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Abstract This study develops an explicit two-step Lagrangian scheme based on the renewal-reward pro-
cess to capture transient anomalous diffusion with mixed retention and early arrivals in multidimensional
media. The resulting 3-D anomalous transport simulator provides a flexible platform for modeling transport.
The first step explicitly models retention due to mass exchange between one mobile zone and any number
of parallel immobile zones. The mobile component of the renewal process can be calculated as either an
exponential random variable or a preassigned time step, and the subsequent random immobile time fol-
lows a Hyper-exponential distribution for finite immobile zones or a tempered stable distribution for infinite
immobile zones with an exponentially tempered power-law memory function. The second step describes
well-documented early arrivals which can follow streamlines due to mechanical dispersion using the
method of subordination to regional flow. Applicability and implementation of the Lagrangian solver are
further checked against transport observed in various media. Results show that, although the time-nonlocal
model parameters are predictable for transport with retention in alluvial settings, the standard time-
nonlocal model cannot capture early arrivals. Retention and early arrivals observed in porous and fractured
media can be efficiently modeled by our Lagrangian solver, allowing anomalous transport to be incorpo-
rated into 2-D/3-D models with irregular flow fields. Extensions of the particle-tracking approach are also
discussed for transport with parameters conditioned on local aquifer properties, as required by transient
flow and nonstationary media.

1. Introduction

Anomalous transport with retention or early arrivals have been well documented in many disciplines, moti-
vating the development of nonlocal physical models such as the fractional advection-dispersion equation
(fADE) [Metzler and Klafter, 2000, 2004; Kilbas et al., 2006; Herrmann, 2011]. In hydrology, anomalous diffu-
sion due to retention has been observed for tracers transport in soils [Pachepsky et al., 2000; Levy and Ber-
kowitz, 2003; Bromly and Hinz, 2004; Cortis and Berkowitz, 2004; Delay et al., 2005; Hunt et al., 2013], rocks
[LaBolle and Fogg, 2001; Kosakowski, 2004; Pedretti et al., 2013; Ronayne, 2013], and streams [Czernuszenko
et al., 1998; Gonzalez-Pinzon et al., 2013], while anomalous diffusion with early arrivals has been found for
conservative tracer transport in soils [Zhang et al., 2014a], streams [Deng et al., 2004, 2006; Kim and Kavvas,
2006], bed load or suspended sediment transport in rivers [Stark et al., 2009; Houssais and Lajeunesse, 2012,
among many others], and solutes moving along fractured media at various scales [Benson et al.,, 2001;
Reeves et al., 2008a, 2008b; Zhang et al., 2013]. The fADE is found to be superior to the second-order advec-
tion-dispersion equation (ADE) in quantifying the observed non-Fickian transport behavior [Benson et al.,
2000, 2004; Schumer et al., 2009; Zhang et al., 2009]. In particular, the time fADE captures a heavy-tailed
retention process, where the mass exchange between the mobile zone and parallel immobile zones has an
infinite number of rates which distribute as a power-law function [Schumer et al., 2003a; Zhang et al., 2008].
In addition, the multidimensional space fADE describes early arrivals that exceed the early time mass
growth rate predicted by Fickian diffusion models [Meerschaert et al., 2001; Schumer et al., 2003b; Zhang
et al., 2008]. After Benson et al. [2000] first introduced the concept of fADE to the hydrology community,
the fractional engine has been increasingly used by hydrologists as a promising modeling tool for various
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hydrologic processes. For example, fractional-derivative models were recently used to explore anomalous
diffusion observed in fine particulate organic carbon transport in rivers [Drummond et al., 2014], rainfall
properties [Golder et al., 2014], groundwater travel time distributions [Green et al., 2014], flow or transport
in heterogeneous porous or fractured media [Heidari and Li, 2014], water wave propagation and flow in
pipes [Jennings et al., 2014; Tarasov, 2014], and sediment transport in rivers [Sun et al., 2015, among many
others].

A revision of the above standard fractional engine, however, is needed to address numerical challenges
related to complex transport dynamics in natural geological media. First, the capability of immobile blocks
in retarding solute movement depends on physical and chemical properties of the host medium, where the
number of the Mobile/IMmobile (MIM) mass exchange rate coefficients can vary from one to infinite and
the distribution of rate coefficients is not limited to be power-law [Haggerty et al., 2000]. Laboratory experi-
ments also revealed that the desorption rates of radionuclides from volcanic rocks are very widely distrib-
uted, yielding a 3 ~ 4 order of magnitude range of desorption rate constants [Dean and Reimus, 2008].
Second, early arrivals can be observed for tracer transport through highly permeable preferential flow paths,
where the solute particle’s trajectory can certainly follow the streamlines [Baeumer et al., 2014]. An exten-
sion of the standard vector fADE can therefore be practically important, as will be discussed further in the
following.

This study proposes an MIM physical model to address the above numerical challenges and capture the
transient anomalous diffusion with mixed retention and early arrivals in natural heterogeneous media. The
resulting 3-D anomalous transport simulator provides a flexible modeling platform that captures both early
arrivals and retention. To answer the first challenge, a general memory function which defines the particle
waiting time distribution [Haggerty et al., 2000; Schumer et al., 2003a; Benson and Meerschaert, 2009] will be
considered, where (1) the MIM mass exchange rate can have any number and weight (as suggested by
Haggerty et al. [2000] and demonstrated by others [Feehley et al., 2000; Dean and Reimus, 2008]), and (2) the
tempered stable density used by Meerschaert et al. [2008] is selected as a specific and useful form of the
memory function. The tempered stable density was also recommended by Cvetkovic [2011] as a universal
model for hydrological transport; see further discussion below. To answer the second challenge mentioned
above, the concurrent fast displacement of particles along streamlines will be incorporated for mobile sol-
utes using the subordination technique proposed recently by Baeumer et al. [2009, 2014]. The novelty of
this paper is that we incorporate both MIM and streamline-oriented fast jumps, to capture both retention
and fast-moving effects. Both are seen in applications, and neither one alone can reproduce both the late
time retention and early arrivals seen in real data.

We will then focus on a fully particle-tracking based, Lagrangian interpretation of the resultant physical
model. The Lagrangian solver is selected because it not only provides an efficient method to approximate
the partial differential equations that govern the transport of solutes, but also describes directly the dynam-
ics of the underlying physical process; see the extensive review in Delay et al. [2005] and Salamon et al.
[2006]. For reactive tracer transport, the fully Lagrangian approach can also be superior to the classical con-
tinuum modeling approach in capturing mixing-controlled reaction kinetics [Benson and Meerschaert, 2008].
The Lagrangian solver can also be computationally efficient, since (1) the particles remaining in the immo-
bile state will not waste any computation [Zhang et al., 2008], and (2) the grid-free scheme provides
subflow-grid resolution of the simulated concentration without increasing the computational burden. In
addition, to the best of our knowledge, the phase transition probability (TP) approach developed by Sala-
mon et al. [2006] is the only particle-tracking scheme quantifying the MIM mass exchange with multiple
rate coefficients. The phase-transition probabilities combined with analytical expressions of plume spatial
moments were previously proposed by Michalak and Kitanidis [2000] to quantify kinetic sorption with a new
random-walk particle-tracking method (see their Figure 4 for a flow chart for the Lagrangian scheme). The
TP at each time step, which defines the particle status (i.e., mobile or immobile), is the time-dependent par-
ticle mass which can only be calculated by approximating an exponential matrix [Salamon et al., 2006]. We
will propose and evaluate various new Lagrangian approaches that directly track the dynamics of particles,
where the TP and exponential matrix are not needed and therefore the particle-tracking scheme can be
simplified. It is also noteworthy that the multirate method provides efficient simulating of late-time tailing
behavior in contaminant transport, and the technology developed by this study provides an easy approxi-
mation of the multirate method.
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The rest of the paper is organized as follows. In section 2, the transport model for anomalous dispersion is
shown by combining the mobile/immobile concept and subordination to regional flow. In section 3, we
develop a two-step Lagrangian solver to approximate the physical model for retention, early arrivals, and
their mixture, based on the renewal-reward process. The resultant particle-tracking solutions are then vali-
dated against other approaches available for simple cases. In section 4, the Lagrangian solver is applied to
model anomalous dispersion in multidimensional heterogeneous porous and fractured media. The applic-
ability of the new model is checked using numerical data and field and laboratory measurements. In section
5, we discuss future extensions of the Lagrangian framework for transient flow and nonstationary regional-
scale media. Conclusions are finally drawn in section 6.

Note that this study focuses on the implementation of the Lagrangian solver, and therefore the theoretical
analysis of nonlocal transport and behavior are shown only in appendices. For example, Appendix A reviews
nonlocal transport models, which underpins the model development in this study. Mechanism and detec-
tion of early arrivals are discussed in Appendix D, to explain further the early arrivals found in applications
in section 4.

