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REGULAR VARIATION IN Rk 

MARK M. MEERSCHAERT 

(Communicated by R. Daniel Mauldin) 

ABSTRACT. Researchers investigating certain limit theorems in probability 
have discovered a multivariable analogue to Karamata's theory of regularly 
varying functions. The method uses elements of real analysis and Lie groups 
to analyze the asymptotic behavior of functions and measures on Rk. We 
present an account here which is independent of probabilistic considerations. 

1. Introduction. A Borel measurable function R: (0, oo) -, (0, oo) is said to 
vary regularly at infinity with index p E R if, for all A positive, 

(1.1) lim R(Ax)/R(x) = AP. 
x- oo 

A regularly varying function with index zero is said to vary slowly. If R varies 
regularly with index p then we may always find L slowly varying such that R(x) = 
xPL(x), and hence a regularly varying function may be considered as a function 
whose asymptotic behavior is approximately that of a power function. The mono- 
graph by E. Seneta [61 contains a very readable exposition of the basic theory of 
regularly varying functions on R1. 

Recently several authors have proposed multivariable analogues of the defini- 
tion (1.1) in connection with certain limit theorems in probability. A. Stam used 
one version to prove a multivariable extension of the Abel-Tauber Theorem in [7]. 
A. L. Jakimiv apparently worked independently to produce a similar version in [2], 
which he applied to a problem in the theory of branching processes. The author of 
this paper applied Jakimiv's version to the problem of characterizing scalar-normed 
domains of attraction in Rk in [4]. More general domains of attraction problems 
were treated by the author in [3, 51, and by deHaan, Omey, and Resnick in [1]. The 
treatment of the more general domains of attraction problem led to the development 
of a more general version of the theory of regular variation in Rk. The purpose of 
this paper is to provide an account of the multivariable theory of regular variation 
which is independent of probabilistic applications. The elegance and versatility of 
these results suggests that they may find application outside of probability (as has 
the one variable theory). In addition, we find the mathematics so beautiful that 
we feel other mathematicians will want to read it for its own sake. 

The remainder of this paper is divided into three sections. In ?2, we discuss 
regular variation of path functions on the general linear group GL(Rk). In ?3 we 
generalize (1.1) to the case of real-valued functions on Rk. Finally in ?4 we discuss 
regular variation of Borel measures on Rk. 
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2. Regular variation on GL(Rk). In some ways it is most natural to define 
regular variation on Lie groups. Many results from R1 extend almost immediately. 
Perhaps more importantly, the results of this section are key to the development of 
a general theory of regularly varying functions in Rk. 

Let GL(Rk) denote the set of invertible linear operators on Rk. This set, to- 
gether with the operation of composition (matrix multiplication), forms a Lie group, 
i.e., a group which is also a smooth real manifold such that the group operations 
(A, B) -+ AB and A -- A1 are infinitely differentiable. Let hJAII denote the norm 
of A E GL(Rk) defined as usual by 

(2.1) IJAII = sup{jlAxji: lixii = 1}. 

In the norm topology on GL(Rk) we have that A, , A is equivalent to each of: (a) 
Anx -* Ax for all x in Rk; (b) An -+ A uniformly on compact subsets of Rk; and 
(c) the matrices corresponding to An with respect to a fixed basis for Rk converge 
elementwise to the matrix corresponding to A. 

Suppose that f: R+ -? GL(Rk) is Borel measurable. We will say that f varies 
regularly at infinity with index E if, for all A > 0, 

(2.2) lim f (Ar)f (r)-1 = AE, 
r--*oo 

where E is some (possibly singular) linear operator on Rk. Here AE denotes the 
operator exp(log A * E), where exp is the exponential operator 

00 

(2.3) exp(A) = E An/n!. 
n=O 

If E = 0, we will say that f varies slowly. 
Part of the justification for the definition (1.1) is that the limit term AP is com- 

pletely general. That is, if we assume only that the limit exists and is positive for 
all A > 0, then the limit must take the form of a power of A. The next result states 
that the analogous result is true in the present case. 

THEOREM 2. 1. Suppose that f: R+ -* GL(Rk) is Borel measurable and that, 
for all A > 0, we have 

(2.4) lim f(Ar)f(r)-1 =,(A) E GL(R k). 

Then there exists a linear operator E on Rk such that +(A) = AE for all A > 0. 

PROOF. It follows from (2.4) that 4 is measurable and that O(Aps) =V(A)O(P) 
for all A, ,u positive. Clearly 4(1) is the identity operator, and so 4 is a Borel 
measurable group homomorphism from the multiplicative group R+ to GL(Rk). 
Hence 4(ex) is a measurable one-parameter subgroup, and it is well known that 
such a subgroup takes the form exp(xE) for some E. Reparametrize by x = log A. 

