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a b s t r a c t

The stochastic solution to a diffusion equations with polynomial coefficients is called a
Pearson diffusion. If the first time derivative is replaced by a Caputo fractional derivative
of order less than one, the stochastic solution is called a fractional Pearson diffusion. This
paper develops an explicit formula for the covariance function of a fractional Pearson
diffusion in steady state, in terms of Mittag-Leffler functions. That formula shows that
fractional Pearson diffusions are long-range dependent, with a correlation that falls off like
a power law, whose exponent equals the order of the fractional derivative.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional differential equations are an important and useful tool in many areas of science and engineering [1–4]. The
literature includes important applications to physics [5–7], hydrology [8,9], and finance [10,11], among others. Fractional
calculus began with a letter from Leibniz to L’Hôpital in 1695, but recent applications have intensified interest in both
analytical and numerical methods for solving fractional differential equations [12–15].

There are some interesting and fundamental connections between fractional calculus and probability [16]. It is well
known that the diffusion equation with constant coefficients governs Brownian motion, the long-time scaling limit of a
simple random walk [17]. If the first time derivative is replaced by a Caputo fractional derivative of order 0 < α < 1, the
result is a fractional diffusion equation that governs the scaling limit of a continuous-time random walk [18–21]: the nth
particle jump Xn is preceded by a waiting time Wn with a power law probability distribution P(Wn > t) ≈ t−α having the
same index α. This randomwalkmodel converges to a Brownianmotionwith the deterministic time variable replaced by an
inverse α-stable subordinator Et [22], resulting in a subdiffusive process that spreads at a slower rate tα/2 than the usual rate
t1/2 for a traditional Brownian motion. The resulting solutions are useful to model diffusive phenomena, in which particles
rest for long periods between movements, in a homogeneous environment.

In a heterogeneous environment, the coefficients of the diffusion equationwill naturally vary in space. Pearson diffusions
form a tractable class of variable coefficient diffusion models with polynomial coefficients. They govern a class of Markov
processeswhose steady-state distributions belong to the class of Pearson distributions [23]. In a fractional Pearson diffusion,
the time variable is replaced by an inverse α-stable subordinator. The resulting stochastic process is non-Markovian, but its
one-dimensional distributions are governed by the fractional Pearson diffusion equation, obtained by replacing the first
time derivative in the Pearson diffusion equation with a Caputo fractional derivative of the same order 0 < α < 1. The
purpose of this paper is study the correlation structure of fractional Pearson diffusions in steady state. The correlation
function is explicitly computed in Theorem 3.1, and from this it follows that fractional Pearson diffusions exhibit long-range
dependence.
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Consider the stochastic differential equation

dX1(t) = µ(X1(t))dt + σ(X1(t))dW (t), (1)

whereW (t) is a standard Brownian motion. When

µ(x) = a0 + a1x and D(x) =
σ 2(x)

2
= d0 + d1x + d2x2, (2)

the process X1(t) is called a Pearson diffusion. If σ(x) is a positive constant, this is the Ornstein–Uhlenbeck process [24]. If
d2 = 0, this is the Cox–Ingersoll–Ross (CIR) process, which is used in finance [25]. The study of Pearson diffusions beganwith
Kolmogorov [26] and Wong [27]; see also [28–33]. Let p1(x, t; y) denote the conditional probability density of x = X1(t)
given y = X1(0), i.e., the transition density of this time-homogeneous Markov process. This transition density solves the
Kolmogorov forward equation (Fokker–Planck equation)

∂p1(x, t; y)
∂t

= −
∂

∂x
[µ(x)p1(x, t; y)] +

1
2

∂2

∂x2

σ 2(x)p1(x, t; y)


(3)

and the backward equation

∂p1(x, t; y)
∂t

= µ(y)
∂p1(x, t; y)

∂y
+

σ 2(y)
2

∂2p1(x, t; y)
∂y2

(4)

with the same initial condition p1(x, 0; y) = δ(x−y). Thenwe say that X1(t) is the stochastic solution to the forward equation
(3) and the backward equation (4).

