.
The evolution of an individual particle in both space and time is captured in a pair of
stochastic differential equations, or Langevin equations. Monte Carlo simulation yields
particle location, and the ensemble density approximates the solution to the variable
coefficient time-fractional diffusion equation in one or several spatial dimensions. The
particle tracking code is validated against inverse transform solutions in the simplest cases.
Further applications solvemodel equations for fracture flow, andupscaling flow in complex
heterogeneous porous media. These variable coefficient time-fractional partial differential
equations in several dimensions are not amenable to solution by any alternative method,
so that the grid-free particle tracking approach presented here is uniquely appropriate.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Time-fractional diffusion equations are related to continuous time random walk (CTRW) stochastic processes with
infinite-mean waiting times between particle jumps. When 0 < γ < 1, a random waiting time W with a power-law
probability tail P(W > t) ∼ t−γ has an infinite mean, and this leads to a time-fractional derivative of the same order. See,
for example, the extensive review articles of Metzler and Klafter [1,2]. Power-law waiting times with tail index γ > 1 are
also commonly observed, including thewait between solar flares [3], wait between doctor visits (γ ≈ 1.4) [4], wait between
large price returns in the stockmarket (γ > 1) [5], wait between earthquakes (γ = 1.13 [6] and 1.66 [7]), andwait between
movement of contaminants in heterogeneous porous media (γ ≥ 1 [8] and γ ≈ 2 [9]). Recent work of Baeumer et al. [10,
11] and Becker-Kern et al. [12] extends the time-fractional diffusion equation and its underlying CTRW model to the case
1 < γ ≤ 2. Since a power-law waiting time with tail index γ has a positive finite mean, a two-scale limit procedure is
employed. The governing equation involves both a first derivative in time, and another time derivative of order γ . In case of
variable coefficients, analytical solutions are unavailable, motivating the development of numerical solvers.
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This study develops a particle tracking method for time-fractional diffusion equations (FDE) of order 1 < γ ≤ 2. The
grid-free Lagrangian solver is computationally more efficient than Eulerian approaches in solving realistic diffusions with
multiple dimensions and fine-scale details (for example, see [13–16]). The Lagrangian solution also reveals the dynamics of
particles undergoing complex diffusive process [17,18], and is the only viable solution method in some cases [19].
Particle tracking solutions for fractional diffusion equations with time derivative of order 0 < γ < 1 have been

considered recently by several authors [20–28,19]. These models are typically limited to a fractional time derivative of
index 0 < γ ≤ 1 [29–36]. The underlying CTRW model imposes a random waiting time Wi > 0 before each random
particle displacement Xi. If P(Wi > t) ∼ t−γ with 0 < γ < 1 then the sum Tn = W1 + · · · +Wn gives the time of the nth
particle jump, and the particle location at this time is Sn = X1 + · · · + Xn. In the scaling limit, the random walk of particle
jumps converges to a limit process, a Brownian motion if each Xi has zero mean, and finite variance. The random walk of
jump times also converges: c−1/γ T[cm] ⇒ D(m) ≥ 0 via the extended central limit theorem (CLT) for infinite variance
summands [32,37]. The number of particle jumps N(t) by time t > 0 is an inverse process {Tn ≤ t} = {N(t) ≥ n} with an
inverse scaling limit c−γN([ct])⇒ E(t)where {E(t) ≤ m} = {D(m) ≥ t}.
Typically the randomwalk of particle jumps has a Brownianmotion scaling limit c−1/2S[ct] ⇒ At . Then the CTRWparticle

location SN(t) at time t > 0 has scaling limit c−γ /2SN(ct) ⇒ AE(t) with the time index replaced by the non-Markovian
inverse stable subordinator E(t). The probability density function u(x, t) of the CTRW scaling limit x = AE(t) solves a time-
fractional diffusion equation (∂/∂t)γ u = Luwhere the Caputo derivative in time is used, and the spatial derivative operator
is L = D∂2u/∂x2, see [37]. Particle tracking codes for time-fractional diffusion equations with 0 < γ < 1 trace the path
of a particle AE(t) over time and space. One alternative is to simulate the CTRW, but simulation of the limit process is more
efficient andmore accurate. A useful observation is that x = Am and t = D(m) are Markov processes in the operational time
variablem, leading to a very efficient code [19].
If particle jumps Xi have a nonzero mean, the traditional CLT requires that the mean jump undergoes linear rescaling,