2. Time and Space Nonlocal Transport Models

Previous time and space nonlocal transport models are reviewed in Appendix A. Successful applications of
the multirate mass transfer (MRMT) model and the time fADE model motivate us to use both multiple rates
and the temporally tempered stable density to capture retention due to mass exchange, where the latter
leads to the tempered stable fADE model proposed by Meerschaert et al. [2008]. In addition, we will add a
specific space fractional-derivative term in the transport process to characterize spatial nonlocality, resulting
in a fractional-derivative model that can characterize complex anomalous transport including the
mixed retention and early arrivals. It is also noteworthy that although the time fADE is selected in this study,
nonlocality in time has been extensively studied by various researchers, including those reviewed in
Appendix A.

To build the physical model, we first consider the fast-motion component in solute transport. Baeumer et al.
[2014] proposed the following model to capture super-diffusion along flow lines using subordination:

oc o -

o=~V C+a(Vy)' C+V[DF, )V T, (1)
where C [ML™3] denotes the solute concentration; v [LT~'] is the velocity vector; ¢ [dimensionless] is a scalar
factor; 1 < o < 2 [dimensionless] is the order of the space fractional derivative; and D(X, t) [L2T '] is the dif-
fusion coefficient. The advection operator V; is defined via V; C=V(V C). The solution of (1) with D=0
can be obtained by specifically transforming the solution to the ballistic equation 9C/0t=—V(VC) (see
Appendix B). This transformation is known as subordination [Baeumer et al., 2001; Schumer et al., 2003a;
Sokolov and Metzler, 2004] and can capture mechanical dispersion due to the local variation from the mean
velocity; see Baeumer et al. [2014] for a detailed explanation.

Previous studies developed three other approaches based on the fractional engine to describe apparent
(such as power-law distributed) early arrivals. First, Baeumer et al. [2001] used the fractional power (with an
index less than one of the classical advection-dispersion operator —V (V)+V[D(X,t)V], to add additional
displacement for the mass center. Second, Meerschaert et al. [2001] and Schumer et al. [2003b] proposed a
multiscaling, vector fADE to capture super-diffusive particle trajectories deviating from streamlines. Third,
Meerschaert et al. [2010] used a y-stable waiting time process with index 1 < y < 2 to describe continuous
jumps. All the three approaches can efficiently capture rapid dynamics, but they do not directly describe
mechanical dispersion following streamlines. Therefore we select model (1) for this study.

Next we extend (1) to capture the concurrent retention due to mobile/immobile mass exchange. The total
solute concentration consists of two parts:

Ciot=0mCim+0imCim, (2)

where Cyop, Cop and Ci,, [ML™3] denote the solute concentration in the total, mobile, and immobile phases,
respectively; and 0, and 0;,, [dimensionless] are the porosity in the mobile and immobile phases,
respectively.
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Following the mobile/immobile formulation procedure outlined in Schumer et al. [2003a], we obtain an MIM
model describing mixed retention and early arrivals:

1 OCeot _ 8C

i /3— f(t)=—Vy Cnto(Vy) "™ Cn+VIDE, t)VCp] , (3a)

t
C,-m()?,t)zj f(t—s) Cn(X,s)ds, (3b)
0
where f(t) [T~7] is a general memory function defining the distribution of rate coefficient for mass exchange
between the mobile and parallel immobile blocks; B [T?~'] is the total capacity coefficient; and A, [L7'] is
the tempering parameter in space.

Model (3a) shows that the total concentration change is due to the advective flux V; Cp,, the subordinated
mechanical dispersive flux o(Vy)** Cp, and the molecular diffusive flux V[D(X,t)VCp] in the mobile
phase, since particles embedded in the immobile phase cannot move. Model (3b) implies that the immobile
phase concentration is related to the previous mobile concentration (at the same location) filtered by the
memory function. We assume that the immobile phase is clean of tracers initially, to represent the typical
contamination observed in the field. If the immobile concentration is not zero initially, the decay of the ini-
tial immobile mass needs to be added to the right-hand side of (3b).

Given the form of the memory function f(t), model (3) can be finalized. This study considers two commonly
used f(t). First, Haggerty et al. [2000] showed that in most cases, f(t) defines multiple (N) rate coefficients (w))
with arbitrary weights:

N
f(t)= " w;b(wy)e ", (4)
j=1

where b(wj) is the probability mass function of first-order rate coefficients. Inserting (4) into (3), we obtain
the following MRMT model subordinated to regional flow:

Cl
Zﬁ,a ==V Cn+a (Vi)™ Cn+V[D(X, ) VG , (5a)
(% .
(x”"T(:’Ozwj[Cm()?,t)—C{m()?,t), where j=1,2,... N. (5b)

It is noteworthy that when N is large or even approaching infinity, then the memory function (4) needs to
be truncated and the application of model (5) may not be convenient. This challenge motivates us to con-
sider a second memory function.

Second, for a truncated power-law function f(t) [Meerschaert et al., 2008]:

_ yro

f(t =J r dr, (6)

® t r(1—y)

the MIM model (3) becomes
G o[ Cp

a—m“‘ﬁ 7’”% —Vy Cnta (Vi) “ Cnt+VID(X, t)VCpn], (7a)

Cim ;. 0'[e7'Cr]
a ¢ o (7b)

where Ar [T™1] is the truncation parameter in time, and the time index 0 < y < 1. Model (7) is a time tem-
pered fADE subordinated to regional flow. If ¢ = 0, then (7) reduces to the model of Cvetkovic [2011]. Note
that model (7) is a specific case of model (5) with an infinite number of mass exchange rate coefficients that
have an exponentially truncated power-law pdf. Hence the time fractional ADE is a specific MRMT model,
and the MIM model proposed above (i.e., (3) and (7)) considers also early arrivals due to spatial nonlocality
using a fractional spatial derivative. This (exponentially truncated) fractional spatial derivative leads to a spe-
cial operator in the nonlocal dispersive constitutive theory [Cushman et al., 1994], where the local variation
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of solute concentrations is due to a weighted average of mechanical dispersive flux at upgradient zones.
This weight, as defined by the memory function in the nonlocal dispersive constitutive theory [Cushman
and Ginn, 2000], declines as an exponentially truncated power-law function in space. A physical interpreta-
tion for the standard fractional spatial derivative was also provided by Schumer et al. [2001] and Molz et al.
[2002].

The above MIM models (5) and (7) will be solved using a Lagrangian approach in the next section. We will
call (5) “the MRMT model,” and (7) “the fractional MIM model.”

3. Development of the Lagrangian Solver

3.1. Literature Review: The Renewal-Reward Process and the Corresponding Two-Step

Lagrangian Solver

The renewal-reward process (RRP) is a classical model from probability theory that generalizes the Poisson
process by allowing for holding times and jumping sizes [Cinlar, 1969; Ross, 1983; Tijms, 2003]. A stochastic
process consisting of a random inter-renewal time between two random jumps can be regarded as a spe-
cific RRP. The CTRW framework reviewed by Berkowitz et al. [2006] therefore is a specific RRP; however, not
every RRPs (where inter-renewal times and rewards can have various densities) including the one devel-
oped below should follow the same CTRW framework. Most importantly, time nonlocal models including
the CTRW framework in hydrology and the MRMT model usually model retention and they do not handle
early arrivals. Other RRPs have also been used to capture hydrological processes [Kendall and Dracup, 1992;
Fisher et al., 2010].

The two-step random walk scheme (jump followed by waiting) embedded in the RRP had been used by var-
ious researchers. For example, a two-step Lagrangian solver was proposed by Dentz and Berkowitz [2003] to
approximate the MRMT model, see also equations (13) and (14) in Dentz et al. [2004] and the brief descrip-
tion of methodology by Berkowitz and Scher [1998]. A two-step, fully Lagrangian scheme was applied by Le
Borgne and Gouze [2008, equation (8)] (with continuous dispersion coefficient and the solution for the total
phase), and was extended by Le Borgne et al. [2008, equation (1)] to describe non-Markovian transport. Ben-
son and Meerschaert [2009] also proposed a random walk solution for an arbitrary immobile time density
embedded in the MRMT model. Edery et al. [2009, 2010] developed a reactive, continuous time random
walk particle-tracking model to quantify chemical kinetics due to non-Fickian transport. The above success-
ful applications motivated us to select a similar two-step scheme. In the following we develop particle-
tracking schemes in time (defining the renewal process J) and space (defining the rewards Y) that can be
used to describe anomalous diffusion. The following Lagrangian scheme is new and simple, because it can
explicitly model multiple first-order trapping processes, and early arrivals along streamlines.

3.2. An Explicit Two-Step Lagrangian Solver and Renewal-Reward Process

The Lagrangian solver contains two major steps to model particle dynamics. The first step is to assign the
mobile and immobile times for each particle during each jump. This step corresponds to the renewal pro-
cess in the RRP; see for example, Meerschaert and Scheffler [2008]. The horizontal axis in Figure 1a shows the
holding time J,, [T] (representing the clock/physical time) for a random walker after the n-th jump:

n n
=Y dt=>" (dMi+dl), (8)
i=1 1

i=

where n=1,2,...,L; and dt; is the i-th holding time consisting of the mobile (or operational) time dM; and
the immobile waiting time dl; (Figure 1b).

