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Abstract: This chapter reviews the Lagrangian solvers developed in the last two
decades for fractional differential equations (FDEs). Both the Langevin approach
and the fractional Lévy motion define dynamics of random walkers, whose den-
sity solves theFDE. For the vector FDEs, amultiscaling compoundPoissonprocess
can track trajectory of particles moving along arbitrary directions with direction-
dependent scaling rates. Randomwalk particle tracking (RWPT) schemes, includ-
ing streamline projection and flow subordination, are also needed to track par-
ticles whose mechanical dispersion follows streamlines. Particle paths affected
by boundaries can also bemodeled using RWPT, leading to a fully Lagrangian ap-
proximation for the vector spatiotemporal FDEswith streamline-dependent super-
diffusion in domains of any size and boundary conditions, as required by real-
world applications.

Keywords: Fractional differential equation, Lagrangian, Random walk particle-
tracking
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1 Introduction
Fractional differential equations (FDEs) built upon fractional calculus, a mathe-
matical tool initiated by Leibniz and Liouville [22, 24], have been proposed by the
physics community and remain as an active area of research to simulate the ubiq-
uitous anomalous diffusion for three decades [20, 21]. The FDEs use fractional
derivative in time or space to capture the extremely long-term correlation of indi-
vidual particle waiting times and/or motions. Analytical solutions are not avail-
able for most FDEs, motivating the development of numerical methods. Among
these numerousmethods, the Lagrangian solver built upon randomwalk particle-
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tracking (RWPT) is relativelynewandexhibits promisingapplicability in theEarth
sciences, where many geological materials, such as water, chemicals, sediment,
rocks, soil, and glacial, can be represented by “particles”.

RWPT yields a grid-free, fully Lagrangian solution by simulating sample
paths of the underlying stochastic process for the target material without mod-
ifying (such as truncating or discretizing) the governing equation. Solutions to
constant coefficient FDEs are Lévy motions, whose α-stable densities [26] are
the scaling limits of random walks with power-law transition probabilities [19].
Hence, by tracking the trajectory of random-walking particles whose jump sizes
and/or waiting times follow heavy tailed distributions, one solves the FDE. RWPT
increases computational efficiency for large-scale flow systems with fine mesh
[28], overcomes grid-average error for simulating a sharp density front [12], re-
tains minimal numerical dispersion [11], has easy implementation, and near
linear scaling on parallel computers, due to computational expense that depends
on independent particle numbers rather than grid dimensions [9]. Most impor-
tantly, RWPT decomposes real-world dynamics into major components of particle
jumps, which helps interpret the driving mechanisms, estimate effective param-
eters in a parsimonious model, and understand better the nature of the complex
process. These advantages of the Lagrangian solver have motivated the recent
development of particle-based approximations for the FDEs.

This study reviews the fundamental methodology of Lagrangian approx-
imations for FDEs in the last two decades. Future research directions for the
Lagrangian solver will also be identified. During the review, we will also focus
on RWPT required by hydrological applications. The solid Earth system contains
multi-scale heterogeneity, which motivates various heavy-tailed dynamics and
provides an ideal base for the application of FDEs. Many moving targets in the
Earth sciences can be regarded as particles, whose trajectories and dynamics can
be described by the RWPT following specific FDEs [36].

2 Random walk particle tracking schemes

2.1 History and RWPT for 1-d FDEs

The RWPT has a long history in solving the advection-dispersion equation (ADE)
by hydrologists to describe pollutant transport in aquifers [1, 12, 27, 29]. Other ran-
domwalkmethods developed by computational physics and engineering commu-
nities include lattice gas and lattice Boltzmann approaches, the use of particles
for numerical thermodynamics, stochastic properties of perfect gases, andmolec-
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ular simulations in theoretical chemistry, which usually focus on different scales
and will not be discussed here. Random walk solutions of the ADE typically de-
pends on an analogy between the ADE and the forward equation for the associ-
atedMarkov process. The forward equation,whichprovides a Lagrangiandescrip-
tion of particlesmovingunder specificMarkov processes, is usually derived by the
Langevin approach [25].

