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Random walks are developed to approximate the solutions of multiscaling, fractional-order, anomalous
diffusion equations. The essential elements of the diffusion are described by the matrix-order scaling indexes
and the mixing measure, which describes the diffusion coefficient in every direction. Two forms of the
governing equation �also called the multiscaling fractional diffusion equation�, based on fractional flux and
fractional divergence, are considered, where the diffusion coefficient and the drift vary in space. The particle-
tracking algorithm is also extended to approximate anomalous diffusion with a streamline-dependent mixing
measure, using a streamline-projection technique. In this and other general cases, the random walk method is
the only known way to solve the nonhomogeneous equations. Five numerical examples demonstrate the
flexibility, simplicity, and efficiency of the random walk method.
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I. INTRODUCTION

Various forms of Lévy motion and Lévy walks, and their
fractional-order governing equations, have been used to de-
scribe superdiffusive spreading of passive scalars in turbu-
lent and chaotic flow �1,2�, plasma �3,4�, surface and ground
water flow �5–8�, and financial returns �9–11�. Many of these
studies have not differentiated the superdiffusive rates in dif-
ferent directions, although the evidence of multiple scaling
rates is clear in contaminant transport in heterogeneous ma-
terial �12�, including fractured rock �13�. The multiscaling
space-fractional diffusion equation �FDE, described in detail
in the next section�, describes anomalous superdiffusion with
added realism by not only allowing direction-dependent
spreading rates, but also specifying magnitudes of diffusion
that are arbitrarily assigned on the entire unit sphere in
d-dimensions �12�. The diffusion operator owes its existence
to the coarse-graining, or upscaling, that eliminates some of
the detail of the fine-grained velocity field. If the underlying
velocity field is inherently anisotropic or has embedded pref-
erential directions, then the multiscaling diffusion operator is
an appealing tool for predicting anomalous superdiffusion at
the coarser scale. For nonhomogeneous problems, however,
analytic solutions are unavailable and numerical methods are
needed.

Numerous numerical methods have been developed re-
cently to simulate superdiffusion embodied in a one-
dimensional �1D� fractional-order diffusion equation, includ-
ing the finite element method �FEM� �14,15�, the method of
lines �16�, the explicit and the related semi-implicit method
�17�, the three-point approximation method �5�, the mass bal-
ance method �6�, and the implicit Euler finite difference
method �FDM� �18–20�. Only a few methods have been pro-

posed to solve the multidimensional FDE, including the al-
ternative direction implicit finite difference method �ADI
FDM� �21�, the fast Fourier transform method �22�, and the
FEM �14�. Although these methods have successfully solved
the 1D and/or 2D FDEs, they cannot solve the multiscaling
FDE with an arbitrary mixing measure and space-dependent
coefficients. As discussed in the following section, a general
mixing measure and the local variation of transport coeffi-
cients will significantly improve our ability to capture real-
world superdiffusion.

A random walk method was developed recently to ap-
proximate the 1D FDE �23�. It is superior in many ways to
traditional numerical methods in solving large flow systems,
since it is grid-free, can be applied to any underlying form of
flow �velocity� field, and does not cause numerical dispersion
for advection-dominated transport problems. As a Lagrang-
ian method, the random walk also illustrates the dynamics of
the physical process. Most importantly, the embedded La-
grangian algorithm can easily add particle retention in immo-
bile phases in a manner similar to classical continuous time
random walks �CTRW� �24,25�.

The computational efficiency and the potential flexibility
of the random walk method motivates us to extend it to the
multiscaling FDE. The rest of this paper is organized as fol-
lows: In Sec. II, we extend the multiscaling FDE to general
forms where the strength of the nonlocal spreading is al-
lowed to vary with the local-scale heterogeneity of the trans-
port coefficients. In Sec. III, we describe the random walk
particle-tracking schemes for solving the multiscaling FDEs.
Numerical examples are presented as demonstrations. In Sec.
IV, the extension of the random walk method to the case with
a streamline-dependent mixing measure is discussed and il-
lustrated.
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II. MULTISCALING FDES WITH SPACE-DEPENDENT
PARAMETERS

To illustrate the properties of a multiscaling FDE, we give
examples of the dispersion of an inert tracer in water moving
through porous media, although other applications are found
in branches of finance and physics �26�. The multiscaling
FDE proposed by Meerschaert et al. �12� is