In the second step, we calculate the trajectory of random-walking particles. The corresponding cumulative
reward (representing the particle position at the clock time t) is

Xt

Y= dxi . 9)

i=1

Here dx; [L] denotes the i-th jump size during the mobile time dM;, and X; [dimensionless] denotes the num-
ber of jumps that have occurred by the clock time t:
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Xr:Z I, <c=sup{n : J, < t}, (10)

n=1
where IT is the indicator function, and X; is a nonzero integer (i.e., the maximum number of n satisfying J, < t).

3.3. Step 1: Renewal Processes for Retention

The core of the renewal process is to efficiently assign the MIM time. In natural geological media, the
strong physical and chemical heterogeneity can cause complex mass transitions, where the number of mass
exchange rates (representing the number of immobile zones with different sorption/trapping capabilities) can
be either finite (such as model (5)) or infinite (such as model (7)) [Haggerty et al., 2000]. The Lagrangian
scheme needs to be adjusted for the two cases, to achieve the most computational efficiency.

3.3.1. Renewal Process for the MRMT Model (5)

When there are a finite number (N) of immobile zones, each solute particle can transition between
the mobile state and the N immobile states, with the forward mass exchange rate wj; §; and the reverse rate
w; for the j-th MIM pair (Figure 1b). In this study, the immobile zones are assumed to be parallel, so there is
no direct mass exchange between immobile zones. Here we propose and compare two different methods
to generate the mobile time dM. The following Lagrangian scheme can also be revised conveniently to
account for other initial conditions. For example, if a particle starts at one specific immobile state, then its
initial state number is known, providing the immobile time d/ directly.

3.3.1.1. Method 1: Mobile Time Follows a Single-Rate Exponential Distribution

This method treats the mobile time dM as a random variable and the mobile phase as a single state. To do
this, we combine all the N pairs of mobile/immobile states and build the following exponential distribution
(Figure 1b) with an overall rate parameter A:

A Rewards ¥ (a) Renewal-reward process

Y1 S _

Y]*’/ """"" T nd
=
< dt dt; dt
Yo & — - — }‘ 7 i C Holding time J
aM; di; dMydly)| dM;\ d];[ daM; ld]L (Renewal process)
| | [ |

i J
"~
(

dxs

&
S
&

L
O

0\#\ A%
b) The two-component renewal process 3 IM Zone N

=
dti = dMi+dl -73||° IM Zone 1
1= jtalj s one
S IM Zone4 “
one o yﬁ)\r
4
dt;: the i-th holding time :,4\\ . o
Mobil
dM;: the i-th mobile time obile
dl;: the i-th immobile time (Random variable) Ny &
S 2
& @
IM Zone 2

Figure 1. (a) The renewal-reward process (RRP): the holding time and the rewards. (b) A two-component, multistate Markov renewal pro-
cess (dt;=dM; +dl;, where i=1,2, - - - L) to illustrate the motion (advection and dispersion) of a particle in time. In the legend, “IM” denotes
IMmobile.
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N
A=>"wyp;. (1
j=1

The mobile time at the i-th jump, dM; is an exponentially distributed random variable with the pdf
P(t)=Ae "t

In(1-U")

dMi: —A )

(12)

where U’ is a uniform random number in (0, 1).

The corresponding immobile state can then be determined by the relative contribution of the corresponding
mobile state. The probability for a particle to enter the k-th immobile state is proportional to the inverse of the
mean mobile time (which is wyf;) in the corresponding k-th mobile state. This motivates us to use the normal-
ized mean mobile time, wxf /A, to define the probability for the particle reaching the k-th immobile state. A
uniform (0, 1) random number U* is therefore generated to identify the corresponding immobile state k:

;B ~ayf;
T ;T' (13)

After k is defined by (13), the corresponding waiting time d/; can then be calculated by

M”

1

-
I

In (1—Uk)
—wyg )

dli= (14)
where the uniform (0, 1) random number Uy is independent of the previously generated U in (12). See
Ross [1983] for details.

The above scheme can be validated using two known facts. First, when N =1 and « = 2, the MRMT model
(5) reduces to the well-known single-rate mobile/immobile model [Haggerty et al., 2000]. In this simplified
case, the mobile time dM and the immobile time d/ generated above have the exponential pdf

P(dM)=wp e b (15a)
P(d=we %, (15b)

which is consistent with the known particle-tracking scheme [Benson and Meerschaert, 2009]. The mobile
time pdf (15a) follows the known conclusion that the conventional ADE is the scaling limit of a CTRW with a
Poisson distribution for motion times and Gaussian distribution for jump sizes [Metzler and Klafter, 2000].

Second, the above numerical scheme captures the ratio between the mean mobile and immobile times.
The mean mobile time T,,, calculated by the above method is

1
Tm:Z, (16)

The immobile time generated by the above method follows the Hyper-exponential distribution with the pdf

N
:; [; e~ %ﬁ’ , (17)

where p; denotes the proportion of each exponential function in the Hyper-exponential distribution. The
mean immobile time T;,, therefore is

Tn=y Lo (1)

where f,.; [dimensionless] is the total capacity coefficient representing the ratio of mass in all immobile
states to mass in the mobile domain at equilibrium [Haggerty et al., 2000]. The ratio between the mean
immobile time and the mean mobile time should also equal fi, since the mean residence time also defines
the mass of particles remaining in the state at equilibrium. Equations (16) and (18) lead to the ratio
Tim/Tm= Pror Showing that the above Lagrangian scheme produces the correct ratio between mean mobile
and immobile times.
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3.3.1.2. Method 2: A Constant, Mean Random Mobile Time

In the above method, the mobile time dM is exponentially distributed. A constant dM may be favored for
some applications (due to its simplicity and its potential in increasing the computational efficiency), moti-
vating the development of Method 2.

First, we can define the constant dM as the mean mobile time T,, (16):

dM;=Tp= (19)

The immobile time dI; can be calculated the same as (13), where both methods generate the same mean
mobile time (16). Their mean immobile times are also the same (i.e., (18)). This method can be applicable for
a transport time much longer than the mean mobile time.

Then the mobile time

dM,' =At= Tm . (20)

Note that the renewal theorem is the basis for this approximation. For any renewal process, the number X;
of jumps by time t in equation (9) is related to the jump rate f by X;/ — 1 as t goes to infinity. That is, X; is
approximately it and the approximation gets better as t increases. The subsequent random immobile time
dl can be generated by

_In(1-0)
—wx

di; AAt, (21)
where the state k is evaluated by (13), and the resultant mean immobile time is Tj, =At ;. This scheme
may require a longer transport time than the above one to reach a reliable asymptotic solution.

All the above Lagrangian schemes will be validated in Sec. 3.3.3.

3.3.2. Renewal Process for the Fractional MIM Model (7)

The time-domain Langevin approach proposed by Zhang et al. [2008] separates time into a linear mobile
portion and a stable random noise representing the immobile portion. The same approach can be extended
to the tempered stable model [Meerschaert et al., 2008]. The mobile time dM is now a user defined time
step (which can be either constant or time dependent), and the immobile time d/; is a conditionally tem-
pered stable random noise rescaled by dM and f:

di= [cos (g) pam| VAL (B =41, 0 =1, u=0). (22)

Here dL, ;, [dimensionless] denotes a tempered stable random variable with the truncation parameter A7,
the maximum skewness f*, unit scale ¢*, and zero shift .

An alternative method could also be developed based on Benson and Meerschaert [2009], where the mobile
time distributes exponentially. We select the first method, due to the flexibility of dM. Validations of this
method combined with the reward process will be shown in section 4.

3.3.3. Numerical Validations

To test the above Lagrangian scheme developed for the renewal process, here we limit the reward process
to be the one-dimensional traditional ADE with a constant velocity V and dispersion coefficient D. This sim-
plifies the MRMT model (5) as:

OCm <N 0C OCm _0*Cp
—+ m —_y " p” —1
ot ;ﬁ’ ot v Ox b ox? ' (23a)
J (g7 )
‘%WTS(”:wj{cm(z,t)—c{m(;,r)], i=1,2,....N. (23b)

We first check the applicability of the above Lagrangian method for model (23) with a single mass exchange
rate. A few numerical examples are shown in Figure 2. The simulated tracer snapshots and breakthrough
curves (BTCs) match well the numerical solutions using the transition probability or TP method proposed by
Salamon et al. [2006]. Note that the RRP based Lagrangian method is computationally more efficient than the
TP method, since the former accounts explicitly for the immobile phase in the renewal process (so that less

ZHANG ET AL.

