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1. Introduction 

Let p, v be probability distributions on iWk and suppose that v is full, i.e. that it cannot be supported on 
any (k - l)-dimensional hyperplane. Let X, Xi, X2, X3,. . . denote independent random vectors with 
common distribution p and let Y denote a random vector with distribution V. We say that Al. belongs to 
the generalized domain of attraction (GDOA) of v if there exist linear operators A, and constants 6, 
such that 

A,( X, + . . . +X,) -b, =) Y. (1.1) 

We say that v is operator stable if it has a nonempty GDOA. Operator stable laws and generalized 
domains of attraction are the natural multidimensional analogues to the stable laws and domains of 
attraction in one variable. In the one variable case Feller (1971) gives an elegant treatment of the topic 
using regular variation. This paper extends the results of Feller to the multidimensional case, using a 
multivariable analogue to regular variation. 

Early research on multidimensional regular variation by Stam (19771, de Haan and Resnick (19791, 
and Jakimiv (1981) lead to the results in Meerschaert (1986b) in which we used a simple version of 
regular variation in [Wk to treat (1.1) in the special case of norming by scalars A,, = a,Z. A slightly more 
general version of regular variation was used by de Haan, Omey and Resnick (1984) and Meerschaert 
(1991b) to treat the case of ‘vector norming’ where every A,, is assumed to be diagonal. In order to treat 
the general case we will use a slightly extended version of the general theory of regular variation in lWk 
laid out in Meerschaert (1988). 
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2. Results 

Suppose F(x) > 0 is defined for nonzero x in IWk such that F(rx) is a monotone function of r > 0 for all 
x. We will say that F is RV(a) provided that there exist nonsingular linear operators A, tending in norm 
to zero such that nF(A,x,) +g(x) whenever x, +x, where g > 0 satisfies g(tx> = tag(x) for all x and 
all t > 0. We will say that a v-finite Bore1 measure p defined on iWk - {O} is RV(B) provided that there 
exist linear operators A, tending in norm to zero such that np(A;’ dnc} + 4{dx} in the weak topology 
for some 4 which cannot be supported on any proper subspace of [Wk and which satisfies t-‘{dx} = 
4(tB dx) for all t > 0. 

The case where the operator stable limit law 2, has both a normal and a nonnormal component will be 
dealt with via a reduction argument. In this case Sharpe (1969) shows that we can write [Wk as the direct 
sum of proper subspaces L, and L, with associated projections P, and P, so that P,v is normal on L, 
and P,u is nonnormal operator-stable on L,. Here Pv{dx) = u(P-‘dx). 

Theorem. Suppose X is a random vector on lRk with distribution I_L. 
(i> Suppose EX = 0. Then p is in the GDOA of some normal law Y if and only if the truncated second 

moment function 

F(x) =E(X, x)*1( 1(X, x)1 <l). (2.1) 

is RV(2). 
(ii) p is in the GDOA of some operator stable law v having no normal component if and only if p is 

RV( B) where every eigenvalue of B exceeds i. 
(iii) If P,p belongs to the GDOA of P, u or i = 1, 2 then I_L is in the GDOA of u. f 

Corollary. Suppose X is a random vector on Rk whose distribution p belongs to the GDOA of some 
operator stable law u. 

(i) If u is normal then m,(x) = E I( X, x ) 1 b is finite for all x and b < 2. In particular p has an 
expectation, and we may choose b, to zero expectation. 

(ii) Suppose I_L is in the GDOA of u nonnormal so that I_L is RV(B) and define m = minIRe(A)), 
M = max{Re(A)) where h ranges over the eigenvalues of B. Then m,(x) is finite whenever bM < 1 and 
mB(x) is infinite for all nonzero x whenever bm > 1. If m > 1 then we may take all b, = 0 and if M < 1 we 

may center to zero expectation. 

Generalized domains of attraction in the case of a normal limit were characterized by Hahn and Klass 
(1980a) using a version of uniform regular variation, i.e. they apply one-dimensional regular variation 
uniformly in all radial directions. The statement of our result (i) differs in that the condition for 
attraction to a normal law is inherently multidimensional. Although uniformity over radial directions is 
not transparent in our statement, it is a fundamental component of our proof of (i) via the uniformity on 
compact sets of the regular variation of r -+ F(r-‘x). Since any law in the GDOA of a normal law must 
have an expectation, the assumption EX = 0 entails no loss of generality. 

Part (ii) of the theorem is essentially just a restatement of the result in Meerschaert (1986a) in terms 
of regular variation. Part (iii) is a new result which is related to the spectral decomposition of 
Meerschaert (1991a). See the remarks at the end of this paper for more details. 