�C

�t
= − v · �C + D�M

H−1
C , �1�

where C=C�x� , t� is the scalar concentration, v is the drift
vector, D is a scalar dispersion coefficient, H−1 is the inverse
of the scaling matrix providing the order and direction of the
fractional derivatives, and M =M�d�� is the mixing measure.
The eigenvalues of the scaling matrix H are the Hurst index
scaling coefficients 1 /� of the growth process. For reference,
a classical Brownian motion has all eigenvalues Hi=1/2 and
the diffusion term is the Laplacian. The mixing measure,
M�d��, defines the shape and skewness of the plume in
d-dimensions by assigning the strength of solute transport �or
the probability of particle jumps� in each angular d�. The
mixing measure may be either continuous or discrete, and

�M�d��=1. The symbol �M
H−1

denotes the multiscaling frac-
tional derivative, and this operator is understood by its Fou-
rier transform �12�

F��M
H−1

C�x��� = �� �e−ik�·x� − 1 + ik� · x����dx���Ĉ�k�� ,

where ��dy� is the intensity or Lévy measure �27�, and

��dy�=r−2drM�d�� where y=rH−1
� are the multiscaling po-

lar coordinates. This is essentially a convolution of the func-
tion C�x�� with the Lévy measure, which satisfies the multi-
scaling relationship c��dx��=��c−Hdx�� for any c�0 �12�.

Some examples of this operator are well known. In 1D,
and in the range of interest between ballistic and diffusive
behavior 1���2, the above Fourier transform reduces to

�p�ik��+q�−ik���Ĉ�k� with inverse transform p
d�C�x�

dx�

+q
d�C�x�

d�−x�� , where p+q=1 are the mixing measure weights in

the positive and negative directions. Also in 1D, the
Riesz fractional derivative is recovered when p=q=1/2,

giving the Fourier transform pair cos��� /2�	k	�Ĉ�k�

Ûcos��� /2�
d�C�x�

d	x	� . The Riesz derivative is also symmetric
in multiple dimensions in two ways. First, the order of the
differentiation is equal in all directions, so that H−1=�I
�where I is the identity matrix�, and M�d�� is a uniform
measure on the unit sphere. Then the multiscaling diffusion
operator reduces to the Riesz fractional Laplacian defined by
the Fourier transform pair �ignoring the leading constants�

k�
�Ĉ�k��Û	�/2C�x�� �12,28�.

The FDE �1� allows a general mixing measure and scaling
matrix, which is critical in applications such as the prediction
of solute transport through heterogeneous porous media or
fracture networks �12,13,22�. A realistic plume may grow at
different rates along different, not necessarily orthogonal, di-
rections, due to a possibly anisotropic depositional or struc-

tural geologic environment. Direction-dependent spreading
rates are described by the scaling �Hurst� matrix �22�. In
addition, a realistic plume may exhibit preferential flow and
strength of dispersive flux in certain directions �correspond-
ing to areas of higher permeability derived from paleochan-
nels or fractures� which can be captured by the mixing mea-
sure. The FDE �1�, however, only gives the governing
equation for diffusion with constant characteristic coeffi-
cients �v, D, and M�d���. A FDE with space-dependent char-
acteristic coefficients may significantly extend the ability of
the constant-parameter FDE to capture the realistic plume
evolution in regional-scale aquifers where the subsurface
heterogeneity distribution tends to be nonstationary and the
3D geometry of local-scale heterogeneity is critical to solute
transport. Here we extend the multiscaling FDE with con-
stant characteristic coefficients �12� to one with space-
dependent coefficients, and then develop the correspondent
random walk approximations in the next section.

Using fractional flux in the first-order mass conservation
law �29�, we get the following multiscaling, FF-DE �where
the “FF” denotes the fractional flux�

�C

�t
= − � · �v�x�,t�C� + � · �D�x�,t��M

H−1−IC� . �2�

In one dimension, Eq. �2� reduces to the 1D fractional
advection-dispersion equation proposed by Zhang et al. �23�,
which corresponds to the fractional Fokker-Planck equation
proposed by Tsallis and Lenzi �30�. A similar form has also
been derived by other means �31�. When v and D are con-
stant in space, Eq. �2� reduces directly to the multiscaling
FDE �1�.