MODELING ANOMALOUS DIFFUSION USING A LAGRANGIAN SOLVER 6318



@AG U Water Resources Research 10.1002/2015WR016902

Normalized Concentration
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Figure 2. The simplified MRMT model (23) with a single mass exchange rate: the simulated (a) tracer snapshots and (b) BTCs using Salamon et al.'s [2006] transition probability approach
(symbols) and our Method 1 (lines). In Case 1, model parameters are as follows: rate coefficient = 1 year™ ', and capacity coefficient # = 1. In Case 2, ®=0.01 year ' and ff = 1.In Case
3, =1year ' and /=0.01. The other model parameters are as follows: V = 0.1 m/yr, D = 0.005 m?/yr, and 0, /0m=p. Here 0,,, (denoting the immobile zone porosity) and 0,, (i.e.,
porosity of the mobile zone) were used by Salamon et al. [2006] to control the capacity coefficient f3.

operations are needed). In addition, the TP method needs to approximate an exponential matrix (by truncat-
ing the corresponding Taylor series), which is not needed for the Lagrangian method developed by this study.

Results for the simplified MRMT model (23) with N > 1 using Method 1 are shown in Figure 3. A multirate
series of spherical diffusions are considered, where the rate coefficient w;=i*n2¢ (where i=1,2,...8,and ¢
=0.00432 day ' is the diffusion rate coefficient for spherical diffusion [Haggerty et al., 2000]), and capacity

coefficient ;= % By, (Where fo, = (3)’:2’""1' is the total capacity coefficient).

Methods 1 and 2 are then used to solve the above numerical model. Results (Figure 4) show that Method 1
matches the “true” solution slightly better than Method 2 does, as expected.

3.4. Step 2: Rewards for the Concurrent Early Arrivals

Early arrivals can occur concurrently with retention for contaminant transport in natural geological media.
Fast displacement along streamlines due to mechanical dispersion can be captured efficiently using the
subordination to regional flow, a method proposed by Baeumer et al. [2014].

Following step 1 developed in section 3.3, we first assign the mobile and immobile times:
ti=ti— +dM,'+dI,‘ 5 (24)

where t; [T] denotes the clock time at the i-th jump, and the two times dM; and dI; can be calculated by the
two methods discussed in section 3.3.

We then calculate the displacement of particles during the mobile time dM,. It contains two components.
The first displacement due to advection and molecular diffusion can be calculated using the traditional
particle-tracking scheme [LaBolle et al., 1996, 1998]. The second displacement due to mechanical dispersion
can be calculated by:

0S;=V dt; , (25)
if the velocity vV remains constant in space. Here V is defined as the velocity at the position of the particle at
the end of the last jump. If V varies in space, each component of the space-dependent velocity vector can
be approximated by Darcy’s law:

3
Vi(R)=—07"%) S Ky(%) V), i=1,2,3
j=1
where h is the hydraulic head, 0 is the local porosity, and K; is the jj-th component of the hydraulic conductiv-
ity tensor. The hydraulic head h can be computed by solving the saturated groundwater flow equations [Har-
baugh, 2005], and, in some cases, approximated from monitoring data (see further discussion in the next
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(a) Snapshot at various times ¢ 10° (b) BTC at various travel distances L

t=1000

x (m) t (day)

Figure 3. The simplified MRMT model (23) with multiple mass exchange rates (N = 8): the simulated (a) tracer snapshots and (b) BTCs using Salamon et al.'s [2006] transition probability
approach (symbols) and Method 1 (lines). The eight rate and capacity coefficients are shown in the text. The other model parameters are: V = 0.0864 m/d, D = 0.00432 m%/d, 0,,=0.2,
and 0;,=0.1, which are the same as those used by Salamon et al. [2006]. In Figures 3a and 3b, the length dimensions are meters, and the time dimensions are days.

section). In this case, the travel distance can be approximated by the predictor-corrector method, or the semi-
analytical method assuming a linear interpolation of velocities within each grid [LaBolle et al., 1996, 1998]. The
operational time for subordination ot; [T] in (25) is a conditionally tempered stable random variable scaled by
the mobile time dM; (similar to (22)):

Sty= [fcos (”7“) aar/w,}”"c dLy ,(F=+1, a*=1, u=0). (26)

Here dL, ,, [dimensionless] denotes a tempered o-stable random variable.

For validation purposes, we apply the above Lagrangian solver for a one-dimensional transport model
(without molecular diffusion) where the other numerical method can be developed. Here the F-MIM model
(7) reduces to

Cm |, ;0" [Cr] ICp Lo 0[]

=M 4 AT =—y=" 4 o AL

ot Pe —an % oy [V e g (27a)
Cim ;. 0'[e7'Cry]
o c ot (27b)

where V [LT~"] is the 1-D constant velocity. For cross-verification, we developed the implicit Eulerian finite
difference method to solve equation (27). Some numerical examples are shown in Figure 5, where the
Lagrangian solutions generally match the Eulerian solutions. Figure 5 shows the influence of « on leading
fronts of tracer plumes, as expected.

To draw a conclusion, in the renewal process, a (random or constant) mobile time is generated to explicitly
account for the multiple first-order mass exchange, in additional to the random immobile time. This process
interprets the physical process of mass exchange: a mobile particle can be trapped by one immobile
domain along its trajectory. In the subsequent reward process, the particle experiences advection and
molecular diffusion. An additional lateral displacement is then calculated to account for mechanical disper-
sion along streamlines, which can be Fickian if the medium is homogeneous or non-Fickian if the medium
is strongly heterogeneous. Therefore, the physical model and Lagrangian solver characterize nonlocal trans-
port in both time and space. A detailed physical interpretation of super-diffusion on streamlines can be
found in Baeumer et al. [2014].

4. Applications: Capturing Anomalous Diffusion in Multidimensional Porous and
Fractured Media

Here we apply the above solver to capture anomalous diffusion observed in multidimensional, heterogene-
ous porous or fractured media (except for Case 5 which is a 1-D leaching process), where our two-step
Lagrangian approach is the only viable solver.
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(a) Snapshot at all phases at time /=300 days (b) Snapshot at all phases at time /=300 days
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Figure 4. The simplified MRMT model (23) with multiple mass exchange rates (N = 8): the simulated tracer snapshots at all phases using
the transition probability method (symbols), (a) Method 1 (lines) and (b) Method 2 (lines). The model parameters are the same as those
used in Figure 3.

4.1. Case 1: Anomalous Transport in a 2-D Heterogeneous Porous Medium

One of the motivations of this study is to build an efficient solver to capture spatiotemporally nonlocal
transport conditioned on local aquifer properties. Natural heterogeneous porous media usually exhibit mul-
tiscale physical and/or chemical heterogeneity. Geophysical and/or hydrogeological information typically
can be incorporated into the numerical model. It is therefore desirable to combine non-Fickian transport
and aquifer information available at relevant scales. Models (5) and (7) provide such a tool by introducing
the local variation of flow properties in nonlocal transport models.

For example, Figures 6-8 show retention and fast jumps of solute particles through a two-dimensional het-
erogeneous aquifer with both divergent and convergent flow zones. Figure 6a shows the flow model (with
a uniform cell size 2 m X 2 m), and Figure 6b shows the steady state flow field calculated by MODFLOW
[Harbaugh, 2005] and the resultant streamlines calculated by the Lagrangian solver developed above.

Figure 7 compares the simulated plume assuming different immobile properties (i.e., different renewal proc-
esses), while the reward process is assumed to be the classical ADE. In Figure 7a, the Lagrangian solver is
used to calculate the particle plume where the transport follows the classical ADE (i.e., Fickian diffusion). Fig-
ure 7b shows the plume for the MRMT model (5) with a single rate of mass exchange, where the spatial dis-
tribution of the particle plume is relatively limited compared to Figure 7a. In Figure 7c, strong retention is
modeled (where the renewal process is described by the F-MIM model (7)), where the sequestration near
the source is apparent.

Figure 8 shows the mixed retention and early arrivals, which is the Lagrangian solution of the F-MIM model
(7). While retention traps solute mass around the source area, early arrivals along streamlines exhibits a
leading edge toward the pumping well. The leading edge in the streamlines model can be more realistic in
fractured aquifers, as implied by model comparisons at the Shoal test site (see Case 3, section 4.3). Compari-
son of Figure 8a and Figure 8b shows that, with the decrease of the space index o and an increase of the
scalar factor ¢ (representing larger jumps along streamlines), the leading edge of particle plumes becomes
heavier.