In the case of a normal limit Klosowska (1980) shows that (X, 0) belongs to the one-dimensional 
domain of attraction of a normal law for every unit vector 0 E iw k. Then the portion of the corollary (i) 
concerning the existence of radial moments may be obtained by reference to one-variable results. The 
protion concerning the centering constants was originally proven by Hahn and Klass (1980b). We include 
these results here for the sake of completeness. We also wish to emphasize that all of these results follow 
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immediately from the proof of theorem above. The Corollary’s results on the existence and nonexistence 
of radial moments extend prior results of Hudson, Veeh and Weiner (1988). 

Generalized domains of attraction were characterized by Hahn and Klass (1985) using classical 
methods. The theorem above provides an alternative characterization of GDOA in terms of regular 
variation. The use of regular variation allows us to treat the problem in a simple and unified manner. It 
also produces easily obtainable information about moments, centering, and tail behavior. 

3. Proof 

Let X be an arbitrary indexing set and suppose that R : (0, m) XX - (0, m> is defined such that R(r, x) 
is a Bore1 measurable function of r for each x. We will say that R is uniformly regularly varying with 
index a E [w if for all t > 0, 

lim R( tr, x)/R( r, x) = to, (3.1) 
r-m 

and this convergence is uniform in x. In the applications to come the indexing set X is the unit sphere, 
in which case the definition (3.1) imposes a uniform growth rate in all directions. 

Lemma 1. If F is RV(a) then R(r, x) = F(r- lx> is uniformly regularly varying with index -a on compact 
subsets of {II x II > 01. 

Proof. Suppose x, +x and define n(r) = sup{n: 11 Ai lx, 11 < Y} so that n = n(r) is well-defined for large r 
and n + CC as r + 03. If we let y, = A;'x,/r then the set (y,} is relatively compact. If y, + y along a 
subsequence then 

R(tr, xr> F(4t-‘yn) j t-a 

R(r, xr> = Ft-4.~~) 
(3.2) 

along a subsequence. Since any subsequence r, + w has a further subsequence with this property, the 

lemma follows. 0 

This form of regular variation is adequate for the treatment of normal GDOA, but for the nonnormal 
case we require a generalization which allows the growth rate to vary with x. A Bore1 measurable 
function R(r) is R-O varying if it is real-valued and positive for r &A and if there exist positive constants 
a > 1, m < 1, A4 > 1 such that m < R(tr)/R(r) < A4 whenever 1 < t <a and r aA. We will say that the 
function R(r, x) is uniformly R-O varying if it is an R-O varying function of r for each x, and the 
constants A, a, m, M can be chosen independent of x. A necessary and sufficient condition for uniform 
R-O variation is that mth G R(tr, x)/R(r, x) G MtH whenever t a 1 and r aA. Here we have let 
h = log m/log a and H = log M/log a. The infimum of all such H is called the upper Matuszewska 
index and the supremum of all such h is called the lower Matuszewska index. 

Suppose that p is RV(B). The definition imposes both upper and lower bounds on the rate at which 
the tails of p diminish. Indeed the bounds are essentially the same as for 4, which is easily seen to be 
RV(b) by taking A, = nPA. In order to obtain specific upper and lower bounds we will apply uniform 
R-O variation. Let R(r, x) = p{ y: 1 (x, y) I < r} and define the truncated moments U,, V, as in Feller 
(1971) i.e. let 

U,( r, x) = jdt’R(dt, x), I/c(r, x) = lpt’R(dt, x). (3.3) 
r 
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Since we are interested only in the tail behavior of p, there is no loss in generality in assuming that p 
assigns zero measure to some neighborhood of the origin, so that R, U, are always well-defined. Define 
m = min{Re(h)), M= max(Re(h)}, where A ranges over the eigenvalues of B. Let h = -l/m and 
H = - l/M. The following result states in part that the tails of p diminish no faster than th and no 
slower than tH. 

Lemma 2. Suppose what p is RV(B). 
(i) If h + c < 0 then V, is uniformly R-O varying with lower Matuszewska index h + c on compact 

subsets of { II x II > 0). 
(ii) IfH+b>O h t en U, is uniformly R-O varying with upper Matuszewska index H + b on compact 

subsets of { II x II > 01. 

Proof. The proof of both parts is similar. We will only prove part (ii). Define the set-valued function 

H(x)={y:I(x, y)l ~1) (3.4) 

and let 

F(x) =/lb, y>lb p{dy), g(x) =/lb, Y> I b 4{dy), (3.5) 

where both integrals are taken over H(x). Using the fact that H(B*x) = B-‘H(x) we obtain tg(x) = 
g(tB*x) for all x and all t > 0, while nF(A,*x,) -g(x) whenever x, +x provided that the boundary of 
H(x) has &measure zero. (Actually C#J is continuous, but we will not need this fact.) Note also that 
Ub(r, x) = rbF(x/r). 