The Caputo fractional derivative of order 0 < α < 1, defined by

∂α f (t)
∂tα

=
1

Γ (1 − α)

 t

0
f ′ (τ ) (t − τ)−α dτ , (5)

has Laplace transform sα f̃ (s) − sα−1f (0), where f̃ (s) =


∞

0 e−st f (t) dt [34,16]. The stochastic solution of the time-fractional
forward equation

∂αpα(x, t; y)
∂tα

= −
∂

∂x
[µ(x)pα(x, t; y)] +

1
2

∂2

∂x2

σ 2(x)pα(x, t; y)


(6)

and the time-fractional backward equation

∂αpα(x, t; y)
∂tα

= µ(y)
∂pα(x, t; y)

∂y
+

σ 2(y)
2

∂2pα(x, t; y)
∂y2

(7)

with point source initial condition pα(x, 0; y) = δ(x − y) is called a fractional Pearson diffusion [35], denoted by Xα(t).
The fractional time derivative models particle sticking and trapping [36,20]. Because particle resting times are distributed
like a power law, Xα(t) is no longer a Markov process. Hence the conditional probability density pα(x, t; y) of x = X1(t)
given y = X1(0) is not enough to determine the process. In this paper, we will study the correlation structure of fractional
Pearson diffusions, and derive an explicit formula (17) for the correlation between Xα(t) and Xα(s) in terms of Mittag-Leffler
functions. Then, an asymptotic expansion (29) will be obtained, to show that the correlation falls off like t−α for t large, thus
demonstrating that fractional Pearson diffusions exhibit long-range dependence.

2. Fractional Pearson diffusion

Letm(x) be the steady-state distribution of X1(t). The generator associated with the backward equation (7)

Gg(y) =


µ(y)

∂

∂y
+

σ 2(y)
2

∂2

∂y2


g(y) (8)

has a set of eigenfunctions GQn(y) = −λnQn(y) with eigenvalues 0 = λ0 < λ1 < λ2 < · · · that form an orthonormal
basis for L2(m(y) dy). If d1 = d2 = 0 and d0 > 0, then m(y) is a normal density, and Qn are Hermite polynomials. When
d2 = 0, m(y) is a gamma density, and Qn are Laguerre polynomials. For D′′(y) < 0 with two positive real roots, m(y) is
a beta density, and Qn are Jacobi polynomials. In the remaining cases, the spectrum of G has a continuous part, and some
moments of X1(t) do not exist. In every case, m(y) is one of the Pearson distributions [23]. For the remainder of this paper,
we will assume one of the three cases (Hermite, Laguerre, Jacobi), so that all moments exist.
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Assume a solution p1(x, t; y) = f (t)φ(y) to the backward equation (4) and separate variables to see that

df (t)
dt

ϕ(y) = f (t)Gϕ(y) or
1

f (t)
df (t)
dt

=
Gϕ(y)
ϕ(y)

:= −λ

so that f (t)φ(y) = e−λntQn(y) solves (4) for any n ≥ 0. Then any linear combination


n bne
−λntQn(y) is also a solution, with

initial condition g(x) =


n bnQn(x). Since

bn = ⟨g,Qn⟩L2(m(x) dx) :=


g(x)Qn(x)m(x) dx,

it follows that
∞
n=0

bne−λntQn(y) =

∞
n=0


g(x)Qn(x)m(x) dx


e−λntQn(y)

=

 
m(x)

∞
n=0

e−λntQn(x)Qn(y)


g(x) dx, (9)

and hence

p1(x, t; y) = m(x)
∞
n=0

e−λntQn(x)Qn(y) (10)

is the transition density of X1(t), i.e., the point source solution to the backward equation (4) and the forward equation (3).
Since the time-fractional analogue (6) to the backward equation (4) is a fractional Cauchy problem of the form