4.2. Case 2: Upscaling Retention Observed in 3-D Alluvial Aquifers Represented by High-Resolution
Hydrofacies Models

4.2.1. Capturing Anomalous Transport in Alluvial Settings

Alluvial settings typically exhibit complex geometric structures and intrinsic heterogeneity. In particular, the
high-permeability ancient channel deposits that tend to be interconnected in 3-D space may form preferen-
tial flow paths [Fogg et al., 2000], while the surrounding low-permeability floodplain layers retard transport
by trapping a significant amount of solute mass [LaBolle and Fogg, 2001]. Following the Markov chain based
geostatistic methods used by LaBolle and Fogg [2001], here we built high-resolution hydrofacies models to
represent 3-D alluvial aquifers, with one realization shown in Figure 9a. One hundred different but equally
possible realizations were generated, and the ensemble average of plumes (calculated by the same meth-
odology shown in LaBolle and Fogg [2001] and then projected to the horizontal plane) is shown in Figures
9b-9d. The resultant plumes will be used as “measurements” to check the applicability of the physical
model and its Lagrangian solver developed by this study. The “measured” plumes exhibit sequestration
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Figure 5. The combined retention and early arrivals described by the simplified F-MIM model (27): Lagrangian solutions (symbols) versus the implicit finite different solutions (lines) of
tracer snapshots at time t = 10. The modeled concentration for particles at the total, mobile, and immobile phases for (a) =1.3 and (b) «=1.9, respectively. (c) The modeled concentra-
tion at the total phase for =1.4, 1.6, and 1.8, respectively. The other model parameters are as follows: y=0.5, f=0.1, 17=0.001, velocity v = 1, the scale factor ¢ = 1, and porosity 1.
The initial instantaneous point source is located at x = 50.

behavior (i.e., a significant amount of solute mass remains near the initial source location), one of the typical
characters of retention (Figures 9b-9d).

Model parameters in (7) were either predicted or fitted (Table 1). Parameters defining the renewal process,
including 7, 5, and Ay, were estimated given medium heterogeneity using the method proposed in Zhang
et al. [2014b]. The space-independent index y (which controls the power-law slope of the concentration

100 1 T v v v v . : : :
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Figure 6. Application 1: (a) The 2-D flow model. (b) The calculated steady state flow field (grey lines are the contour map of the simulated
hydraulic head (meter)) and the streamlines (blue dotted lines).
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Figure 7. Application 1: The simulated 2-D plume distribution at time t = 600 days for (a) the (a)classical ADE model, (b) the MRMT model (5) with a single mass exchange rate and o = 2,
and (c) the F-MIM model (7) with & = 2 using the Lagrangian solver. The legend shows the normalized concentration. The red dot denotes the location of the initial instantaneous point
source at x =20 m and y = 20 m, and porosity is 0.3. Two million particles were released initially. In the MRMT model (5) (Figure 7b), the rate coefficient »=1.0 day™ ' and the capacity

coefficient f=1.0. In the F-MIM model (7) (Figure 7c), the time index y=0.5, the fractional capacity coefficient /=0.2 day

~05 and the time truncation parameter 2r=1x10"% day .

profile) and the temporal truncation parameter /r (which captures the rate of transition for preasymptotic
transport) can be predicted given the volume fraction of low-permeability deposits classified by thickness.
For example, /7 can be predicted by D*/(Z*)?, where D* is the molecular diffusion coefficient used in the
Monte Carlo simulations and Z* is the effective thickness of the fine-grained layer. The capacity coefficient
B (which distinguishes the status of solute particles) can be predicted as the ratio between the mean resi-
dence time (for particles in relatively low-permeable layers) and the mean advective time [Benson and Meer-
schaert, 2009]. Details of the prediction and hydrogeological interpretation of the above parameters can be
found in Zhang et al. [2014b]. The mean velocity along the longitudinal direction (V,) can be predicted by
the arithmetic mean of local velocities [Zhang et al.,, 2007a], while the mean velocity along the transverse
direction (V) was assumed to be zero. The other parameters, including the ones controlling the reward pro-
cess, were fitted using the observed plume distribution shown in Figures 9b-9d. In particular, the truncation
parameter A, controls the decline rate of the leading front, the space index « captures the power-law sec-
tion of the leading front, and the scalar factor ¢ describes the overall shape of the plume front. The best-fit
/. is relatively large, to characterize the quick decline of the concentration at the plume front.

Fitting results show that the Lagrangian approximation of the F-MIM model (7) can generally capture the
overall trend of the multidimensional plume in all phases (Figures 9e-9g), although the Monte Carlo simula-
tions contain apparent noises near especially the leading edge. The computational approach developed by
this study therefore may provide a tool for upscaling complex transport in alluvial settings.

(a) The fractional-MIM model: Examplel (b) The fractional-MIM model: Example 2
1 : : : : 1 . . . .

5102
1102
1x1073
1104
1105
1x10©

80
X (m)
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Figure 8. Application 1: The 2-D plume distribution at time t = 400 days for the F-MIM model (7) with different parameters. The red dot
denotes the initial point source. (a) Model parameters: y=0.5, =0.2 day *%, J;=1Xx10"8 day™ ', «=1.50, 2,=1x10"8m~',and ¢ = 2.
(b) Model parameters: y=0.5, f=0.01 day %°, 2r=1x10"8 day ', 2=1.70, 2, =1X10"°m ", and 6 = 1.
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Figure 9. Application 2: 3-D view of one realization of (a) the hydrofacies model and (b-d) the 2-D plume distribution at time t = 10 years for the “measured data” (Monte Carlo simula-
tions) versus (e-g) the best-fit using the F-MIM model (7). The model parameters are shown in Table 1.

4.2.2. Comparisons With Existing Models

We compare the F-MIM model (7) with existing time nonlocal transport models. First, the following time
fADE (T-fADE) model is selected since it contains only one fitting parameter (i.e., the dispersion coefficient
D):

ac,,
="+
o TPe

—Irt

[ Cr] _y % +Dazcm

ot ox w2 (28a)
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Table 1. The Predicted and Fitted Parameters for the Alluvial Setting in Application 2%

;“T ﬁ Vx
° (1/year) (year’™") (m/yr) D (m?/yr) a° a® 2 (1/m)
Model Predicted Predicted Predicted Predicted Fitted Fitted Fitted Fitted
F-MIM (7) 0.56 0.00237 0.63 14.6 10.0 0.60 1.76 0.25
T-fADE (28) 0.56 0.00237 0.63 14.6 115.0 N/A N/A N/A

@y-Time Scale Index; A—Space Truncation Parameter; f—Capacity Coefficient; V,-Longitudinal Velocity; D-Diffusion Coefficient; a-Sca-
lar Factor; a—Space Scale Index; and 4,-Tempering Parameter in Space.
Pdimensionless.

0 _ e ]Gl

o0 ¢ e (280)

where the time nonlocal transport parameters f5, 4+ and y, and the mean velocity V can all be predicted
using the methods discussed in section 4.2.1. As discussed in Appendix C, the time fADE (28) is also a spe-
cific MRMT model which was shown to be universal in capturing retention. To the best of our knowledge,
here model (28) requires the least number of fitting parameters, compared with the other time nonlocal
transport models reviewed in Appendix A. Predictability for model (28) may be extended for the other time
nonlocal models. If model (28) cannot capture the retention process observed in this case (we emphasize
here again that the time nonlocal models typically capture retention, not early arrivals; see our review in
Appendix A), we will test further the other time nonlocal models.

Second, the single-rate mass transfer (SRMT) model was found to be efficient in capturing “cigar-shaped”
contours of non-Gaussian transport in 2-D by Uffink et al. [2012]. Hence it is selected to compare with the F-
MIM model (7).

Figures 10d-10f compares the three nonlocal transport models in capturing the longitudinal snapshots at
various times. First, the F-MIM model (7) using parameters fitted in Figure 9 predicts not only the concentra-
tions for solute at all phases (Figures 10a-10c), but also the strong sequestration and the leading plume
edge at all times. Second, the time fADE model (28) captures the apparent retention, but it slightly underes-
timates the leading plume edge at most sampling cycles, although a large dispersivity (= 8 m) is used.
Third, the SRMT model underestimates the strong retention near the source, which is not a surprise because
a single mass exchange rate does not represent the multiple mass exchange between the mobile zone and
various immobile blocks [see also Haggerty et al., 20001. It is also noteworthy that the leading plume edge is
weak in this specific case, and therefore the time fADE model (28) can be a simplified alternative of the F-
MIM model (7) at a large travel distance; see further discussion for the mechanism for early arrivals in
Appendix D.

4.3. Case 3: Anomalous Transport in Fractured Media at the Shoal Test Site

4.3.1. Applicability of the F-MIM Model in a Coarse Flow Field

Fractures are common in geologic media and typically exhibit erratic heterogeneity [Tsang and Neretnieks,
1998; Berkowitz, 2002]. The resultant transport is usually anomalous. Here we check the applicability of the
F-MIM model (7) and the Lagrangian solver developed above in capturing real-world anomalous diffusion
observed in fractured rocks.

Tracers were injected and monitored in one fractured medium located at the SHOAL test site, Nevada
[Reimus et al., 2003]. Groundwater flow can be simplified as a radial flow [Benson et al., 2004], which can be
calculated by MODFLOW (Figure 11a).