and the deviation from the mean is subject to square root rescaling. The resulting random walk limit for the particle jumps
is a Brownian motion with drift, and the time-fractional diffusion equation uses Lu = −v∂u/∂x + D∂2u/∂x2. Note that
the two spatial scales result in two x-derivative terms. If particle jumps have a power-law probability tail P(Xi > x) ∼ r−α
then the random walk limit for the particle jumps is an α-stable Lévy motion, and the space-fractional operator appears:
Lu = D∂αu/∂xα . A large class of time-fractional diffusion equations of the form (∂/∂t)γ u = Lu can be solved by particle
tracking, using an appropriate particle motion process Am corresponding to L, and the same E(t) subordinator [19].
If 1 < γ ≤ 2 then the subordinator in the CTRW limit is more complicated: the mean wait and the deviation from that

mean have to be normalized separately [12]. The time limit process is a γ -stable Lévy motion with positive drift D(m), its
mean exists since γ > 1, and there is a small probability that D(m) < 0. Of course there are no negative waiting times,
but there are short waiting times less than the mean, the deviation is negative, and these can accumulate in the limit [12].
Rescaled CTRWwaiting times can be positive or negative, since the mean is subtracted. If τi is the sum of the first i rescaled
waiting times, then Tn = max{τ1, . . . , τn} represents the time of the nth particle jump. The effect is that particle jumps
cluster, with a random cluster size equal to the number of consecutive negative rescaled waiting times. The N(t) scaling
limit is M(m) = sup{D(m′) : 0 < m′ < m} with inverse process E(t), and the CTRW scaling limit is again AE(t). The two
time scales lead to a fractional diffusion equation that involves a pair of time derivative terms.
This paper develops a particle tracking code for time-fractional diffusion equations with 1 < γ ≤ 2. The code tracks

particles AE(t) over time and space by simulating x = Am and t = M(m) in operational time, extending the approach of [19].
One added complication is that the operational time t = M(m) is no longer Markovian. However, since it is the supremum
of the Markov process D(m), it can be efficiently simulated. Section 2 develops the Lagrangian particle tracking approach,
by developing the Langevin equations for the underlying Markov processes. Numerical verifications are given thereafter in
Section 3. In Section 4, the code is applied to space–time-fractional groundwater flow equations in multiple dimensions,
which cannot be solved by other known methods. This also demonstrates the ability of these equations to model upscaled
solute transport for complex heterogeneous porous media. Finally some conclusions are summarized in Section 5.

2. Stochastic process model for particle tracking

Particle tracking codes depend on the relationship between fractional diffusion equations and the underlying stochastic
processes. Meerschaert and Scheffler [38] show that the random walk of particle jumps has a scaling limit x = Am whose
probability density p(x,m) has Fourier transform p̂(k,m) = emL̂(k) =

∫
e−ikxp(x,m)dx. Here L̂(k)p̂ is the Fourier transform

of Lp. For example, if the random walk has jumps with mean zero and finite variance, the scaling limit x = Am is a
Brownian motion, its Gaussian probability densities p(x,m) solve a diffusion equation ∂p/∂m = Lpwith L = D∂2/∂x2, and
L̂(k) = −Dk2 = D(ik)2. Then p̂(k,m) = e−mDk2 and the diffusion equation follows from inverting dp̂/dm = L̂(k)p̂, using
the fact that (ik)p̂ is the Fourier transform of ∂p/∂x. If particle jumps Xi have a nonzero mean, the traditional CLT requires
two scales, one for the mean and another for deviations from the mean. The random walk limit x = Am is a Brownian
motion with drift, and the governing equation uses L = −v∂/∂x+D∂2/∂x2. Note that the two spatial scales result in two
x-derivative terms. For randomwalk jumpswith a power-law probability tail P(Xi > x) ∼ x−α where 0 < α < 2, the scaling
limit is an α-stable Lévy motion x = Am. Its density has Fourier transform p̂(k,m) = emL̂(k) where L̂(k) = D(ik)α , so that
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L = D∂α/∂xα and the density solves a fractional diffusion equation ∂p/∂m = Lp. If the heavy tailed jumps have a nonzero-
mean value, then a two-scale limit leads to anα-stable Lévymotionwith drift, whose Fourier symbol L̂(k) = −v(ik)+D(ik)α
corresponds to the space-fractional diffusion operator L = −v∂/∂x+D∂α/∂xα .
Becker-Kern et al. [12] show that, when waiting times between particle jumps have a power-law tail P(Wi > t) ∼ t−γ

for 1 < γ ≤ 2, the scaling limit t = D(m) for the random walk of waiting times has probability density function g(t,m)
with Fourier transform ĝ(λ,m) = e−mψ(λ) =