The Langevin approach is the first grid-free, formal Lagrangian solver devel-
oped to approximate the one-dimensional (1-d) space FDE with constant or con-
tinuous parameters [30], after the pioneer work of Chechkin and co-workers [3, 4],
whomodeled 1-d fractional Lévymotion using randomwalkers, andGorenflo et al.
[6], who proposed a discrete random walk model after replacing the space/time
FDEs by finite-difference equations. Gorenflo et al. [7, 8] then extended their dis-
crete random walk model to a 1-d continuous time random walk (CTRW) model,
by subordinating the random walk to a renewal process. Marseguerra and Zoia
[14, 15, 16] developed aMonte Carlo approach to model sub-diffusion across a dis-
continuity of parameters in 1-d. Zhang et al. [33] developed an empirical reflection
scheme to track particles undergoing super-diffusion across an interface with dis-
continuous parameters. Heinsalu et al. [10] developed a CTRW scheme for the 1-d
time fractional Fokker-Planck equation (FFPE). Magdziarz and Weron [13] devel-
oped a robust Monte Carlo approach to solve the 1-d spatiotemporal FFPE. A brief
review of the Langevin approach for 1-d space and time FDEs is given in Appendix
A.

2.2 Compound Poisson process for solving vector FDE

Many real-world transport problems require a vector FDE with variable parame-
ters and multiscaling spreading rates, motivating the multi-dimensional RWPT
approach based on the compound Poisson process [31, 32]. Themultiscaling, frac-
tional advection-dispersion equation (FADE) takes the form [17]:

(b ∂
∂t + β

∂γ
∂tγ ) p( ⃗x, t) = − [∇ ⋅ (V(x⃗) + ∇H

−1−I
M(dθ)D(x⃗))] p(x⃗, t) + βt−γ

Γ(1 − γ)p0(x⃗) , (1)
where b ≥ 0 and β ≥ 0 are arbitrary parameters, 0 < γ < 1 is the order of the
Riemann-Liouville (R-L) fractional time derivative, p is a PDF, V is the velocity
vector, D is the dispersion coefficient, p0(x) denotes the initial condition, H−1 is
the inverse of the scaling matrix providing the order and direction of the space
fractional derivatives, I is the identity matrix, andM(dθ) is the mixing measure.

The RWPT approximation of model (1) contains two components: jumping in
space and waiting in immobile zones. The individual jump vector of each particle
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at time step i, which is essentially a multiscaling compound Poisson process, can
be calculated by [31]:

Z⃗(τ) =
[τ/dτ]
∑
i=1

x⃗i =
[τ/dτ]
∑
i=1

RH
i ⋅ θ⃗i , (2)

where Z⃗(τ) represents the particle location at operational time τ, [τ/dτ] is the
number of random jumps by time τ using the step size dτ, Ri is the random length
of the ith jump with the jump direction θ⃗i drawn independently from the mix-
ing measure M(dθ) in Eq. (1). The matrix RH is anisotropic to allow direction-
dependent jump sizes. If the eigenvectors of H are orthogonal (representing per-
pendicular growth directions for particles), the random displacement along the
kth eigenvector of H (with the jump length probabilities fall off as P(R1/αk > r) ∝
r−αk ) can be calculated by:

R1/αk = [D(xk) cos
παk
2
 dτ]

1/αk
dLαk + [(αk − 1)

 cos
π(αk − 1)

2


× dτ]1/(αk−1) Θ 
∂D
∂xk


1/(αk−1)

dLαk−1 , (3)

where Θ = 1, −1, and 0 if ∂D/∂xk > 0, < 0, and 0, respectively; dLαk and dLαk−1
denote the αk- and αk − 1-order standard stable random variables with the maxi-
mum skewness, scale one, and zero shift.

If the scaling matrix H contains nonorthogonal eigenvectors such as plume
growing in a fractured aquifer with nonorthogonal fracture orientations, the mix-
ingmeasure and the scalingmatrixwould have the same directions, and the jump
vectors R1/αk along each eigenvector are independent [32].

In the second step, the operational time can be simulated as the number of
renewals by time T > 0 for a given waiting time distributionwith power-law prob-
ability tails:

dT = b dτ + [β cos
πγ
2
 dτ]

1/γ
dSγ . (4)

where dSγ is a γ-order, standard stable random variable. Note here the particle
motion is not instantaneous, and thus we can distinguish the status (mobile or
immobile) for each particle at any given time. This distinction is critical in mod-
eling field-measured plumes, since the sampling process tends to collect mobile
solutes preferentially.

