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Abstract: The results of W. Feller characterizing domains of attraction in R 1 in terms of regular variation are extended to the 
multivariable case. 
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1. Introduction 

Suppose that # and v are probability distribu- 
tions on R k and that v is full, i.e., cannot  be 
supported on any ( k -  1) dimensional affine sub- 
space of R k. We say that # belongs to the domain 
of attraction of v if for a sequence of independent  
random vectors ( X. } with common distribution 
there exists a.  > 0 and b. ~ R k such that  

a-~l(Xl + . . .  + X . ) - b .  =, Y (*)  

where Y is a r andom vector with distribution v. 
We say that  v is stable if it has a nonempty  
domain  of  attraction. 

Multivariable domains  of attraction were first 
characterized by E.L. Rva~eva, who generalized 
the work of Gnedenko  and Kolmogorov in R 1 (see 
[3,8]). William Feller later presented an elegant 
and intuitive t reatment  of the one variable prob- 
lem using the theory of regular variation. In this 
paper we apply a multivariable theory of regular 
variation developed recently by A. Jakimiv [4] to 
obtain an extension of Feller's results to the case 
of r andom vectors. As in the one variable case the 
theory of regular variation allows a more  concise 
statement of  criteria for attraction to a s table law, 
along with a considerably simpler proof.  Another  
advantage of this approach is that it can be ex- 

tended to solve the more general domains of at- 
traction problem in which the scalars a, in ( * ) are 
replaced by linear transformations (see [6,7]). 

2. Results 

Let F = R k - (0}. A Borel measurable function 
F :  F ~ R + varies regularly at infinity if there ex- 
ists e ~ F and ~k : F --, R + such that for all x ~ F 

lim F(tx)/F(te)=q~(x). (1) 
l .-..~ t~O 

In this case there exists some p ~ R called the 
index of F such that 

~ ( k x )  = XP~k(x) (2) 

for all )~ > 0 and all x ~ F (see [4]). In the case 
O = 0 we say that F varies slowly. 

Theorem 1. # is in the domain of attraction of a full 
normal law on R k if and only if the truncated second 
moment function 

M(x)= f (y, (x/llxll))Z( I(Y, (x/llxll)) l 

<~ Hxll)~ (d y } (3) 

is slowly varying. 

016%7152/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 43 



Volume 4, Number 4 OPERATIONS RESEARCH LETTERS January 1986 

Now let /7 denote the set of o-finite Borel 
measures on F which assign finite measure to sets 
bounded away from the origin. Write ~,~ ---, 1, if ~,,, 
1, ~ / 7  and if ~,~(A)~ ~,(A) for all Borel sets A 
bounded away from the origin such that 1,(OA) = O. 
Here OA denotes the topological boundary of A. 
We say that # ~ / 7  varies regularly at infinity if 
there exists a Borel subset E of F and a measure 
~, ~ / 7  which cannot be supported on any proper 
subspace of R k such that, as t ~ oe, 

I~ ( t dx  ) /l~( tE ) ~ ~b(dx ). (4) 

In this case there exists some P < 0 called the 
index of/a such that, for all X > 0, 

i~ ( X dx  } = ~Cl~ ( d x  }. (5) 

minor modification. It is easy to check that both 
theorems remain true if the domain of integration 
in the integral formula is changed from I x l  < e to 
I t 'x I < el t I- We will consistently use this modified 
form below without further comment. On this 
subject we should also comment that Rva~eva 
makes a slight error in the statement of Theorem 
2.3, in that convergence of the integral formula 
both with the lira sup and the lira inf is necessary. 
The correct statement, along with a more modem 
treatment of the subject, can be found in [1] (see p. 
67). 

Proof of Theorem 1. Suppose that (* )  holds and 
that Y is normal with Lrvy representation (a, Q, 0) 
where Q is positive definite. By [8, Theorem 2.4] 
we obtain 

Theorem 2./~ belongs to the domain of attraction of 
a full nonnormal stable law on R 1, if and only if  I~ 
varies regularly with index p ~ ( - 2, 0). 