∫
e−iλtg(t,m)dt . Here ψ(λ) = iλ − a(iλ)γ so that dĝ/dm = −ψ(λ)ĝ =

−(iλ)ĝ + a(iλ)γ ĝ . This inverts to

∂g(t,m)
∂m

= −
∂g(t,m)
∂t

+ a
∂γ g(t,m)
∂tγ

(1)

where ∂γ g/∂tγ is the Riemann–Liouville fractional derivative, which can be defined as the inverse Fourier transform of
(iλ)γ ĝ . The point source initial condition ĝ(λ,m) ≡ 1 ensures that D(0) = 0 with probability one. The inverse process
E(t) = inf{m > 0 : M(m) > t} where M(m) = sup{D(m′) : 0 ≤ m′ ≤ m} as explained in Section 1. A lengthy Laplace
transform argument in Baeumer et al. [10] shows that the probability density h(m, t) of the inverse processm = E(t) solves

∂

∂m
h(m, t) = −

∂h(m, t)
∂t

+ a
(
∂

∂t

)γ
h(m, t)+ δ(t)f (m) (2)

where the Caputo fractional derivative (∂/∂t)γ h(m, t) is the inverse Laplace transform of sγ h̃(m, s) − sγ−1h(m, 0) and
h̃(m, s) =

∫
∞

0 e
−sth(m, t)dt . The boundary condition f (m) in operational time is uniquely determined by a, γ , see Baeumer

et al. [10,11] for more details.
The probability density u(x, t) of CTRW limit process x = AE(t) can be computed by conditioning:

u(x, t) =
∫
∞

0
p(x,m)h(m, t)dm (3)

where t denotes clock time, and m denotes operational time. Informally, Eq. (3) expresses P(AE(t) = x) =
∑
m P(Am =

x)P(E(t) = m) as a sum over operational time. The first term under the sum models particle motion in the absence of any
delays. The second is the operational time. The operational time density h(m, t) in (3) acts as a transfer function that accounts
for the time a particle spends in motion [39,40], so that the density u(x, t) at clock time t is a weighted average of densities
p(x,m) at each operational time m. The operational time process m = E(t) links the clock time t and its operational time
counterpartm via the time-subordination principle [10,32,41]. Becker-Kern et al. [12] and Baeumer et al. [10] show that the
density u(x, t) of the CTRW scaling limit x = AE(t) solves

− a
(
∂

∂t

)γ
u(x, t)+

∂u(x, t)
∂t

= Lu(x, t)+ r(x)δ(t) (4)

with a point source initial condition, where (∂/∂t)γ is the Caputo fractional derivative, and r(x) depends only on a, γ , and
L. To reconcile (4) with (2) simply note that L = −∂/∂x corresponds to the simplest (time-fractional wave equation) case
x = Am = m.
The Lagrangian approximation of the motion process x = Am for classical diffusion L = D∂2/∂x2 is well known. For

space-fractional diffusion, the correct Lagrangian form has been given recently by Zhang et al. [42,43]. It remains to develop
a Lagrangian approximation for the operational time process m = E(t). Our approach is similar to the case of a time-
fractional diffusion with 0 < γ < 1, which was addressed in [19]. Recall from Section 1 that the operational time process is
the inverse to themaximumprocessM(m) = sup{D(m′) : 0 < m′ < m}, whereD(m) is the scaling limit of the randomwalk
of waiting times. Then D(m) is a Markov process, for which we can develop a Langevin equation. The probability density
g(t,m) of the γ -stable Lévy motion t = D(m) solves the fractional diffusion equation (1). Since this equation has exactly
the same form as the space-fractional diffusion equation considered in [42,43], we can use the samemathematical approach
to obtain the Langevin stochastic differential equation for this Markov process. Following the same argument as in [42], we
find that (1) is the forward equation for the Markov process