Suppose x, --f x and define n(r) = sup{n: [/(A,*)-lx, II < r) so that n = n(r) is well-defined and tends 
to infinity along with r. If we let y, = (A,*)-‘(x,/r) then {y,) is relatively compact. If y, -+ y along a 
subsequence then 

Ub(tr, ‘r) tbq4y1yn) tbbq-'y) 

Ub(r, ‘r) = F(A,*Y,) -+ g(Y) 
(34 

along a subsequence. Since any subsequence r,, -+ m has a further subsequence with this property, we 
have that U, is uniformly R-O varying. Furthermore it follows by a straightforward computation that g is 
uniformly R-O varying with upper Matuszewska index b + H on compact subsets of { II x II > 01, and so 
U, has upper index b + H as well. 0 

Recall that X, Xl, X,, X,, . . . are i.i.d. according to p, and that p is said to belong to the GDOA of a 
random vector Y whose distribution I, has Levy representation (a, Q, 4) if there exist linear operators 
A, and constants b, such that (1.1) holds. 

Proof of theorem. We begin with the proof of (i). Suppose that (1.1) holds. By the standard convergence 
criteria for triangular arrays we have 

n 
[ 
/<Y, x>*P{~? dy} - (I( Y, x)~{&’ dy})‘] + Q(x) (3.7) 

for all x, where the domain of integration is the set H(x) defined by (3.4). Write A,*x = r,#,, where 
lI8,,II = 1 and r, > 0. A change of variable in (3.1) yields 

nr,2 /(y, e,&(dy) - (/<Y> %)~{dy} 2 11 + Q(x) 
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where we integrate over H(A,*x). This set tends to Rk as n + CC and it follows that the second integral in 
(3.8) tends to zero (EX = 0) while the first remains bounded away from zero as n -+ ~0. Then (3.8) 
remains true with the second integral deleted. Rewrite in terms of F to obtain 

nF(Xx) + Q(x) (3.9) 

and since both sides of (3.9) are quadratic forms it is easy to check that this convergence is uniform on 
compact sets. Then F is RV(2). 

Suppose now that F is RV(2) and so (3.9) holds. By reversing the arguments in the direct half of the 
proof we arrive back at (3.7), and now we need only show that np{A;’ dyl + 0. 

We will argue using uniform regular variation. Let U,,, V, denote the truncated moments of I_L defined 
by (3.3) with R(r, x) = p{y: 1 (x, y> I G r}. Lemma 1 implies that F(x/r) is regularly varying with index 
(-2) uniformly on the unit sphere S = lx: II x II = 1). Therefore lJ,(r, X) = r*F(x/r> is slowly varying 
uniformly on S. Given a nonzero vector x choose rn, 0, as before so that A,*x = rntln. Define 
H(x) = {y: ((x, y) I > 1). Then we have np(A;‘H(x)) = nV,(r;‘, 0,) where r,, + 0. From (3.7) we have 
that nr,fU,(r; ‘, f3,) -+ Q(x) and now by applying a uniform version of Feller (1971, VIII.9, Theorem 2) 
we obtain nV (r o ; ‘, 0,) + 0 which finishes the proof of (i). 

Part (ii) is simply a restatement of the result in Meerschaert (1986) in terms of regular variation. We 
recount the proof here for the convenience of the reader. The direct half is an immediate consequence 
of the standard convergence criteria for triangular arrays. As to the converse, an application of the 
Schwarz Inequality shows that it is enough to verify 

lim lim sup n 
e-0 n-*cc / 

ICY, x)l <E 

(Y, .d2p{A,’ dy} = 0 (3.10) 

for all x. As in the proof of (i> let U,, V, denote the truncated absolute moments of p. Writing 
.4,*x = men as before, the expression under the limit in (3.10) becomes nr,fU,(&/r,, 0,). Apply uniform 
R-O variation to obtain 

nr~U2(E/r,, e,) <c1.5*rzVo(E/r,, en) ~c,e6rzVO(r;*, 0,) =c,&zp(A~‘H(x)). (3.11) 

The result follows from the fact that np{A;’ dy} --f ${dy} as II + 03. 
Now we prove (iii). Without loss of generality we have EP,X = 0. By assumption Pi[ A,(X, 

+ 1 .. +X,1 -6,l~ P,Y for i = 1, 2 where A, commutes with Pi. Let [a, Q, 41 denote the Levy 
representation of v so that we have np{A,‘P,- ’ d y} + 4{Pi- ’ d y} where Pipi-’ denotes the pre-image, 
and the limit is zero for i = 1. It follows that n~{A;’ dy) --f +(dy). We have also that the second 
criterion for the convergence of a triangular array holds whenever x E L, or x EL,. Now in order to 
complete the proof it will suffice to show that this remains true for all other x. 