Some of the properties of regularly varying functions on R' which depend on 
the commutativity of multiplication on R+ do not extend to the present case. For 
instance, it is no longer true that the product of two regularly varying functions 
must vary regularly. In particular, we can no longer reduce to the study of slow 
variation, since we cannot in general write a regularly varying function as the prod- 
uct of a slowly varying function and a power function. In light of these limitations 
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it is indeed interesting to see how complete we can be in generalizing the deepest 
and most fundamental results from the one variable case. The following theorem 
(which extends [6, p. 21) is a good example. 

THEOREM 2.2. If f varies regularly, then the convergence in (2.2) is uniform 
on compact subsets of {A > O}. 

PROOF. We adapt the proof from Seneta's monograph. As noted above, we 
cannot reduce to the case of slow variation, which complicates the proof somewhat. 
It suffices to prove uniform convergence for A in the interval I = [a, b] where a < 1/2 
and b > 2. Suppose not. Then for some E > 0 there exists rn -? oo and An E I 
such that 

(2.5) Ilf (Anrn)f (rn)l - AEii > E 

for all n. Suppose each of el and 62 is a positive number. Define 

(2.6) U,n = {A E L: IIf(Arm)f(rm)1 - AE'I < 61 Vm > n}, 
Vn = {A E L: lIf(AAmrm)f(Amrm)l - AE| < 62 Vm > n}, 

where L = [1/2b, 2/a]. As n -* oo, the set U,, and Vn increase to L in view of the 
fact that (2.2) holds for each individual A > 0. Let V,n = AnV,. By construction of 
L we must have [1/2,2] contained in L n AnL for all n, and hence for some N we 
have UNVn VN : 0. If A E UN and A E VN, then (A/AN) E VN, and so 

(2.7) lIf(ArN)f(rN)' 
_ 

AEII < 6E, 

Ilf (ArN)f(ANrN)Y - (A/AN)EIl < 62. 

Let A = f(ArN)f(rN)'l and B = f (ArN)f(ANrN) 1, so that 

B'1A = f(ANrN)f(rN) 1 

By (2.7) and the triangle inequality, we obtain 

(. B-A - A| = JB-1A - B-lA E + B-l1AE - A Ell 

?< JIB-111 - IA - AEII + JIB-' - (AN/A)EII . IIAEII; 

and now, by making an appropriate choice of 61, 62 in (2.6), we obtain a contradic- 
tion to (2.5). This completes the proof. 

It follows easily from the Uniform Convergence Theorem for regularly varying 
real-valued functions that if R varies regularly with index p then rP-' < R(r) < 
rP+e for all r > 0 sufficiently large. That is, the asymptotic behavior of R is 

approximately the same as that of rP. The analogous result in the case of GL(Rk)_ 
valued functions can be expressed as follows: 

THEOREM 2.3. Suppose that f varies regularly with index E. If all eigenvalues 
of E have real part greater than a, then 

(2.9) r-' lif (r)xll 
- oo 

as r -+ oo for all nonzero x in Rk. If all eigenvalues of E have real part less than 
,3, then. 

(2.10) r- l/f (r)xll -+ 0 

as r -* oo for all nonzero x in Rk. 
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PROOF. The proof of both assertions is similar and so we only prove the first. 
Let S denote the unit sphere in Rk and let m = min{Re(A)}, where A ranges 
over the set of eigenvalues of E. For any a < m, a computation shows that 

r-llrEx II - oo uniformly on x E S as r -? oo. Select a,b real with a < b < a < m. 
For some A0 > 1 we have A0 aII xll > 1 for all x in S and so IIAoxII > A-. Now 
choose E > 0 such that Aa - e > Ag, and apply Theorem 2.2 to obtain ro > 0 such 
that Ilf(Ar)f(r)-1 - AEl < e whenever 1 < A < A0 and r > ro. For such r, A we 
have lIf(Ar)f(r)-1xll > Ab for all x in S. Now let z = f(ro)-1x and y = z/lIzlI. 
For all n we have that lIf(Anro)yll > Abn/IIzII. It follows easily that (2.9) holds 
with y in place of x. Now by linearity the same holds for any cy, c > 0. But y E S 
is arbitrary and so we have (2.9) for all nonzero x. 

3. Regularly varying functions on Rk. Let r = Rk {O} and suppose that 
F: F -? [0, oc) is Borel measurable. We will say that F varies regularly if there 
exist f: R+ GL(Rk) and R: R+ -* R+, both regularly varying, such that 

(3.1) lim F(f (r)-1Xr)/R(r) = p(x) > 0 
r--+oo 

whenever Xr x in F. Let E,,lf denote the index of f and R respectively. If all 
eigenvalues of E have positive real parts, then it follows from Theorem 2.3 that 
I f(r)-1xrII - 0 as r -? oo whenever xr -* x in F. In this case, we will say that 
F varies regularly at zero. If all eigenvalues of E have negative real parts, then 

I f(r)'-xrII oo whenever xr -? x in r and in this case we will say F varies 
regularly at infinity. 