∂αpα(x, t; y)
∂tα

= Gypα(x, t; y),

a general semigroup result [37, Theorem 3.1] implies that

pα(x, t; y) =


∞

0
p1(x, u; y)ft(u) du, (11)

where

ft(x) =
t
α
x−1− 1

α gα


tx−

1
α


, (12)

and gα(t) is the probability density of a stable subordinator with index 0 < α < 1 and Laplace transform g̃α(s) = exp(−sα).
If D(u) is the standard stable subordinator, a strictly increasing stochastic process with stationary independent increments
such that D(1) has probability density gα , then a simple calculation [20, Corollary 3.1] shows that the inverse stable
subordinator

Et = inf{u > 0 : D(u) > t} (13)

has density (12). Then it follows that (11) is the conditional probability density of x = Xα(t) given y = Xα(0), where
Xα(t) := X1(Et) and the time change Et is independent of the outer process X1(t). Since Et has the same distribution
as tαE1 [20, Proposition 3.1], the fractional Pearson diffusion Xα(t) is a kind of subdiffusion, where particles move along
the same trajectories, but more slowly than the Pearson diffusion X1(t). Bingham [38] and Bondesson, Kristiansen, and
Steutel [39] show that

∞

0
e−suft(u) du = Eα(−stα) :=

∞
j=0

(−stα)j

Γ (1 + αj)
, (14)

using the Mittag-Leffler function. Then it follows from (10) and (11) that the transition density

pα(x, t; y) =

∞
n=0

m(x)Qn(x)Qn(y)


∞

0
e−λnuft(u) du

= m(x)
∞
n=0

Eα(−λntα)Qn(x)Qn(y). (15)

An alternative proof [35, Theorem 3.2] uses separation of variables, and the fact that Eα(−λtα) is an eigenfunction of the
Caputo derivative with eigenvalue −λ [40,41].
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3. Correlation function

If the time-homogeneous Markov process X1(t) is in steady state, then its probability density m(x) stays the same over
all time. We will say that fractional Pearson diffusion is in steady state if it starts with the distribution m(x). The fractional
Pearson diffusion in steady state is first-order stationary, i.e., Xα(t) has the same probability density m(x) for all t > 0.
Indeed, in view of (11),

∞

0
m(x)ft(u) du = m(x).

Thus the fractional Pearson diffusion in steady state has mean E[Xα](t) = E[X1(t)] = m1 and variance Var[Xα(t)] =

Var[X1(t)] = m2
2 which do not vary over time. The stationary Pearson diffusion has correlation function

corr[X1(s), X1(t)] = exp(−θ |t − s|), (16)

where the correlation parameter θ = λ1 is the smallest positive eigenvalue of the backward generator (8) [35]. Thus the
Pearson diffusion exhibits short-range dependence, with a correlation function that falls off exponentially. The next result
gives an explicit formula for the correlation function of a fractional Pearson diffusion in steady state.

Theorem 3.1. Suppose that X1(t) is a Pearson diffusion in steady state, so that its correlation function is given by (16). Then
the correlation function of the corresponding fractional Pearson diffusion Xα(t) = X1(Et), where Et is an independent standard
inverse α-stable subordinator (13), is given by

corr[Xα(t), Xα(s)] = Eα(−θ tα) +
θαtα

Γ (1 + α)

 s/t

0

Eα(−θ tα(1 − z)α)

z1−α
dz (17)

for t ≥ s > 0, where Eα(z) is the Mittag-Leffler function.

Proof. Write

corr[Xα(t), Xα(s)] = corr[X1(Et), X1(Es)]

=


∞

0


∞

0
e−θ |u−v|H(du, dv), (18)

a Lebesgue–Stieltjes integral with respect to the bivariate distribution function H(u, v) := P[Et ≤ u, Es ≤ v] of the process
Et .