Numerical examples of the above RWPT are shown in Figure 1, where the La-
grangian solutions generally match the other numerical solutions. It is also note-
worthy that the mixingmeasure and scalingmatrix defined in the vector FADE (1)
provides a convenient way to capture complex diffusion in a system with limited
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Fig. 1: Comparison of numerical solutions for the FADE (1). Case 1 (modified from [31]): the RWPT
solution (a) vs. the implicit Euler finite difference solution (b) for the FADE (1) with orthogonal
eigenvectors in the scaling matrix H. Case 2: Polar plot of the discrete mixing measure show-
ing four directions and weights (c) and the RWPT solution vs. Nolan’s [23] multivariate stable
distribution (i.e., H with nonorthogonal eigenvectors).

information in local velocities. This feature can be useful in hydrologic sciences,
since many field sites have only limited subsurface information and can only pro-
vide a coarse resolution of the actual velocity field.

2.3 Vector FDE with space-dependent mixing measure

The above RWPT considers a constant mixing measure M(dθ) in the FADE (1),
while real-world diffusion may require a variable M(dθ). Mechanical dispersion
in natural geological media represents the local variation of transport speed de-
viating from the mean velocity. The dispersion tensor in classical Fickian disper-
sion is usually alignedwith the velocity vector, whose orientationmay not remain
constant but can change with the medium’s internal architecture and/or external
forcing. Generalizing to super-diffusion, the eigenvectors of the fractional deriva-
tive and theweights in themixingmeasurewill not be fixed in space, butmay vary
with streamlines. One example is the ancient, interconnected braided river chan-
nels (i.e., the direction of channels fluctuates in space) in alluvial deposits, which
form themajor preferential flow paths for super-diffusive solutes. The other exam-
ple is the regional-scale fractured rock masses whose orientation can change in
space due to the change of stress fields and tectonic dynamics. Both media can
motivate super-diffusion with a space-dependent mixing measure.

Here we define a streamline-dependent mixing measure, with the mean flow
advected along streamlines. The streamline projection approach proposed by
Zhang et al. [31] can track the resultant particle motion. One example is shown
in Figure 2. During each jump, we assign a random jump length L, and a random
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Fig. 2: Particle plumes for the ADE (b) and the vector FADE (1) (c), given the streamline-
dependent operator stable parameters defined in (a). The direction of V shows the mean flow
direction. 10,000 particles were released at the point showing with a diamond. Plots (d) and (e)
show the particle plumes of RWPT along streamlines, where the vector FADE (1) has parameters
α = 1.8, β = 0, and time t = 5.

Fig. 3: Application of the FADE (1) with a variable mixing measure for the MADE site: the mea-
sured Bromide plume at day 503 (a), the best-fit three zone mixing measure with seven discrete
directions and weights (b), and the RWPT plume (c) (modified from [32]).

direction θ according to the local velocity vector and the local mixing measure.
Then the particle’s displacement L is projected to adjacent streamlines, along the
angle θ. The angle θ is then adjusted to the new direction of v(x) and the particle
is reprojected in the next jump. The FADE (1) with a variable mixing measure was
found to capture the expanded, fan-shape plume observed at the well-known
MADE test site, an alluvial aquifer in Mississippi (Figure 3) [32].

The above RWPT can be simplified if the mechanical dispersion is assumed
to follow the stable distribution and particle super-diffusion follows exactly the
streamlines. These two fundamental assumptions lead to the subordination to
general flow model [2]:

(b ∂
∂t + β

∂γ
∂tγ ) p = −∇V⃗ p + σ∗(∇V⃗)αp + ∇[D∗∇p] +

βt−γ
Γ(1 − γ)p0(x⃗) , (5)
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Fig. 4: Particle plumes for bimolecular reaction A + B → C calculated by RWPT (snapshots at
time t = 5): Single-rate mobile-immobile transport model, with rate coefficient 1 and capacity
coefficient 1 (a). Time FADE (5) with factor σ∗ = 0, capacity coefficient β = 0.1, and the time
index γ = 0.1 (b) and 0.5 (c). The full FADE model (5) with the space index α = 1.6, β = 0.1,
and γ = 0.1 (d). Reactants A and B and the product C are represented by grey, black, and red
particles, respectively.

where the advection operator ∇V⃗ is defined via ∇V⃗ = ∇(V⃗p), σ∗ is a scalar fac-
tor, and D∗ is the molecular diffusivity. Model (5) shows that the density change
is due to the advective flux ∇V⃗ p, the subordinated mechanical dispersive flux
σ∗(∇V⃗ )αp, and the molecular diffusive flux ∇[D∗∇p]. In saturated porous me-
dia, super-diffusion due to fast motion of dissolved chemicals along preferential
flow paths does not deviate from v(x) (with a certain angle) but follow exactly
the streamlines. This subordinated flow model improves the computational effi-
ciency of the RWPT scheme, allowing additional processes (such as bimolecular
reactions) to be added to particle tracking. One example is shown in Figure 4,
where the Lagrangian solver calculates multi-scale reactive transport with small-
scale chemical reactions and large-scale non-Fickian diffusion [34].