Conversely, by taking the integer flux in the fractional-
order mass conservation law �32�, we get the following mul-
tiscaling, FD-DE �where the “FD” denotes the fractional di-
vergence�

�C

�t
= − � · �v�x�,t�C� + �M

H−1−I · �D�x�,t� � C� . �3�

If the solute concentrations at the domain boundaries are
negligible and v and D is constant in space, Eq. �3� reduces
to Eq. �1�.

The dispersion term in the FD-DE �3� can also be derived
by taking the adjoint of the dispersive flux in the FF-DE �2�
�23�:

�� · �D�x�,t��M
H−1−IC��* = − �

M̄

H−1−I
· �D�x�,t� � C� ,

where M̄�d��=M�d�+��, and the superscript asterisk de-
notes the adjoint operator �the classical integer-order adjoint
method can be found in �33��.

Note the FF-DE �2� only considers the influence of local
variation of dispersion coefficient D on the variation of sol-
ute flux, while the FD-DE �3� considers the influence of non-
local variation of D. In the following section we develop
random walk approximations for both FDEs, since currently
there is no physical evidence to show that one is superior to
the other.
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III. RANDOM WALK ALGORITHMS AND NUMERICAL
EXAMPLES

The following multiscaling compound Poisson process
converges to operator Lévy motion �12,22�:

Z� �t� = 
i=1

�t/dt�

X� i = 
i=1

�t/dt�

Ri
H · �� i, �4�

where Z� �t� denotes the particle location at time t, n= �t /dt� is
the number of random jumps by time t using time step size
dt, Ri is the random length of the ith jump and P�Ri�r�
�r−1, the jump direction �� i is a random unit vector drawn
from the CDF of the mixing measure M�d�� �see Eq. �5�
below�, and Ri and �� i are independent. The matrix RH is
anisotropic to allow different jump sizes in different direc-
tions.

In this section we will describe the distribution and gen-

eration of each X� i and will, for clarity, drop the subscript
referring to individual jumps.

For a 2D case where the two eigenvectors of H are or-
thogonal �or in other words, the primary directions of growth
are perpendicular�, the operator stable exponent dictates in-
dependent jumps:

RH = �RH1 0

0 RH2
� = �R1/�1 0

0 R1/�2
� .

Since P�R�r�=r−1 above some cutoff, the jump length
probabilities on the kth eigenvector of H fall off as P�R1/�k

�r�=r−�k. The jump length probabilities for trajectories off
the eigenvectors decay like powers of a mixture of the scal-
ing coefficients.

Assuming a discrete mixing measure M with n compo-
nents �including the jump direction � j, with j=1,2 , . . . ,n,
and the correspondent intensity or probability Mj�, the CDF
of Mj, noted as pm, can be calculated as

pm = 
j=1

m

M�d� j�, where m = 1,2, . . . ,n . �5�

A random number of �0, 1� uniform distribution, U, is gen-

erated to help to determine the jump vector X� of each particle
at each time step:

X� = RH · ��m, if pm−1 � U � pm, �6�

where the jump direction is preassigned as the direction of
the mth angular �m in M�d��, based on the range of U.

Next we calculate each component of the matrix RH in
Eq. �6�. If D varies linearly in space and the governing equa-
tion is the FF-DE �2�, the jump length of the particle along
the eigenvector belonging to the kth eigenvalue 1/�k of H
can be calculated by the formula �23�

R1/�k = D�xk�1/�kdL�k
�t� + 
��k − 1�1/��k−1�

�� �D

�xk
�1/��k−1�

dL�k−1�t�, k = 1, . . . L , �7�

where k represents the direction of the kth eigenvector of H,

L is the dimension of H, 
=sgn��D /�xk�=1 if �D /�xk�0
and −1 otherwise, and dL��t� and dL�−1�t� denote the ran-
dom noises underlying �-order and ��−1�-order Lévy mo-
tions, respectively. Here dL�1

,dL�2
, . . . ,dL�L

are maximally
skewed, standard, �k-stable random variables �see Appendix
A� with distribution S�k

��=1,= +1,�=0� that can be gen-
erated directly using the modified Chambers-Mallows-Stuck
�CMS� method �for details, see �23,34��. In 1D, Eq. �7� re-
duces to the Markov process that solves the 1D fractional
diffusion equation with variable dispersion coefficient �see
Eq. �14� in �23��.