To compute the integral in (18), we use the bivariate integration by parts formula [42, Lemma 2.2] a

0

 b

0
F(u, v)H(du, dv) =

 a

0

 b

0
H([u, a] × [v, b])F(du, dv) +

 a

0
H([u, a] × (0, b])F(du, 0)

+

 b

0
H((0, a] × [v, b])F(0, dv) + F(0, 0)H((0, a] × (0, b]), (19)

with F(u, v) = e−θ |u−v|, and the limits of integration a and b are infinite:
∞

0


∞

0
F(u, v)H(du, dv) =


∞

0


∞

0
H([u, ∞] × [v, ∞])F(du, dv) +


∞

0
H([u, ∞] × (0, ∞])F(du, 0)

+


∞

0
H((0, ∞] × [v, ∞])F(0, dv) + F(0, 0)H((0, ∞] × (0, ∞])

=


∞

0


∞

0
P[Et ≥ u, Es ≥ v]F(du, dv) +


∞

0
P[Et ≥ u]F(du, 0) +


∞

0
P[Es ≥ v]F(0, dv) + 1, (20)

since Et > 0 with probability 1 for all t > 0. Note that F(du, v) = fv(u)du for all v ≥ 0, where

fv(u) = −θe−θ(u−v)I{u > v} + θe−θ(v−u)I{u ≤ v}. (21)

Integrate by parts to get
∞

0
P[Et ≥ u]F(du, 0) =


∞

0
(1 − P[Et < u])


−θe−θu du

=

e−θuP[Et ≥ u]

∞
0 +


∞

0
e−θuft(u)du

= Eα(−θ tα) − 1, (22)
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in view of (14). Similarly,
∞

0
P[Es ≥ v]F(0, dv) = Eα(−θsα) − 1,

and hence (20) reduces to
∞

0


∞

0
F(u, v)H(du, dv) = I + Eα(−θ tα) + Eα(−θsα) − 1, (23)

where

I =


∞

0


∞

0
P[Et ≥ u, Es ≥ v]F(du, dv).

Assume (without loss of generality) that t ≥ s. Then Et ≥ Es, soP[Et ≥ u, Es ≥ v] = P[Es ≥ v] for u ≤ v.Write I = I1+I2+I3,
where

I1 :=


u<v

P[Et ≥ u, Es ≥ v]F(du, dv) =


u<v

P[Es ≥ v]F(du, dv)

I2 :=


u=v

P[Et ≥ u, Es ≥ v]F(du, dv) =


u=v

P[Es ≥ v]F(du, dv)

I3 :=


u>v

P[Et ≥ u, Es ≥ v]F(du, dv).

Since F(du, dv) = −θ2e−θ(v−u)du dv for u < v, we may write

I1 = −θ2


∞

v=0

 v

u=0
P[Es ≥ v]eθ(u−v)dudv

= −θ


∞

v=0
P[Es ≥ v](1 − e−θv)dv

= −θ E[Es] − θ


∞

v=0
P[Es ≥ v]e−θvdv

= −
θsα

Γ (1 + α)
− (Eα(−θsα) − 1), (24)

using the well-known formula E[X] =


∞

0 P[X ≥ x]dx for any positive random variable, the relation (22), and the formula
E[Et ] = tα/Γ (1 + α) for the mean of the standard inverse α-stable subordinator [43, Eq. (9)].

Since F(du, v) = fv(u)du, where the function (21) has a jump of size 2θ at the point u = v, we also have

I2 = 2θ


∞

0
P[Es ≥ v]dv = 2θ E[Es] =

2θsα

Γ (1 + α)
.

Since F(du, dv) = −θ2e−θ(u−v)du dv for u > v as well, we have

I3 = −θ2


∞

v=0
P[Et ≥ u, Es ≥ v]


∞

u=v

e−θ(u−v)du dv. (25)

Next, we obtain an expression for P[Et ≥ u, Es ≥ v]. Since the process Et is inverse to the stable subordinator Du, we have
{Et > u} = {Du < t} [20, Eq. (3.2)], and since Et has a density, it follows that P[Et ≥ u, Es ≥ v] = P[Du < t,Dv < s]. Since
D(u) has the same distribution as u1/αD(1), the random variable D(u) has the density function gα(x, u) = u−1/αgα(xu−1/α).
Then, a comparison with (12) reveals that

x
α
gα(x, u) = ufx(u),

where ft(u) is the probability density (12) of u = Et . Since Du has stationary independent increments, it follows that