In this case, all transport model parameters were fitted using the observed tracer BTCs, due to the lack of
medium heterogeneity information. The early arrivals in the BTC are due to fast moving particles, which can
be used to fit the parameters defining the reward process. For example, the space index o and the scalar
parameter ¢ control the power-law slope of the early time BTC, while 4, truncates this power-law increase
of BTC. Hence the slope and the transition from power-law to exponential for the early time BTC were used
to fit o, o, and 4,. The late-time tail of the BTC is due to retention, and hence it can be used to fit the param-
eters defining the renewal process (which are 7, 8, and 4;). In particular, y controls the power-law slope of
the late-time BTC, while f shifts the late-time BTC up and down (since it assigns the mass ratio of particles
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Figure 10. Application 2: Snapshots along the longitudinal direction at time t = (a) 30 years, (b) 50 years, and (c) 100 years, where the symbols are Monte Carlo simulations and the lines
represent the F-MIM model (7) predictions. (d-f) Comparison of the three model solutions for the total (mobile plus immobile) concentration, where the symbol “F-MIM” denotes the
fractional MIM model (7), “T-fADE” denotes the time fADE model (28), and “SRMT” denotes the single-rate mass transfer model. Parameters used for the F-MIM model and the T-fADE
model are shown in Table 1. The best-fit rare coefficient for the SRMT model is =0.2 year ', and the predicted capacity coefficient  (0.63) has the same value as the other models.

in mobile and immobile phases). /. affects the transition for the late-time BTC from power-law to exponen-
tial. Due to the missing information of such transition, a small A; was selected (in other words, we ignored
the possible transition behavior due to the lack of observation).

The resultant parameters of model (7) using the above fitting schemes for tracer Pentafluorobenzoate
(PFBA) are shown in Table 2. The modeled PFBA plume is shown in Figure 11e. The simulated PFBA BTC
generally matches the observation (Figures 11e and 11f). Note that the best-fit parameters for retention
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Figure 11. Application 3: (a) The 2-D flow model for the Shoal test site. (b) The simulated plume snapshots at various times using the F-MIM model (7). The red dot denotes the position
of the initial point source, and the blue rectangle denotes the pumping well. (c) The measured Bromide breakthrough curves [Reimus et al., 2003] (symbols) versus the best-fit BTCs (lines)
using both the F-MIM (7) and the T-fADE (28). (d) The liner-linear plot of Figure 11c. (e and f) PFBA BTCs and (g and h) Lithium BTCs.
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Table 2. The Predicted and Fitted Parameters for Tracer Transport at the Shoal Test Site in Application 3°

Tracer yb A7 (1/day) B (day’™") D (m2/yr) o® P 1 (1/m)
PFBA 0.46 1x1078 0.49 1X107° 1 1.95 0.03
Bromide 0.44 1x10°8 0.48 1%x107° 1 1.95 0.005
Lithium 0.44 1x1078 1.05 1X107° 1 1.95 0.02

#y-Time Scale Index; A—Space Truncation Parameter; f-Capacity Coefficient; D-Diffusion Coefficient; 6-Scalar Factor; o-Space Scale
Index; and /,-Tempering Parameter in Space
Pdimensionless.

(especially the time truncation parameter 17) contain high uncertainty due to the incomplete observation of
the BTC tail. The Lagrangian solver of model (7) can also efficiently capture the observed BTCs for the other
tracers (Bromide and Lithium) (Figure 11), by adjusting parameters Z;, y and f (note that the space index o
and the scale parameter of subordination o remain the same for all tracers, implying that the fracture prob-
ably causes similar fast motions for different tracer particles). The best-fit 4, is the smallest for Bromide since
the early time tail of the observed Bromide BTC is the heaviest (Figure 11c). The best-fit time index y is simi-
lar for all three tracers, implying that y relates more to the medium (especially the matrix) property than to
the tracers themselves. The capacity coefficient 5, however, differs between tracers, probably due to the dif-
ferent sorption capability for different chemicals (since f defines the mass ratio of particles in the immobile
phase and the mobile phase).
4.3.2. Comparison With Existing Models
Further numerical experiments show that early arrivals of Bromide and PFBA in this fractured aquifer can
not be captured by the T-fADE model (28) (Figure 11), implying that early arrivals along fractures can not be
efficiently quantified by a time nonlocal transport model. In addition, although the late-time observations
were missing in all tracer BTCs, the SRMT model (where the late-time BTC tail declines as fast as exponential)
may not be able to capture the retention process observed in a typical fractured aquifer, where regional-
scale matrix diffusion tends to enhance the late-time tailing. It is also noteworthy that the observed BTC for
Lithium does not show early arrivals, probably due to a relatively high detection limit of Lithium.
4.4. Case 4: Mixed Retention and Early Arrivals in Fractures
Here we analyze anomalous transport in fractured media with different scales and well-controlled proper-
ties, to compensate the fractured aquifer in Case 3 with limited information. First, Monte Carlo simulations
of conservative solute trans-
port through random two-
dimensional,  regional-scale
discrete fracture networks
(DFN) conducted by Reeves
et al. [2008a, 2008b] exhibit
strong retention combined
with apparent fast jumps
along streamlines (i.e., frac-
tures). The DFNs were gener-
ated according to fracture
statistics obtained from field
studies that describe fracture
length, transmissivity, density,
Flow direction C/Co and orientation (see Figure
- 103 12a for one example). Reeves
[ — 104 | et al. [2008a, 2008b] found
103 that the leading edge of the
15? plume (representing the larg-
-1000- -1000f est particle jumps or early
0 1000 2000 6 1600 20'00 arrivals) contains an upper
X (m) X (m) . .
truncation that violates the

Figure 12. Application 4a: (a) Discrete fracture network. (b) Ensemble particle plume at time assumption of the classical
t=1000 years. (c) Best-fit using the F-MIM model (7). Lévy motion model,
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Table 3. The Predicted and Fitted Parameters for Tracer Transport in DFN in Application 4a®

Model yb Ar (1/year) B (year’™ ") V, (m/yr) D (mz/yr) a® oP . (1/m)
F-MIM (7) 0.38 1X107° 0.07 19 1.0 0.9 1.80 0.06
Predicted Predicted Predicted Fitted Fitted Fitted Fitted Fitted

@y-Time Scale Index; A;—Space Truncation Parameter; ;—Capacity Coefficient; V,~Longitudinal Velocity; D-Diffusion Coefficient; o—
Scalar Factor; «—Space Scale Index; and 4,~Tempering Parameter in Space.
Pdimensionless.

motivating the application of the F-MIM model (7) with a tempered stable density. Results show that model
(7) with a coarse flow field (i.e., an uniform velocity along the longitudinal direction) can characterize the
skewed plume (Figure 12c). Model parameters are shown in Table 3. For a better visualization in model
comparisons, we further quantify transport along a single fracture below.

Second, transport of tracers through small scale (< 100 cm), single empty fractures were measured in the
laboratory by Chen et al. [2011] and Qian et al. [2011]. All the measured BTCs exhibit heavy late-time tails
(see e.g., Figure 13), which might be due to mass exchange between the boundary layer near the fracture
wall and the mobile domain near the plane of symmetry [Qian et al., 2011]. Numerical experiments show
that the T-fADE model (28) captures the slow decline of the BTC at late times, but it significantly underesti-
mates the early arrivals. The F-MIM model (7) does simulate both the early and late time tails in the BTC,
because it explicitly models fast displacement in fractures. Model parameters are shown in Table 4. The
heavy-tailed early arrivals in the BTC imply that there is no apparent truncation for large jumps, and there-
fore we can predict a small space truncation parameter 4, (1.0X 107> m™") for this case.

Therefore, our results improve on Cvetkovic [2011], showing that while his tempered power law time-
nonlocal framework does seem to be a universal framework for capturing retention phenomena, it is also
necessary to employ a space-nonlocal framework such as the F-MIM model (7) to capture the concurrent
early arrivals.

4.5. Case 5: Model Application for Multiple First-Order Trapping Events

We check the developed implementation for multiple first-order trapping events in Arsenic leaching from
saturated soils. Many column transport experiments revealed that the desorption of As(V), which is the ther-
modynamically stable redox state under oxidizing conditions in soils, may follow multiple rates including
both fast reaction and long-term kinetics. For example, Fuller et al. [1993] fount that a period of rapid (< 5
min) As(V) uptake from solution was followed by continued uptake for at least 8 days. OReilly et al. [2001]
found that >35% of the sorbed As can be released rapidly within 24 h, and it took more than 5 months to 1
year to remove the remaining As. Similar multiple-rate kinetics were also observed by other researchers,
and here we apply model (23) to capture arsenic dynamics in soils documented in Qi and Donahoe [2011].