dT = dm+ sign
(
−a cos

πγ

2

)
dw, (5)

where the second term on the RHS is a rescaled stable random noise

dw =
(
−adm cos

πγ

2

)1/γ
Sγ (β∗ = +1, σ = 1, µ = 0), (6)

and the sign function sign(χ) = +1 if χ ≥ 0, otherwise −1. Sγ (+1, 1, 0) is a standard stable random variate in the
Samorodnitsky and Taqqu [44] parameterization (with β∗, σ , and µ denoting the skewness, scale, and shift, respectively).
Note that the random process t = D(m) is the sum of dT at each jump. Since the sign function in (5) is always +1, the
Time-Langevin equation (5) simplifies to

dT = dm+ dw. (7)
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If dT is regarded as the waiting time during each jump, then (7) shows that the waiting time can be separated into two
parts: the mean wait (dm) and the deviation from the mean (dw). The deviation dw is negative if the γ -stable noise Sγ is
negative.
The simplified Time-Langevin equation (7) is analogous to the case 0 < γ < 1 (take b = 0 in (6) of [19]). When

0 < γ < 1, the mean of the stable is undefined, the dm disappears, and dw = dT . The main difference is that we always
have dw > 0 when γ < 1, so that we can compute the inverse process more simply. In the present case where γ > 1, we
need one extra step. We begin by simulating the Langevin sample path (7) to get Ti =

∑
j≤i dTj where dTj = dmj + dwj.

The increments dmj = dm are all equal steps in operational time. The dwj are simulated stable random variables with mean
zero and index γ following (6). To get the inverse, we first compute the maximum ti = max{T1, . . . , Ti}. Then ti = M(mi)
where mi = i dm in equal operational time steps. The inverse process mi = E(ti) in unequal, random increments of clock
timewhose length depends on the random dwi. In a similar manner, we follow the Langevin approach in [42] to get xi = Ami
for the same equally spaced steps in operational time. Then the points (ti, xi) trace out the graph of the random sample path
x = AE(t) as required. To summarize, the Lagrangian framework to approximate (4) contains the following four steps:
Step 1. Calculate dTi based on a pre-defined operational time step dm. First, use (6) to generate the random number dwi.

Then use (7) to get dTi.
Step 2. Calculate the particle jump dXi (a vector for the multiple dimension FDE) in the operational time dm. Note that

the particle movement in operational time is Markovian. Examples will be shown in the next two sections.
Step 3. Repeat Steps 1 and 2, and compute Ti =

∑
j≤i dTj and xi =

∑
j≤i dXj. Then let ti = max{T1, . . . , Ti}.

Step 4. Output particle location xi at the corresponding clock time ti.
By repeating the four steps until ti ≥ Tend for a large number of particles, and then creating a histogram of the results,

we obtain a solution of the time-fractional diffusion equation (4) when 1 < γ ≤ 2. Since the clock time points are random,
it is necessary to interpolate to obtain the solution at any given time point t . This Lagrangian framework marches forward
in both time and space, as a function of the synthetic variable, operational time.

3. Operational time density

Numerical tests were performed to validate the random walk particle tracking scheme developed in Section 2. We first
consider particle tracking solutions to Eq. (2) for the operational time density h(m, t), which can be compared to inverse
Fourier transform solutions [10,11].
The Lagrangian solver developed above does not calculate the operational time density directly, but rather it simulates

the sample path in operational time for each particle. Fig. 1(a), (b) illustrates the operational time simulation. The figure
shows three realizations of the operational time processm = E(t) for two different values of γ . Note the equal increments
in the operational time variable, whichwas chosen to be rather large for purposes of illustration. The horizontal segments in
the graph are caused by large positive jumps dw. The vertical segments occurwhen the increment dT = dm+dw is negative,
so that the max process stays constant. Although we plot mi = E(ti) in the graphs, the simulation directly generates the
process ti = M(mi), and then the axes are inverted to reveal the inverse process. Fig. 1(c), (d) shows the simulated particle
density from a histogram of 10,000 particles. The symbols are the particle tracking solutions of (2) and the curves are the
semi-analytical solutions to the same equation, obtained by inverse Fourier transforms (IFT). It is apparent that the particle
tracking solutions are in good agreement with the semi-analytical solutions.
Fig. 2 illustrates solutions of (2) for the special case γ = 2. Note that this is equivalent to solving the time-fractional