P[Et ≥ u, Es ≥ v] = P[Du < t,Dv < s]
= P[(Du − Dv) + Dv < t,Dv < s]

=

 s

y=0
gα(y, v)

 t−y

x=0
gα(x, u − v)dxdy

=

 s

y=0

α

y
vfy(v)

 t−y

x=0

α

x
(u − v)fx(u − v)dxdy.
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Substituting the expression above back into (25) and using the Fubini theorem, it follows that

I3 = −θ2
 s

y=0

α

y

 t−y

x=0

α

x


∞

v=0
vfy(v)


∞

u=v

(u − v)fx(u − v)e−θ(u−v)du dv dx dy

= −θ2
 s

y=0

α

y

 t−y

x=0

α

x


∞

v=0
vfy(v)dv


∞

z=0
zfx(z)e−θzdz dx dy,

where
∞

v=0
vfy(v)dv = E[Ey] =

yα

Γ (1 + α)
. (26)

Next, we claim that
∞

0
zfx(z)e−θzdz = −

x
αθ

d
dx

Eα(−θxα). (27)

To see that (27) holds, first differentiate the power series expansion for the Mittag-Leffler function to obtain

d
dx

Eα(−θxα) =

∞
j=1

(−θxα)j−1j
Γ (1 + αj)

(−θαxα−1)

=
α

x

∞
j=1

(−θxα)jj
Γ (1 + αj)

. (28)

Then expand e−θz in a Taylor series expansion, and integrate term by term:
∞

0
zfx(z)e−θzdz =

∞
k=0

(−θ)k

k!


∞

0
zk+1fx(z)dz

=

∞
k=0

(−θ)k

k!
E[Ek+1

x ] =

∞
k=0

(−θ)k

k!
xα(k+1) (k + 1)!

Γ (1 + α(k + 1))

= −
1
θ

∞
k=0

(−θxα)k+1(k + 1)
Γ (1 + α(k + 1))

= −
1
θ

∞
j=0

(−θxα)jj
Γ (1 + αj)

.

Then, apply (28) to see that (27) holds.
Now, it follows using (26) and (27) and then a substitution z = y/t that

I3 = −θ2
 s

y=0

α

y

 t−y

x=0

α

x


yα

Γ (1 + α)

 
−

x
αθ

d
dx

Eα(−θxα)


dx dy

=
θα

Γ (1 + α)

 s

y=0

1
y1−α

 t−y

x=0

d
dx

Eα(−θxα)dx dy

=
θα

Γ (1 + α)

 s

y=0

1
y1−α

(Eα(−θ(t − y)α) − 1)dy

=
θαtα

Γ (1 + α)

 s/t

0

Eα(−θ tα(1 − z)α)

z1−α
dz −

θsα

Γ (1 + α)
.

Then, it follows from (18) and (23) that

corr[Xα(t), Xα(s)] =


∞

0


∞

0
F(u, v)H(du, dv)

= I1 + I2 + I3 + Eα(−θ tα) + Eα(−θsα) − 1

=


−

θsα

Γ (1 + α)
− Eα(−θsα) + 1


+

2θsα

Γ (1 + α)
+

θαtα

Γ (1 + α)

×

 s/t

0

Eα(−θ tα(1 − z)α)

z1−α
dz −

θsα

Γ (1 + α)
+ Eα(−θ tα) + Eα(−θsα) − 1

=
θαtα

Γ (1 + α)

 s/t

0

Eα(−θ tα(1 − z)α)

z1−α
dz + Eα(−θ tα),

which agrees with (17). �
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Remark 3.2. When t = s, it must be true that corr[Xα(t), Xα(s)] = 1. To see that this follows from (17), recall the formula
for the beta density: x