Qi and Donahoe [2011] performed column leaching experiments on arsenic-contaminated soil samples. The
measured BTC shows rapid initial arsenic release, followed by a prolonged tailing which declines linearly in

103 (a) 257 4 (b) Linear-linear plot of (a)

FCF Concentration (mg/L)
S
>

FCF Concentration (mg/L)

Detection limit

T N .
10" 10° 10' 10° 0 10 20 30 40
Time (second) Time (second)

Figure 13. Application 4b: (a) 1-D BTC of Brilliant Blue CFC through a single parallel plane fracture with the length of 25.5 cm. (b) The
linear-linear plot of Figure 13a. In this experiment, the fracture aperture is 0.0073 m, and the average flow rate is 0.055 m/s. See Table 4 for
model parameters.
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Table 4. The Predicted and Fitted Parameters for Tracer Transport in a Single Fracture in Application 4b?

Model P A7 (1/s) B (s Vy (m/s) D (m?/s) a® P 2. (1/m)

F-MIM (7) 0.65 0.02 0.53 0.055 N/A 0.08 1.75 1.0X107°
Fitted Fitted Fitted Measured N/A Fitted Fitted Predicted

T-fADE (28) 0.65 0.02 0.53 0.055 0.016 N/A N/A N/A
Fitted Fitted Fitted Measured Fitted N/A N/A N/A

@y-Time Scale Index; A—Space Truncation Parameter; f—Capacity Coefficient; V,-Longitudinal Velocity; D-Diffusion Coefficient; a-Sca-
lar Factor; a—Space Scale Index; and 4,-Tempering Parameter in Space. In the legend, “s” means second.
Pdimensionless.

a semi-log plot although the measurements contain strong noises (Figure 14b). We first quantify the leach-
ing experiment using the SRMT model with a relatively large rate coefficient w (0.5 day ', representing a
small mean residence time 1/w=2 days), which generates a fast release of As and captures the early peak.
The late-time tail of the BTC is missed, as expected, implying a multiple-rate mass transfer process. We then
apply the MRMT model (23) with two different rates to capture the general trend of the measured BTC,
including both the early peak and the late-time tail of the BTC (Figure 14). Model parameters are shown in
Table 5. In the MRMT model (23), the first rate is the same as the SRMT model which captures the fast peak.
The second rate coefficient (0.02 day ') is much smaller, resulting in a long mean residence time and there-
fore capturing the late-time tail.

5. Discussion: Future Extension of the Lagrangian Solver

We first discuss the mechanism and detection of early arrivals in geological media in the literature and the
above applications in Appendix D. We then discuss possible extensions of the Lagrangian solver for com-
plex conditions.

5.1. Time-Dependent Velocity v and Diffusion Coefficient D

The time-dependent velocity can be calculated by separating the time into multiple stress periods, where
the flow in each stress period is assumed to be steady state. When crossing the interfacial time (between
two stress periods), the particle is either mobile or immobile. The immobile particle will remain immobile
without changing the immobile time, if the time nonlocal transport parameters y and f are time-
independent. For the mobile particle, the original mobile time dM needs to be separated into two portions
(dM, and dM,) according to the interfacial time. The advective and diffusive displacement in each time por-
tion can then be calculated by the velocity field in the corresponding stress period. Because v and D are
defined in real time, the reward process with variable velocity (and dispersion coefficient) can be calculated
conveniently.

5.2. Space-Dependent Time Index y and Capacity Coefficient f

For a nonstationary alluvial setting, the variation of depositional environment can result in an apparent
change in the spatial distribution of floodplain deposits, which may require space-dependent y(x) and f(x)
to characterize retention [Zhang et al., 2007b]. To account for the impact of y(x) and f(x) on particle

(b) Semi-log plot of (a)
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Figure 14. Application 5: (a) Comparison between the measured (symbols) and modeled (lines) As breakthrough curve using both the
SRMT model and the MRMT model (23). Model parameters are shown in Table 5. (b) The semilog plot of Figure 14a, to show the late-time
tail.
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Table 5. Parameters for the SRMT Model and the MRMT Model (23) Used in Application 5%

L (cm) V (cm/d) D (cm?/d) B° o, (1/day) B>° - (1/day)
Source Measured Measured Fitted Fitted Fitted Fitted Fitted
SRMT 40.64 100.9 0.001 0.5 0.5 N/A N/A
MRMT 40.64 100.9 0.001 0.5 0.5 0.5 0.02

?L-the Travel Distance; V-Flow Velocity; D-Diffusion Coefficient; «;-Rate Coefficient; and f3-Capacity Coefficient.
Pdimensionless.

dynamics, we can generate a space-dependent random immobile time dI; using (22), where the parameters
y and 8 are now spatial functions. Particle displacement during the mobile time dM should not be affected,
if the mobile phase property does not change in space. Only when the particle finishes its moving and then
transfers to the immobile state, will the impact of space-dependent retention capability be felt by the
particle.

In addition, if y and f change in time (due to for example the strong transient flow), the fractional-
derivative model will contain a variable-order index. Depending on the definition of the variable index oper-
ator, one may either treat each random immobile time as an independent step during each jump (so that
the random immobile time dI; generator (22) is still valid) to describe a process that the previous index does
not affect the next one, or quantify the influence (i.e., the memory impact) of the previous index by splitting
the clock time according to the transient flow. We will test the extension proposed above in a future study.

6. Conclusions

This study is aimed at combing MRMT and fractional-derivative models and developing a general numerical
solver in order to quantify the anomalous dynamics for tracers transport in multidimensional geological
media. Anomalous transport can be incorporated into 2-D/3-D models with irregular flow fields. Both the
mobile-immobile mass exchange mechanism and the preferential flow path are considered for tracer trans-
port. Numerical development and model applications reveal five major conclusions.

First, the standard fractional-derivative models can be revised by (1) incorporating the multirate mass trans-
fer process with a general memory function, and (2) allowing additional displacement along streamlines
(representing mechanical dispersion deviating from the mean velocity in heterogeneous flow fields; see
Baeumer et al. [2014] for details) whose distribution follows the tempered stable.

Second, an explicit two-step Lagrangian solver based on the renewal-reward process can approximate the
above physical model, providing a numerical tool to capture anomalous dispersion for solutes in both space
and time. The first step is the renewal process which defines retention for solute particles due to mass trans-
fer between the mobile zone and any number of parallel immobile zones. The second step is the reward
process that describes particle jumps in the mobile time, where a subordination to regional flow is applied
to describe transient multidimensional fast jumps.

Third, to track particle dynamics in the time domain, the mobile time component of the renewal process
can be calculated as either an exponential random variable or a preassigned time step, and the subsequent
random immobile time follows a Hyper-exponential distribution for finite immobile zones or a tempered
stable distribution for infinite zones with a specific, truncated power-law memory function.

Fourth, both numerical experiments and applications show that the generalized physical model and its fully
Lagrangian solver can efficiently capture subgrid heterogeneity and flow variation, and therefore combine
anomalous transport and aquifer information at various scales. In particular, leading edges of plumes and
early arrivals of tracer BTCs are identified for transport in both regional-scale alluvial aquifers and fractured
media at various scales. In column transport experiments, however, early arrivals in the mobile time may
not be formed, due likely to the lack of long-range connectivity in flow between the upstream and the local
region.

Fifth, this study shows that retention and early arrivals can be simulated as independent processes with dif-
ferent parameters in a physical model. In particular, the time nonlocal transport parameters in the F-MIM
model are predictable for alluvial settings, improving the predictability of time nonlocal transport models.

ZHANG ET AL.

MODELING ANOMALOUS DIFFUSION USING A LAGRANGIAN SOLVER 6331



@AG U Water Resources Research 10.1002/2015WR016902

Appendix A: Literature Review of Time and Space Nonlocal Transport Models

Anomalous diffusion characterized by the nonlinear scaling of plume variance develops because of nonlocal
dependence on either past conditions (time) [Cushman, 1991; Cushman et al., 1994; Schumer et al., 2003a; Dentz
et al,, 2004; Dentz and Tartakovsky, 2006] or far upstream (space) concentrations [Cushman and Ginn, 2000; Molz
et al, 2002; Schumer et al, 2001; Zhang et al.,, 2007a]. The temporal nonlocality can be physically attributed to
mass transfer of solute between relatively immobile and mobile phases [Haggerty et al., 2000; Dentz and Berko-
witz, 2003], while the spatial nonlocality is due to long-range dependence of flow paths [Benson et al.,, 2001; del-
Castillo-Negrete et al,, 2005; Zhang et al., 2007b; Bolster et al., 2010]. While the space and time nonlocal formula-
tions may simulate similar aspects of plume growth, there are fundamental differences. For example, purely
space nonlocal models cannot account for the loss of mobile mass, while the time nonlocal methods usually
cannot account for early arrivals. Therefore, a physical model combining temporal and spatial nonlocality might
be needed for some cases, as shown by applications in this study.