Central limit theory �35� allows us to use a more efficient
approximation of R1/�k in Eq. �7� using

R1/�k = �D�xk�dt�1/�k��k
+ 
���k − 1�dt�1/��k−1�

�� �D

�xk
�1/��k−1�

��k−1, �8�

where ��k
�or ��k−1� denotes a centered �mean-zero for �

�1� and scale-one random jump length governed by a power
law or Pareto probability density function proportional to
r−�k−1 �or r−�k−2� for large jumps r. Provided that the ��k

are
properly scaled and shifted, the sum of these random jumps
converges to the required �-stable S�k

��=1,= +1,�=0�
based on the generalized central limit theorem ��35�, Corol-
lary 8.2.9�:

�1 + �2 + ¯ + �n

n1/�k
Þ Y � S�k

�� = 1, = + 1,� = 0� , �9�

where n= t /dt is the number of time steps. The scale and
shift constants needed in the calculation of ��k

are shown in
Appendix A. The accuracy improves for a larger number of
time steps; in practice, more than ten time steps, or indi-
vidual jumps, should be used for each particle �Appendix A�.

Similarly, if D�x� is first order differentiable �not limited
to be linear� and the governing equation is the FD-DE �3�,
the random jump length is �23�

R1/�k = D�xk�1/�kdL�k
�t� + 
� �D

�xk
�1/��k−1�

dL�k−1�t� , �10�

which is approximated by

R1/�k = �D�xk�dt�1/�k��k
+ 
� �D

�xk
dt�1/��k−1�

��k−1. �11�

A different coefficient on the right-hand side �RHS� of Eq.
�10� compared to Eq. �7� is needed to account for the differ-
ence between the two fractional diffusion equations �2� and
�3�. When D is a constant in space, the last term in both Eqs.
�7� and �10� disappears and they reduce to the same random
walk process for solving the homogeneous FDE �1�. The
random jumps shown here only represent the dispersive flux.
The drift due to mean velocity �which may be along a dif-
ferent direction� can always be incorporated directly to the
particle trajectory before the dispersion is calculated, as is
done for the classical second-order diffusion process �36�.

The decision to use either Eq. �7� or Eq. �8� to generate a
single particle jump when solving the FF-DE �2� depends on
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the potential dependence between each of the R1/�k corre-
sponding to each eigenvector of H. When the R1/�k are “cor-
related” to each other �which is not defined due to infinite
variance� we select Eq. �8� where the random variables ��k
can be generated by taking fractional powers of a single
heavy-tailed variable that is generated by either the Pareto
method or the fractional power method �Appendix A�. The
R1/�k are dependent when a particle is directed by the mixing
measure to embark on a jump in between the eigenvectors.
This method is required in Example 1 discussed in the next
section. When the R1/�k are independent of each other �for
instance, when the mixing measure is concentrated on eigen-
vectors of scaling matrix�, we can use either Eq. �7� or Eq.
�8�. The same distinction between Eqs. �10� and �11� arises
when solving the FD-DE �3�.

Equation �6� is the generalized random walk formula for
all scaling matrices and mixing measures. For cases where
the scaling matrix and the mixing measure have special prop-
erties �such as orthogonal eigenvectors of H discussed in the
next section�, Eq. �6� can be simplified significantly, result-
ing in more efficient random walk algorithms.

The random walk algorithm is tested by four numerical
examples described in the following sections. For the pur-
pose of cross-verification, simple cases had to be selected so
that other numerical or semianalytic methods can be applied
or developed. However, the application of the random walk
algorithm is not limited to the cases discussed below. Also
note that in this section we restrict our attention to the
constant-in-space mixing measure M�d�� and scaling matrix
H. An extension to a spatially variable mixing measure is
discussed later in this paper.

A. Example 1: Orthogonal eigenvectors in H and arbitrary
mixing measure M„d�…

In typical heterogeneous porous media one can only esti-
mate, predict, or measure the scale indexes along limited
directions, such as the one parallel to the flow direction or
perhaps the depositional stratigraphic directions. The con-
taminants, however, can always move along preferential
pathways, which may depend on local connectivity of highly
permeable materials and may be quite different from the pri-
mary stratigraphic directions.