0
ya−1(x − y)b−1 dy = B(a, b)xa+b−1 where B(a, b) :=

Γ (a)Γ (b)
Γ (a + b)

for a > 0 and b > 0, and write

θαtα

Γ (1 + α)

 1

0

Eα(−θ tα(1 − z)α)

z1−α
dz =

θαtα

Γ (1 + α)

 1

0

∞
j=0

(−θ tα(1 − z)α)j

Γ (1 + αj)
z1−αdz

=
θαtα

Γ (1 + α)

∞
j=0

(−θ tα)j

Γ (1 + αj)

 1

0
(1 − z)αjzα−1dz

=
θαtα

Γ (1 + α)

∞
j=0

(−θ tα)j

Γ (1 + αj)
B(αj + 1, α)

=
θ tα

Γ (1 + α)

∞
j=0

αΓ (α)(−θ tα)j

Γ (1 + α(j + 1))

= −

∞
j=0

(−θ tα)j+1

Γ (1 + α(j + 1))
= 1 − Eα(−θ tα).

Then, it follows from (17) that corr[Xα(t), Xα(s)] = 1.

Remark 3.3. Stationary Pearson diffusions exhibit short-range dependence, since their correlation function (16) falls off
exponentially fast. However, the correlation function of a fractional Pearson diffusion falls off like a power lawwith exponent
α ∈ (0, 1), and so this process exhibits long-range dependence. To see this, fix s > 0 and recall [44, Eq. (2.14)] that

Eα(−θ tα) ∼
1

Γ (1 − α)θ tα
as t → ∞.

Then

Eα(−θ tα(1 − sy/t)α) ∼
1

Γ (1 − α)θ tα(1 − sy/t)α

as t → ∞ for any y ∈ [0, 1]. In addition, from [45],

|Eα(−θ tα(1 − sy/t)α)| ≤
c

1 + θ tα(1 − sy/t)α

for all t > 0, and using the dominated convergence theorem we get

θαtα

Γ (1 + α)

 s/t

0

Eα(−θ tα(1 − z)α)

z1−α
dz =

 s
t

α θαtα

Γ (1 + α)

 1

0
yα−1Eα (−θ tα(1 − sy/t)α) dy

∼

 s
t

α α

Γ (1 + α)Γ (1 − α)

 1

0
yα−1dy =

 s
t

α 1
Γ (1 + α)Γ (1 − α)

as t → ∞. It follows from (17) that for any fixed s > 0 we have

corr(Xα(t), Xα(s)) ∼
1

tαΓ (1 − α)


1
θ

+
sα

Γ (α + 1)


as t → ∞. (29)

Remark 3.4. A Pearson diffusion in steady state is a stationary stochastic process, i.e., the joint distribution of
X1(t1), . . . , X1(tn) is the same as that of X1(s + t1), . . . , X1(s + tn) for any s > 0. A fractional Pearson diffusion is not
stationary, since the inverse stable subordinator is not stationary. The joint distribution of the inverse stable subordinator
Et at multiple times has recently been computed [46], and, in principle, this can be used to give a different proof of (17).
However, the resulting integrals do not seem tractable.

Remark 3.5. Since fractional Pearson diffusions are not Markovian, the transition density (15) is not sufficient to determine
the finite-dimensional distributions of the process (since the Chapman–Kolmogorov formula does not apply). That is, neither
the governing backward equation (6) nor the corresponding forward equation (7) uniquely determines the process. For
diffusions with constant coefficients, there has been some work on identifying and solving the governing equations of the
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joint density for multiple times [47,48]. It would be interesting to extend this work, to obtain the governing equations for
fractional Pearson diffusions at multiple times.

4. Summary

Fractional Pearson diffusions are governed by time-fractional diffusion equations with polynomial coefficients.
Theorem 3.1 in this paper gives an explicit formula for the covariance function of a fractional Pearson diffusion in steady
state, in terms of Mittag-Leffler functions, which also shows that fractional Pearson diffusions are long-range dependent.
The correlation falls off like a power law, with exponent equal to the order of the fractional derivative in time.
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