Three nonlocal techniques have been sufficiently developed to be useful to the general hydrology commu-
nity. These techniques include the (single- and) multiple-rate mass transfer (MRMT) method [e.g., Haggerty
and Gorelick, 1995; Harvey and Gorelick, 1995, 2000; Haggerty et al., 2000], the continuous time random walk
(CTRW) framework developed by Berkowitz and coworkers [Berkowitz et al., 2006; Edery et al., 2014], and the
fADE method discussed in the main text [Benson et al., 2000]. The MRMT and CTRW techniques are time
nonlocal models and they generally attribute anomalous transport to the long period of time during which
solute “particles” move slowly; however, when they are in a relatively mobile phase, the solutes undergo
Fickian transport governed by the traditional ADE. The space fADE, which is a space nonlocal model, adds
non-Gaussian transport and therefore directly models early arrivals while the solutes are in a mobile state.
In any case, all nonlocal methods replace the (infinitely) fine local scale velocity with a simpler statistical
description of the amount of time it takes a particle to move a random distance. Typically this adds several
parameters to the governing equation but increases parsimony by replacing detailed velocity information.

The CTRW framework and the fADE method have been useful for fitting laboratory column tests [Pachepsky
et al., 2000; Cortis and Berkowitz, 2004] and 1-D or 2-D projections of field data [Berkowitz and Scher, 1998;
Benson et al., 2000, 2001; Zhang et al., 2008]. The well-known MRMT approach, including single-rate subsets,
have been successfully used for decades [Coats and Smith, 1964; Carrera et al.,, 1998; Feehley et al., 2000;
Swanson et al., 2015, among many others].

Recently, Cvetkovic [2011] found that a waiting time density following the tempered one-sided stable might
be a universal model for hydrological transport. Hansen and Berkowitz [2014] found that the Pareto transi-
tion time distributions can fit two sets of existing experimental data. Zhang et al. [2006] demonstrated that
the summation of Pareto random variables converges to the stable density, leading to the fADE model. If
the waiting time for solute particles between two jumps is a random variable, then the scaling limit of the
random process is either the time fADE (if the mean of the random waiting times, M, diverges) or the tem-
pered stable fADE (if M converges) [Meerschaert and Scheffler, 2008]. In other words, these studies implied
the applicability of a temporally tempered fADE model to capture anomalous diffusion due to nonlocal
transport in time, which is consistent with the finding by Meerschaert et al. [2008]. This popular time nonlo-
cal model is compared with the model used in this study in section 4.

Appendix B: Subordination to Regional Flow

The mathematical method “Subordination” [Feller, 1971] was used by Baeumer et al. [2001] to randomize
the time variable in standard transport models to represent the operational time experienced by each indi-
vidual tracer particle. For the advection-driven transport process, the standard governing equation is

AC(%, 1)

T=*V[v C(X7t)]7 (B1)

with the initial condition C(X, t=0)=C,(X). One can define a subordinator g,,, whose Fourier transform satis-
fies [see Baeumer et al., 2014, equation (3)]:

99y ..
W—II/(’k)gW (B2)
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with the initial condition g, =1, and y(ik)=—ik is the log-characteristic function of the subordinating
process.

The subordinated flow corresponding to equation (B1) is governed by [see Baeumer et al.,, 2014, equation (4)]:

ac

o W (Ve)C, (B3)

where (Vy) is a differential operator defined through a functional calculus [Baeumer et al., 2009]. Equation
(B3) can be expanded as (for a simplified version, see Baeumer et al., [2014, equation (11)])

ocC

="V +a(Vi)C. (B4)

Baeumer et al. [2014] showed that, by definition, if C(X, t) is the solution of equation (B1), then
Cy(X, l“):ngp(l“7 7) C(X, 1) dr, (B5)

is the solution of equation (B3). In other words, the solution of equation (B4) can be obtained by subordina-
tion transforming the solution to equation (B1).

Appendix C: Property of the Time fADE (28)

First, we emphasize again here that the time fADE model (28) is also a MRMT model. The standard MRMT
model with the first-order mass transfer can be written as [see also Schumer et al., 2003a, equation (6)]:

0Cn  OCp _0C, 0%Cy
W+/3W*f(t)— VWJFDW Bf(t)mod(x), (C1a)
t
C,-m()?7t)=J f(t—s) Cn(X,s)ds, (C1b)
0

where () is the Dirac delta function and m, denotes the initial mass (which is assumed to be located in the
mobile phase). Taking Fourier-Laplace transforms in equation (C1a) yields:
Conll, )= ———2 :
s+psf(s)+Vik+Dk?

(C2)

which can be rearranged to
SC (K, 5)—mo -+ B F(5)C m(k, 5)=[— Vik-+D(ik)?|C m(k, 5) - (C3)

Assuming exponentially tempered power-law waiting times, Meerschaert et al. [2008] proposed the follow-
ing memory function (in the Laplace domain):

f(s)=s""(Ar+s)'—s 12} (C4)
Inserting the memory function (C4) into equation (C3) and then taking the inverse Fourier-Laplace trans-
forms, one obtains the mobile equation:

0Cn

0[] ICp PCp
Z=m 4 ATt —
o Pe

ot Ox ox2 "’

(C5)

which is equation (28a). Similarly, we can obtain the governing equation for immobile solutes (following the
same procedure shown in Meerschaert et al. [2008]), which is the same as equation (28b). Therefore, the time
fADE model (28) is actually the MRMT model (C1) where the memory function is a tempered stable density.

Second, we emphasize here again that model (28) assumes the tempered stable density for solute waiting
times. Cvetkovic [2011] also found that the water residence time in hydrological transport typically distrib-
utes as the tempered one-sided stable (TOSS) density, which was first proposed by Cvetkovic and Haggerty
[2002] for solute transport with exchange in disordered media (see Cvetkovic and Haggerty [2002], equation
(10), which defines the “truncated stable density”). The TOSS density enables efficient computations of
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tracer transport subject to kinetically controlled mass transfer. Cvetkovic [2011] found that the TOSS distribu-
tion, expressed by equation (3) in Cvetkovic [2011], recovers virtually all residence time distributions consid-
ered in the literature for hydrological transport. This TOSS density, which is the asymmetric (one-sided),
exponentially truncated stable density, is identical to the tempered stable density assumed by the memory
function (C4). Since the time fADE or MRMT model (28) is equivalent to the model of Cvetkovic [2011], appli-
cations of (28) in section 4 provide a framework for further verifying the TOSS density model using real-
world transport data.

Appendix D: Mechanism and Detection of Early Arrivals in Geological Media

Mechanism for early arrivals may include: (1) a heavy tailed and long-range dependent hydraulic conductivity
for porous media [Benson et al,, 2001; Herrick et al., 2002; Kohlbecker et al., 2006; Dentz and Bolster, 2010], or (2)
power-law distributed, uncorrelated velocities [Dentz and Bolster, 2010]. Zhang et al. [2014b] also found that the
spatial correlation of high-permeable deposits is critical, in order to facilitate fast jumps through a heterogene-
ous porous medium. This mechanism differs from that for retention, where the overall retention is simply the
summation of contribution from each immobile phase and therefore the late-time BTC is not very sensitive to
the exact location of immobile blocks on the pathway of solute particles [Zhang et al.,, 2009]. This mechanism
also explains the weak leading edge of particle plumes observed in Case 2 (i.e, the hydrofacies model discussed
in section 4.2), because the transition probability defining the spatial correlation of hydrofacies is not heavy-
tailed but a summation of several exponential functions. The above mechanism also explains why retention is
much more commonly observed than early arrivals in column transport experiments. When natural soils are
repacked in a column, the intrinsic heterogeneity and internal connectivity (such as interconnected macropores)
tend to be disturbed, removing the original fast jumps along preferential flow pathes. Meanwhile, the soil matrix
zones still cause retention, although the structure can be reorganized. This explains why Case 5 (leaching experi-
ments along soil columns in section 4.5) discussed above does not show any sign of early arrivals.

For regional-scale fractured media (such as Cases 3 and 4), the fracture properties (including the transmissivity,
length, and density) affect early arrivals [Reeves et al., 2008a, 2008b]. For a local-scale single fracture (Case 4), the
combination of non-Darcian flow and boundary layer dispersion may induce early arrivals [Qian et al., 2011].

The above analysis shows that retention and early arrivals are driven by different mechanisms, and there-
fore can be modeled separately in a physical model, such as our two-step Lagrangian scheme. In addition,
fast jumps in heterogenous media are originated from upstream dispersive fluxes, a space nonlocal process
fitting well the physical interpretation of the space fractional derivative.

In addition, the detection of early arrivals is constrained by the travel distance and the detection limit of
tracers. First, at a spatial scale much larger than 1/, (where 2, is the space truncation parameter), the
upper-truncated fast jumps converges to Fickian diffusion. This can be seen from Case 2 (i.e., the hydrofa-
cies model), where 1/, is small and therefore the leading edge of plumes can be approximated by the
time nonlocal transport model after particles travel a long distance. Second, the mass of early arrived tracers
can be below the detection limit (see Case 3 discussed above) and therefore may be hard to measure in the
field. The F-MIM model (7) helps to identify early arrivals in real-world problems, since the space fractional
derivative term in (7) can efficiently model the transition from non-Fickian to Fickian diffusion, and provide
numerical solutions for early arrivals that might be missed in measurements.
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