2.4 Bounded fractional diffusion

Natural processes are usually bounded, motivating the FDE and its Lagrangian
solver in bounded domains. Zhang et al. [35] defined nonlocal boundary condi-
tions and then developed a Lagrangian solver to approximate bounded, 1-d frac-
tional diffusion, which can be extended to multiple dimensions using the RWPT
schemes reviewed above. Zhang et al. [35] showed that, to define Neumann and
mixed Robin boundary conditions, the sign of R-L fractional derivative should re-
main consistent with the sign of the fractional-diffusive flux term in the FDE; oth-
erwise the boundary value problem becomes ill-posed. Care is also requiredwhen
approximating particle dynamics around the reflective boundary, where the exit-
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ing particles can be either reflected (symmetrically) back to the internal domain
for (local and symmetric) Fickian diffusion, or relocated at the boundary for (the
nonlocal and nonsymmetric) fractional diffusion so that the reflected particles
will not alter the overall dynamics of transport in the domain.

3 Future research directions
The low resolution in solution is one of the historical shortcomings for particle-
based solvers. A large number of particles are required to reliably capture the
large jump or long trapping for particles. To solve this issue, Allouch et al.
(https://arxiv.org/pdf/1707.03871.pdf) developed particle-based, smooth parti-
cle approximations, which can obtain fine-resolution solutions for 1-d space FDE
with constant parameters. This approach, similar to smooth particle hydrodynam-
ics, requires collections of particles to discretize the domain and therefore can
be computational demanding. Another approach is to assign variable weights for
particles located at different positions, and hence the resolution at low density
regions may be improved without significant additional calculation.

RWPT algorithms for variable-order FDEs are also needed. Natural geological
media can contain nonstationary heterogeneity, and water flow in aquifers and
streams can change daily or seasonally, motivating the application of the FDEs
with spaceand timedependent indexes. The correspondingLagrangian solver has
not been fully developed. In addition, natural processes can involve multi-scale
dynamics, motivating the rapid development of multi-scale physical models. The
multi-scale FDE and its Lagrangian solver remain to be shown.

4 Conclusion
We reviewed the fully Lagrangian solver to approximate the fractional differen-
tial equations. For the 1-d FDE, both the Langevin approach and the fractional
Lévymotion candefineparticle dynamics andguide theparticle tracking schemes.
For the vector FDEs with a constant mixing measure, the multiscaling compound
Poisson process can be used to track particles moving along arbitrary directions
with direction-dependent scaling rates. Real-world transport, however, may re-
quire a space-dependentmixingmeasure in theFDE,which canbemodeledby the
streamline projection and flow subordination methods in RWPT. Particle’s trajec-
tories affected by Dirichlet, Neumann, or mixed Robin boundary conditions can
also be tracked using RWPT algorithms, leading to a fully Lagrangian approxima-
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tion for the vector spatiotemporal FDEs with super-diffusion along streamlines
in domains with any size and boundary conditions, as required by hydrological
applications.

A Langevin approach for 1-d FDEs
We start with the forward equation, derive the backward equation by taking ad-
joints, and then apply the general theory of Markov processes [5] to obtain the
Langevin equation. For example, the Langevin approach contains three steps to
solve the following FDE:

∂p(x, t)
∂t = −

∂
∂x [v(x) p(x, t)] +

∂α
∂xα [D(x) p(x, t)] , (6)

where 1 < α ≤ 2 is the order of R-L fractional space derivative. In step 1, using the
fractional adjoint operator, one can derive the backwardmodel of (6) [30]:

∂p(x, t)
∂t = v(x)

∂p(x, t)
∂x + D(x)

∂α
∂(−x)α p(x, t) . (7)

Step 2 builds the Markov process, containing the backward generator Lu =
v(x) ∂u∂x+∫ [u(x + y) − u(x) − y

1+y2
∂u(x)
∂x ] cos πα

2
D(x)ϕ(dy), and theLangevin equa-

tion [5, 30]

dX(t) = v(X(t)) dt + [D(X(t)) cos
πα
2
 dt]

1/α
dLγ . (8)

The last step is to track particle dynamics defined by (8).
The Langevin approach can also solve the time FDE:

(b ∂
∂t + β

∂γ
∂tγ ) p(x, t) = Axp(x, t) + β t−γ

Γ(1 − γ)p0(x) , (9)

where Ax is the advection-diffusionoperator such as that shown on the right-hand
side of (6). Here we assume decoupled jump sizes and waiting times, and hence
the density p in Eq. (9) can be calculated by subordinating the jump process
against the waiting time process:

p(x, t) =
∞

∫
0

u(x, τ)h(τ, t) dτ, (10)

where τ denotes operational time. The first density u(x, τ) in (10) models particle
motion in τ, which follows the Markov process (8) except that dt is replaced by
dτ. The second density h(τ, t) accounts for the waiting times after each jump:

∂
∂τ h(τ, t) = − [b

∂h(τ, t)
∂t + β

∂γh(τ, t)
∂tγ ] , (11)
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with initial condition h(τ = 0, t) = bδ(t) + βt−γ/Γ(1 − γ). Eq. (11) is analogous to
(6), leading to the time Langevin equation (4) [32].

Acknowledgment: MMM was funded by ARO MURI grant W911NF-15-1-0562 and
NSF grantsDMS-1462156 andEAR-1344280. YZwas funded by theNationalNatural
Science Foundation of China grants 41628202 and 41330632.

References
[1] S.W. Ahlstrom, H.P. Foote, R.C. Arnett, C.R. Cole, and R.J. Serne. Multi-

component mass transport model: Theory and numerical implementation. Re-
port BNWL-2127. Battelle Pacific Northwest Laboratory, Richlnd, WA, 1977.

[2] B. Baeumer, Y. Zhang, and R. Schumer. Incorporating super-diffusion due
to sub-grid heterogeneity to capture non-Fickian transport. Ground Water,
53(5):699–708, 2015.

[3] A.V. Chechkin and V.Y. Gonchar. A model for persistent Lévy motion. Physica
A, 277(3):312–326, 2000.

[4] A. Chechkin, V.Y. Gonchar, J. Klafter, R. Metzler, and L.V. Tanatarov. Lévy
flights in a steep potential well. J. Stat. Phys., 115(516):1505–1535, 2004.

[5] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Conver-
gence. p. 380, John Wiley & Sons, New York, 1986.

[6] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi. Discrete ran-
dom walk models for space–time fractional diffusion. Chem. Phys., 284(1):521–
541, 2002.

[7] R. Gorenflo, A. Vivoli, and F. Mainardi. Discrete and continuous randomwalk
models for space-time fractional diffusion. Nonlinear Dynam., 38(1):101–116,
2004.

[8] R. Gorenflo, F. Mainardi, and A. Vivoli. Continuous-time random walk and
parametric subordination in fractional diffusion.ChaosSoliton. Fract., 34(1):87–
103, 2007.

[9] C.T. Green.Effects of heterogeneity on reactive transport in geologicmedia. Ph.D.
Thesis, University of California, 2002.

[10] E. Heinsalu, M. Patriarca, I. Goychuk, G. Schmid, and P. Hänggi. Fractional
Fokker-Planck dynamics: Numerical algorithm and simulations. Phys. Rev. E,
73:046133, 2006.

[11] W. Kinzelbach. The random walk method in pollutant transport simulation. In:
Groundwater Flow and Quality Modeling, E. Custodio et al. (eds.), Reidel Pub-
lishing Company, 227–245, 1988



REFERENCES | 11

[12] E.M. LaBolle, G.E. Fogg, and A.F.B. Tompson. Random-walk simulation of
transport in heterogeneous porous media: Local mass-conservation problem
and implementation methods.Water Resour. Res., 32(3):583–393, 1996.

[13] M. Magdziarz, A. Weron, and K. Weron. Fractional Fokker-Planck dynamics:
Stochastic representation and computer simulation. Phys. Rev. E, 75:016708,
2007.

[14] M. Marseguerra and A. Zoia. The Monte Carlo and fractional kinetics ap-
proaches to the underground anomalous subdiffusion of contaminants. Ann.
Nucl. Energy, 33:223–235, 2006a.

[15] M. Marseguerra and A. Zoia. Normal and anomalous transport across an in-
terface: Monte Carlo and analytical approach. Ann. Nucl. Energy, 33:1396–1407,
2006b.

[16] M. Marseguerra and A. Zoia. Monte Carlo investigation of anomalous trans-
port in presence of a discontinuity and of an advection field. Physica A, 377(2),
448-464, 2007.