LEMMA 3. 1. If F varies regularly and (3.1) holds, then 

(3.2) A'%P(x) = p(A-EX) 

for all A > 0 and all x in r. 

PROOF. Fix A, x and consider the equation 

F(f(Ar)-1x) F(f (r)1-xr) R(r) 
R(Ar) R(r) R(Ar)' 

where xr = f(r)f(Ar)1x. By taking inverses in (2.2) we see that xr -+ A-Ex. Now 
letting r - oo on both sides of (3.3) we obtain ~p(x) = p(A-EX) A-: as desired. 

LEMMA 3.2. F varies regularly if and only if there exists f regularly varying 
and e E F such that 

(3.4) lim F(f (r)-xr)/F(f (r)-1e) = -y(x) > 0 
r-*oo 

whenever Xr -* x in F. 

PROOF. If F varies regularly we immediately obtain (3.4) with -Y(x) = P(x)1 0(e)- 
Conversely, suppose that (3.4) holds and define R(r) = F( f (r)-1e). For any A > 0 
we have xr = f (r)f (Ar)-le - A-Ee as r -+ oo by (2.2). It follows that R(Ar)/R(r) 
tends to the positive limit -y(A-Ee) as r o-+ o, and so R varies regularly. Then 
(3.1) holds with p( 

The preceding lemma gives an alternative definition of regular variation. The 
vector e E F is arbitrary, and affects the limit -y only in terms of a multiplicative 
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constant. Lemma 3.1 and its proof illustrates the reason for the appearance of 
f-1 in the definitions (3.1) and (3.4). Notice that the regular variation of f does 
not imply that of f-1, because of the lack of commutativity of multiplication in 
GL(Rk). 

Every real-valued regularly varying function R with index p > 0 has an asymp- 
totic inverse R1, i.e. a regularly varying function with index p-1 such that R(R1 (r)) 
- r and Ri(R(r)) - r as r -? oo (see Seneta [6, p. 21]). Of course, a real-valued 

function on Rk cannot possess an inverse, but we do have the following result which 
serves as an analogue to the asymptotic inverse. 

LEMMA 3.3. If F varies regularly and (3.1) holds with ,f = index(R) > 0, then 
there ezists g: R+ GL(Rk) regularly varying and continuous such that 

(3.5) lim F(g(r)1xr)/r = p(x) 
r--*oo 

whenever Xr -* x in F. 

PROOF. Let h be an asymptotic inverse of R. It follows easily that (3.5) holds 
with g = f o h. Since h varies regularly with index(1/,l), an application of uniform 
convergence (Theorem 2.2) shows that g varies regularly with index(,l1-E). Now 
this g is not necessarily continuous, but suppose we define 

(3.6) g(r) = (1 - A)g(n) + Ag(n + 1), 

where t E [n, n + 1) and A = t - n. By another application of uniform convergence, 
we see that g - g (i.e. g(r)g(r)-1 - I as r -+ oo) and so g varies regularly and 
(3.5) remains true with 9 in place of g. 

We conclude this section with two results describing the asymptotic behavior of 
a regularly varying function on Rk. 

THEOREM 3.4. If F varies regularly at infinity and E = aI (a& # 0), then 
F(rx) is a regularly varying function of r > 0 with index p = (-fl/a). Furthermore 
we have 

(3.7) F(rAx)/F(rx) -+ AP as r -+ oo 

uniformly on compact subsets of x E F for all A > 0. 

PROOF. We have p(Ax)/p(x) = AP for all A > 0 and all x E F. Suppose xr ) X 
in F. For each r > 0 sufficiently large let 

(3.8) t(r) = sup{t: IIf (t)rxr ll > 1} 

and note that t = t(r) tends to infinity as r -+ oo. Let Yt = f(t)rxr. If for some 
rk -* 00 we have Ytk-* y in F, then we have 

(3.9) F(rkAxrk) _ F(f (tk)>Aytk) ,* P(Ay) 
F(rkxrk ) Ff (tk)> Ytk) P(Y) 

by regular variation of F, and we have already noted that the term on the right 
is AP. In order to complete the proof now, it suffices to show that {Yt: t > to} is 
relatively compact for some to. But this follows easily from (3.8) using Theorem 
2.3. 
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In all known cases of practical interest, the limit p in the definition (3.1) is 
bounded away from 0 and oo on compact subsets of F. Under this relatively unre- 
strictive assumption on p, we can derive a sweeping generalization of the preceding 
theorem. We state our result in terms of a generalization of the concept of regular 
variation known as R-0 variation. Roughly speaking, a Borel measurable function 
R: (0, oo) -+ (0, oo) is R-0 varying at infinity if as r -+ oo the function R(r) grows 
no faster than some power of r, and no slower than some other power of r. To be 
precise, R is R-O varying at infinity if there exist positive constants A > 0, a > 1, 
m < 1, M > 1 such that 

(3.10) m < R(Ar)/R(r) < M 

whenever 1 < A < a and r > A. The appendix of Seneta's monograph [61 is a 
convenient reference on R-0 variation. 