If F varies regularly then (1) holds for any 
nonzero vector e, except that the limit g' changes 
by a multiplicative constant. The properties of 
regularly varying functions needed below are ob- 
tained using (1) and the fact that if F varies 
regularly then F(te)  is a (one variable) regularly 
varying function of t > 0 with the same index. 
Similarly if ~ varies regularly then (4) holds for 
any Borel set E bounded away from the origin 
such that q~(OE)= 0, with the same effect on the 
limit. Then u(tE)  is a regularly varying function 
of t having the same index as ~. 

3. Proofs 

It is straightforward to verify that Theorems 1 
and 2 are equivalent to the characterization of 
domains of attraction appearing in [8]. However, it 
is instructive to provide a new proof of these 
results here, since by way of the theory of regular 
variation the original proofs can be greatly sim- 
plified. 

In the following proofs we will use the standard 
criteria for convergence of an infinitesimal triangu- 
lar array of random vectors due to E.L. Rva~eva 
(see [8, Theorem 2.3 and Theorem 2.4]) with a 

for all x ~ R k, where 8 , (y)  = I(y:  I(Y, ( x / l l x l l ) )  
<a,e) .  If the function M defined by (3) is 
bounded,  then it is easy to check that M varies 
slowly. Otherwise we have that M ( t x ) ~  • as 
t ---, ce for all x ~ / ' .  An application of the Schwartz 
Inequality shows that in this case the squared term 
in (6) is dominated as n ~ m by the first integral, 
and so we have 

lim ( n / a 2 ) M ( a , , x ) = e ( x ) / H x l [  2 (7) 
12 ----~ OO 

for all x ~ F. Now an application of [2, VIII. 8, 
Lemma 3] along with (1) yields that M is slowly 
varying. 

Conversely, suppose we are given that M varies 
slowly and (1) holds. If M is bounded then the 
Central Limit Theorem applies, and we are done. 
Otherwise we may define 

a , , =  sup( t  > 0: M(te)/ t2>~ l / n )  (8) 

and then ( n / a 2 ) M ( a n e ) ~  1. From this and (1) 
we again obtain that (7) holds for all x ~ F with 
a ( x )  = II x II 2q,(x),  and again this is equivalent to 
(6). Now it only remains to show that n#(an dx} 
--* 0, by [8, Theorem 2.4]. But this is an immediate 
consequence of (7) and [2, VIII.9, Theorem 2]. 
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Proof of Theorem 2. Suppose that (*)  holds where 
Y is nondegenerate with Ltvy representation 
(a, 0, ¢). By [8, Theorem 2.3] we obtain 
nll(a, d x ) ~ ¢ ( d x } .  It is easy to see from (*)  
that (a, + 1/a,) ~ 1, and now it follows that (4) 
holds, where E = (x:  Ilxll > c} is chosen to make 
,~ (aE)=  0. Then (5) holds also, and from Ltvy's 
classical result (see [5]) we obtain - 2  < p < 0. 

Conversely, suppose that ~ varies regularly with 
index p ~ ( - 2, 0) and (4) holds. By (5) we see that 

is a Ltvy measure. Choose E as above so that 
~ ( 3 E )  = 1 and define, for all n sufficiently large, 

a ,  = s u p ( l >  0: ntt(tE)>~ 1}. (9) 

By (5) we have that g , ( 0 E ) = 0  so that #(tE) 
varies regularly (see remarks following Theorem 2 
above). It follows that nu(a,E)--* 1 and then by 
(4) we have that 

n l x { a ,  d x }  --* th ( d x  } (10)  

and now by virtue of [8, Theorem 2.3] and an 
application of the Schwartz Inequality it will suffice 
to show that 

lim lim x)28.(y)lt(dy)=O (11) 
e - - ~ 0  r / - -*  oO 

w here  8 n is as d e f i n e d  above.  Bu t  this fo l lows  

directly from (10) and [2, VIII.9, Theorem 2]. 

Hoppe at the University of Michigan. I would also 
like to thank the referee for suggesting the refer- 
ence [1] and for making several useful comments 
which impi:oved the presentation of these results. 
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