[17] M.M. Meerschaert, D.A. Benson, and B. Baeumer. Operator Lévy motion and
multiscaling anomalous diffusion. Phys. Rev. E, 63(2):12–17, 2001.

[18] M.M. Meerschaert, Y. Zhang, and B. Baeumer. Particle tracking for fractional
diffusion with two time scales. Comput. Math. Appl., 59(3):1078–1086, 2010.

[19] M.M. Meerschaert and A. Sikorskii. Stochastic Models for Fractional Calculus.
De Gruyter Studies inMathematics 43, De Gruyter, Berlin, ISBN 978-3-11-025869-
1, 2012.

[20] R. Metzler and J. Klafter. The randomwalk’s guide to anomalous diffusion: A
fractional dynamics approach. Phys. Rep., 339(1):1–77, 2000.

[21] R.Metzler and J. Klafter. The restaurant at the end of the randomwalk: Recent
development in fractional dynamics of anomalous transport processes. J. Phys.
A, 37:R161–R208, 2004.

[22] K.S. Miller and B. Ross. An Introduction to Fractional Calculus and Fractional
Differential Equations. John Wiley, New York, 1993.

[23] J.P. Nolan. Multivariate stable distributions: Approximation, estimation, sim-
ulation and identification, 509–526. In: A Practical Guide to Heavy Tails: Sta-
tistical Techniques and Applications. Edited by R.J. Adler, R. Feldman, and M.
Taqqu, Birkhauser Boston, Cambridge, MA, 1998.

[24] K.B. Oldham and J. Spanier. The Fractional Calculus. Academic Press, 1974.
[25] H. Risken. The Fokker-Planck Equation. Spinger & Verlag, New York, pp. 454,

1984.
[26] G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian Random Processes:

Stochastic Models With Infinite Variance. Chapman and Hill, New York, 1994.
[27] A.F.B. Tompson and D.E. Dougherty. Particle-gridmethods for reacting flows



12 | REFERENCES

in porous media with application to Fisher’s equation. Appl. Math. Model.,
16:374–383, 1992.

[28] A.F.B. Tompson. Numerical simulation of solute transport in three-
dimensional randomly heterogeneous porous media. Water Resour. Res.,
29(11):3709–3726, 1993

[29] G.J.M. Uffink. A random walk method for the simulation of macrodispersion
in a stratified aquifer. In: Relation of Groundwater Quality and Quantity, IAHS
Publication No. 146, 103–114, 1985.

[30] Y. Zhang, D.A. Benson, M.M. Meerschaert, and H.P. Scheffler. On using ran-
domwalks to solve the space-fractional advection-dispersion equations. J. Stat.
Phys., 123(1):89–110, 2006.

[31] Y. Zhang, D.A. Benson, M.M. Meerschaert, E.M. LaBolle, and H.P. Scheffler.
Randomwalk approximation of fractional-ordermultiscaling anomalous diffu-
sion. Phys. Rev. E, 74:026706, doi:10.1103/PhysRevE.74.026706, 2006.

[32] Y. Zhang, M.M. Meerschaert, and B. Baeumer. Particle tracking for time-
fractional diffusion. Phys. Rev. E, 78:036705, 2008.

[33] Y. Zhang, E.M. LaBolle, and K. Pohlmann. Monte Carlo approximation of
anomalous diffusion in macroscopic heterogeneous media.Water Resour. Res.,
45, W10417, doi:10.1029/2008WR007448, 2009.

[34] Y. Zhang and C. Papelis. Particle-tracking simulation of fractional diffusion-
reaction processes. Phys. Rev. E, 84, 066704, 2011.

[35] Y. Zhang, C.T. Green, E.M. LaBolle, R.M. Neupauer, and H.G. Sun. Bounded
fractional diffusion in geological media: Definition and Lagrangian approxima-
tion.Water Resour. Res., 52:8561–8577, 2016.

[36] Y. Zhang, H.G. Sun, H.H. Stowell, M. Zayernouri, and S.E. Hansen. A review
of applications of fractional calculus in Earth system dynamics. Chaos Soliton.
Fract., 102:29–46, 2017.


	Particle tracking
	1 Introduction
	2 Random walk particle tracking schemes
	2.1 History and RWPT for 1-d FDEs
	2.2 Compound Poisson process for solving vector FDE
	2.3 Vector FDE with space-dependent mixing measure
	2.4 Bounded fractional diffusion

	3 Future research directions
	4 Conclusion
	A Langevin approach for 1-d FDEs