THEOREM 3.5. Suppose F varies regularly at infinity and 'p is bounded away 
from 0 and oo on compact subsets of r. Then F(rx) is an R-0 varying function of 
r > 0 for all x E r. Furthermore, if K is a compact subset of r and E > 0, then 
there exists rO > 0 and A0 > 1 such that 

(3.11) A ME6 < F(Arx)/F(rx) ? Am+' 

whenever r > rO, 1 < A < A0, and x E K. If A1,-.. , Aj are the eigenvalues of E in 
(3.2), then 

(3.12) m = min{0, -,l/Re(Al),* -, , Re(Aj) 

M = max{0, -,l/ Re(Al),*, -,l/ Re(Aj) } 

PROOF. Given xr -+ x in r, define t(r) and yt as in the proof of the preceding 
theorem. As before, we have that {Yt: t > to} is relatively compact for some to, and 
once again (3.9) holds on convergent subsequences in {yt }. It remains to show that 
we can bound 'p(Ax)/'p(x). For the case fi = 0 the result is obvious. Otherwise we 
need to make a straightforward computation, which we illustrate in the case fi > 0 
for the right-hand inequality in (3.11). Let A =,3-'E so that A'p(x) = Ap(Ax) in 
general. All eigenvalues of A have positive real part equal to or exceeding c = 1/M. 
Without loss of generality K = {x: a < llxll < b}. For all 0 < a < c for some 
Ao > 1, we have IIAAxII > A' for all A > Ao and all x E K. Let ,uo = AU/b. Given 
x E K and 1 < ,u < ,uo we can choose A positive and x' E K such that ,ux = AAx,. 
Since IiAAxIiI = Il,lxll < ptob = A', we must have A < A0. But then 

(3.13) p (( ) = Ap(x )) < B (bpo)l/t 
P(X) - p(x) 

where B is an upper bound of p(x')/p(x) for x, x' in K. If A0 is sufficiently large, 
then the right-hand expression in (3.11) is larger than that in (3.13) for a sufficiently 
close toc. 

4. Regularly varying measures on Rk. The contents of this section have 
no analogue in the one variable theory of regular variation for the simple reason 
that the asymptotic behavior of a a-finite Borel measure on R+ can be completely 
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described in terms of its distribution function. However, as we pointed out in [4], 
the definition we present below can be useful even in R1. 

Let M denote the class of o-finite Borel measures on F = Rk -{o} with the 
topology of weak convergence. In this topology we have vn -? v in M if and only if 
v (A) -+ v(A) for all compact Borel subsets of F for which v(9A) = 0. We will say 
that ,u E M varies regularly if there exist f: R+ GL(Rk) and R: R+ -R+, 
both regularly varying, such that as r 00 

(4.1) ,ct{f(r)-l dx}/R(r) -+ p{dx} 

for some full p E M. (A Borel measure on Rk is said to be full if it cannot be 
supported on any proper subspace.) It follows from (4.1) that 

(4.2) Alp{dx} = pc{A-E dx} 

for all A > 0, where E and B are the indices of regular variation of f and R, 
respectively. The argument is essentially the same as for Lemma 3.1. 

The following results on regularly varying measures are stated without proof 
since the proofs are essentially just a repetition of what was laid out in the previous 
section. 

LEMMA 4. 1. ,u varies regularly at infinity (zero) if and only if, for some Borel 
set B in r and some f: R+ - GL(Rk) regularly varying with index E, where every 
eigenvalue of E has negative (resp., positive) real part, as r -+ ox we have 

(4.3) pt{f (r)1 dx}/u(f (r)1 B) -+ y{dx} 

for some full a E M. 

LEMMA 4.2. If ,u varies regularly and (4.1) holds with 13 = index(R) > 0, 
then there exists g: R+ - GL(Rk) regularly varying and continuous such that, as 
r -+ 00, 

(4.4) it{g(r)l dx}/r -+ p{dx}. 

THEOREM 4.3. If ,u varies regularly at infinity, then 

(4.5) R(r, x) = ,u{y E Rk: I (x, y) I > r} 

is an R-O varying function of r > 0 for all x in r. Moreover, if we define m, M as 
in (3.12), then for any compact subset K of r and any E > 0 there exist rO > 0 and 
AO > 1 such that 

(4w6) Arm-r < R(Ar, x)/R(r, x) < AM+K 

whenever r > ro, 1 < A < AO, and x E K. 
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