diffusion equation (4) in the case L = −∂/∂xwhich corresponds to x = Am = m (time-fractional wave equation). Here the
generation of the stable random variable dw defined by (6) can be simplified as

dw = ξ
√
2adm, (8)

where ξ is a uniform random number with mean zero and variance 1. The summation of dw is approximately Gaussian.
As a further check, we repeated this experiment with a normally distributed random variable dw with zero mean and unit
variance, using the function ‘‘gasdev’’ in [45] (page 280). No improvement was apparent (examples are not shown here),
and thus we suggest using (8), which is somewhat more efficient.

4. Applications

To further investigate the applicability, flexibility, and efficiency of the Lagrangian solver for real diffusive process, we
apply particle tracking to simulate solute particle transport through heterogeneous porous media and fractured aquifers.

4.1. Case 1: Solute transport in 2D fracture networks

Ensemble solute transport through 2D regional-scale discrete fracture networks can be characterized by a space and
time FDE model, as concluded by Reeves et al. [46]. Large jumps occur for particles traveling along interconnected, high-
permeable fractures,while the particles can also be trapped in the surrounding low-permeablematrix. An efficient simulator
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Fig. 1. Graphs (a) and (b) show three sample paths of the operational time processm = E(t). For illustration purpose, a large operational time step dm is
used. Graphs (c) and (d) show the density h(m, t) of operational time computed via particle tracking (symbols) and inverse Fourier transforms (lines).
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Fig. 2. Particle tracking solution (symbols) versus IFT solution (lines) for the FDE (4) with L = −∂/∂x and γ = 2 at t = 10. Graph (b) is the linear–linear
plot of (a). The variable nt is the total number of time steps.

for such combined super- and sub-diffusive process is needed. We propose the following multiscaling FDE:(
−a

∂γ

∂tγ
+
∂

∂t

)
u(Ex, t) = D∇H

−1

M(dθ)u(Ex, t)+ r(Ex)δ(t), (9)

where D is the dispersion coefficient, H is the scaling matrix, and M(dθ) is the mixing measure [43]. The operator on the
right-hand side is a multiscaling fractional derivative in space, see Schumer et al. [47]. In short, the model assumes power-
law particle jumps where M(dθ) is the probability distribution of the radial jump direction, and the eigenvalues of H give
the tail index α for jumps in the corresponding eigenvector direction, so that the probability of a jump longer than r in this
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a b

c

Fig. 3. Case 1: Conceptual model of a 2D fracture network (a), the corresponding model parameters (b), and particle tracking solutions (c) to the model
equation (9) with γ = 1.5, a = 0.5, andD = 1 at time 0.1, 1, and 10, respectively. Initial source location is (0, 0).

direction falls off like r−α for r large. In the application to fracture flow, the mixing measure codes the fracture orientation,
and the matrix H codes fracture length and aperture.
Step 2 of the Lagrangian solver is to simulate the particle jump process. The particle tracking code represents a random

jump length in the radial direction dθi during operational time step dm as [43]

Ri =
(
−Ddm cos

παi

2

)1/αi
Sαi(1,+1, 0), (10)

where αi is the scale index of Lévy motion along angular dθi. The radial jump direction at each operational time step is
randomized according to themixingmeasure (for details, see [43]). This produces a suitable approximation of the underlying
operator stable jump, see for example Meerschaert and Scheffler [48].
Fig. 3 illustrates a conceptual example application of this fracture flowmodel. The fracture network consists of two groups

of fractures along different orientations (Fig. 3(a)), represented by two point masses in the mixing measure, as shown in
Fig. 3b. The simulated 2D particle density u shows both the evolution of solute plume along the fractures and the retention
of particles near the source (Fig. 3(c)).
Note the transport parameters in (9), includingD andM(dθ), can be space dependent, due to local variations in aquifer

properties [9]. The jump size (10) can easily handle spatial variation of these parameters. We are not aware of any other
numerical method that can solve equation (9) with spatially variable coefficients.