Suppose x = x1 +x2 where Xi E Li is nonzero for i = 1, 2. A straightforward computation shows that 
it is enough for 

(9 lim lim sup n 
E’O n-cc / 

IlYll<E 
(Y, Xl,>(Y, -+CL{A,’ dY} = 0; 

(ii) lim lim sup 
[ 
II 

E-0 n-cc / II Y II <E 
(Y7 XJPU(42 dY} .QY, 444,’ dY} = 0. 1 

But both of these follow immediately from the Schwarz Inequality along with (3.10) and the fact that 
(3.7) holds with the second integral deleted. q 

Proof of corollary. We begin with part (i). The statement about moments follows immediately from Feller 
(1971, VI11.9, Theorem 2). As for the centering constants, it suffices to show that 

+, yh{A,’ 0) -0 (3.12) 
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for all X, where we integrate over the set H(x/c) used in the proof of the theorem above. Using the 
same notation as in that proof the expression on the left becomes 

nr,l/,(c/r,, e,) =o(rz)rlr~cCW2(c/~,, en> -o(n)c-‘Q(x) 

which vanishes in the limit for any c. 
Now we prove part (ii) of the corollary. The statement about moments follows immediately from the 

proof of the theorem. To prove centering to zero expectation it suffices to show that the integral in (3.12) 
can be made arbitrarily small for large IZ by appropriate choice of c. Using the uniform R-O variation we 
obtain 

nr,1/3(c/r,, 0,) G K,nr,2c-‘UJc/r,, 0,) <K,nr,2c-“U,(r;‘, 0,) GK,c”p( H(x)). 

Let c + 0. 
To prove we can set b, = 0 when m > 1 we use 

nr,U,( c/r,, xn) G K,nrnCEU,( r;‘, xI1) =s K,c’nl/,( r; ‘, x~) G K,c”p( H( t)) . 

Let c -+ 0. Cl 

4. Remarks 

As in the one-variable case, several properties of operator stable limits emerge naturally from the regular 
variation. The index of regular variation B which occurs in the theorem above is the exponent of the 
operator stable law, defined by Sharpe (1969). In general this index is not unique. Further information 
on exponents of operator stable laws can be found in Holmes, Hudson and Mason (1982), Hudson, Jurek 
and Veeh (19861, and Meerschaert and Veeh (1992). Many of the results which appear in those papers 
can be interpreted more broadly as pertaining to the index of a regularly varying measure on [Wk. 

The spectral decomposition for generalized domains of attraction in Meerschaert (1991a) provides a 
partial converse to part (iii) of the theorem above. Suppose that p belongs to the GDOA of v operator 
stable. In general it is too much to hope that Pip will belong to the GDOA of Pi” for i = 1, 2. However 
it is true that there always exists a nonsingular linear operator T on Rk such that /_L also belongs to the 
GDOA of u0 = TV and that Pip belongs to the GDOA of P,v,, for i = 1, 2. 

The spectral decomposition can also be used to sharpen the results of the corollary above. Suppose 
that p belongs to the GDOA of some operator stable law v having no normal component. Let 
{a ,, . . . , ad) be an enumeration of the real spectrum of the index B of the regularly varying measure CL. 
The spectral decomposition yields projection operators P,, . . . , Pd with the property that Pip is attracted 
to a spectrally simple operator stable law vi. This means that the exponent of vi (i.e. the index of regular 
variation of Pip) has real spectrum consisting of the single element a,. Then the radial moments m,(x) 
will be finite whenever b < l/a, and infinite whenever b > l/a,. If ai > 1 then we can center to zero 
expectation, and if ai < 1 then no centering is necessary. 

In the one-variable case every element of a nonnormal domain of attraction has regularly varying tails. 
In the case of generalized domains of attraction, the tail function 

I/o(r, 0) = I+{ 1(X, 0) I > r} 

need not vary regularly. In fact Meerschaert (1990) gives an example to show that the operator stable 
laws themselves need not have regularly varying tails. However we can obtain a slightly weaker tail 
condition from the remarks in the preceding paragraph. In the one-variable case attraction to a stable 
law with index (Y requires that the tail function varies regularly with index -(Y. In other words the tails 
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tend to zero about as fast as I-~. When pi = P,~,L is attracted to the spectrally simple operator stable law 

Ye, the tails of pi are R-O varying with both upper and lower Matuszewska index equal to (Y, = l/a,. 
Hence they tend to zero faster than yPa~tF and slower than r-al-F for any F > 0. 
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