4.2. Case 2: Upscaling solute transport in heterogeneous porous media

A detailed Monte Carlo simulation was used to simulate a complex porous medium with regional-scale heterogeneity
(facies) as well as small- to medium-scale heterogeneity in material properties and structure. The method used is the same
as Zhang et al. [9], but here the actual spatial distribution of aquifer heterogeneity differs, since different model parameters
are used. A classical advection–dispersion solver is used to obtain plume behavior in this simulated aquifer, and then we
apply a much simpler upscaled fractional diffusion model that approximates the same plume behavior. This demonstrates
the ability of fractional diffusion equations to simplify complex anomalous diffusion.
We built 100 different, equally possible, hydrofacies models representing a coarse-grain dominated alluvial system.

Fig. 4 illustrates one such system. The transition probability geostatistics approach developed by Carle and Fogg [49,
50] was selected to generate the facies models. A 3D steady-state modeling approach was used to simulate velocity
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Fig. 4. 3D view of synthetic hydrofacies model. For visualization purpose, a different scale is used for each axis.

Fig. 5. Case 2: Plume concentration snapshots at t = 10, 20, 30, and 40 yr respectively, in the direction of flow. DetailedMonte Carlo numerical simulations
(symbols) of the second-order advection–dispersion equation versus the best-fit Lagrangian approximations (lines) via the FDE (11) with γ > 1. The FDE
is an upscaling model for the more complex Monte Carlo plumes. See the text for model parameters.

distributions in the aquifer with the finite difference code MODFLOW [51]. Transport simulations employed the random
walk particle method described by LaBolle et al. [18,52]. The motion of particles was simulated by the classical, second-
order advection–dispersion equation. Except for the hydrofacies models, the other set-up, including model boundary and
initial conditions and flow and transport parameters, are the same as those used by Zhang et al. [9].
The simulated Monte Carlo particle concentration (after normalization) at each sampling cycle is the ensemble average

of 100 realizations. The following time-fractional diffusion equation is then used to fit the Monte Carlo plumes along the
longitudinal flow direction:(

−a
∂γ

∂tγ
+
∂

∂t

)
u(x, t) = −

∂

∂x

[
Vu(x, t)−D

∂u(x, t)
∂x

]
+ r(x)δ(t), (11)

where constant velocity V and dispersivityD is used. Eq. (11) is an upscaling model that simplifies the complex structure
of the synthetic aquifer, which would otherwise be represented by a highly complex velocity and dispersivity field.
The four-step Lagrangian algorithm from Section 2was used to solve (11). Here themotion process in Step 2 is calculated

by

dX = Vdm+ [2Ddm]1/2 ξ (12)

where ξ is a uniform random number with mean zero and variance 1.
The first snapshot along the longitudinal direction (or Y -axis in Fig. 4) at time 10 years provides the best-fit parameters

γ = 1.2, a = 9.0 yrs0.2, V = 19m/yr, andD = 34m2/yr. The same values were then used in the upscaling equation (11) to
model the remaining snapshots. Results show that the Lagrangian solutions of themodel equation (11) provide a surprisingly
good approximation to the Monte Carlo results (Fig. 5). We conclude that the time-fractional diffusion equation provides
a simple and accurate predictive model for upscaling plume behavior in complex aquifers that exhibit heterogeneity at
multiple scales. In this application, the time-fractional derivative models a power-law waiting time P(W > t) ∼ t−γ for
particle retention.
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5. Conclusions

A diffusion equation with a fractional time derivative of order 1 < γ ≤ 2 governs the scaling limit of a decoupled
continuous time random walk (CTRW) with power-law waiting times. The CTRW scaling limit can be decomposed into a
motion process and an operational time process. Each process can be simulated by building a Langevin equation, and the
combination results in a fully Lagrangian solver of the time FDE. Resting periods of the operational time process correspond
to simultaneous particle jumps in the underlying CTRW. The resulting particle tracking code for time-fractional diffusion
equations of order 1 < γ ≤ 2 is validated against semi-analytical inverse Fourier transform solutions, in the simplest cases
where these alternative solution methods are viable. Illustrative applications demonstrate the ability of this time-fractional
diffusion equation and its random walk approximation to model multidimensional fracture flow, and to provide a simpler
approximation for upscaling flow and transport in complex porous media with heterogeneities at multiple scales.
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