For a 2D, diagonal H, the scaling directions may be
aligned with the Cartesian coordinates �where the growth
rates are denoted �x and �y, with the subscripts x and y
denoting the two Cartesian coordinate axis�. If there are sev-
eral arbitrary directions � in the mixing measure �see, e.g.,

the operator stable parameters in Fig. 1�, the jump vector X�

= �X ,Y� �at each time step� defined by Eq. �6� has the follow-
ing two components:

X = R1/�x cos �m, �12a�

Y = R1/�y sin �m, �12b�

if pm−1�U� pm. Here the jumps X and Y are along the di-
rections of the eigenvectors belonging to the eigenvalues
1/�x and 1/�y of H, respectively, and they are fractional
powers of each other. So R1/�x depends on R1/�y, and we use

Eq. �8� in the case of FF-DE �or Eq. �11� in the case of
FD-DE� to calculate each R1/�. There are specific cases that
the formula �12� can be simplified further. For instance,
when the �m is aligned with the x axis, we have X= ±R1/�x

and Y =0, so the particle travels along the x axis only, with
the jump pdf controlled by a �x-order Lévy motion. Simi-
larly, when �m is aligned with the y axis, we have X=0 and
Y = ±R1/�y, so the particle travels along the y axis only, with
the jump pdf controlled by a �y-order Lévy motion. Ex-
amples of these two specific cases will be discussed in Sec.
III C.

In this example, the velocity �vx=10, vy =0� and the dis-
persion coefficient �D=1, see Fig. 1� must be constant in
order to compare with a known solution. To the best of our
knowledge, the fast Fourier transform �FFT� method �22�,
which is limited to constant parameters, is the only other
method available to solve this problem. Now the governing
equation is simplified to the multiscaling FDE �1�. The ran-
dom walk solution �Fig. 1� is verified by the semianalytical
FFT solution of the operator stable density Green functions
of Eq. �1�. This example has been suggested �12,22� as a
means to explain different spreading rates and highly skewed
spreading in heterogeneous aquifer material. The exchange
rates of different currencies have also been shown to have
operator stable growth characteristics �37�.

B. Example 2: Nonorthogonal eigenvectors in H and M„d�…
concentrated on eigenvectors

In this example, the scaling matrix contains nonorthogo-
nal eigenvectors, whose directions coincide with the only
nonzero angular directions in the discrete mixing measure. It
may represent the plume growth in a fractured aquifer where
the fractures are limited to two dominant directions. The
mixing measure and the scaling matrix in such a media
would have the same directions, since �1� the migration of

FIG. 1. Example 1: Simulated plumes at times t=1, 2, and 3
using the present random walks �dark lines� versus the semianalyti-
cal solutions using the FFT method �light lines�. The Green function
solutions of Eq. �1� are operator-stable density functions. The mix-
ing measure has points at 0°, ±6°, ±12°, and ±18°, with increasing
intensity in the direction of mean travel �polar plot�. The initial
condition is a Dirac delta function at x=y=0. The rough appearance
of the random walk method is due to a fine �	x=0.1� spatial dis-
cretization for particle number density counting.
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tracers �particle jumps� would be confined to the fracture
networks, and �2� the fractures in each set may follow a
fractal hyperbolic distribution, leading to dominant scaling
directions that correspond to the fracture directions �13�.
Now Eq. �6� can be simplified significantly:

X� = R1/�m, if pm−1 � U � pm, �13�

where X� is along the direction of the eigenvector belonging
to the eigenvalue 1/�m of H. The jump vectors R1/�m along

each eigenvector are independent. Here m=1, . . . ,d, where d
is the dimension, which is also equivalent to the number of
eigenvectors of the scaling matrix. So we can use either Eq.
�7� or Eq. �8� to solve the FF-DE �2�, or either Eq. �10� or
Eq. �11� to solve the FD-DE �3�. Method �7� was used in Fig.
2.

For lack of another solution method for the inhomoge-
neous problem, we consider space-constant velocity �vx=vy

=0� and dispersion coefficient �D=1�. Assuming that frac-
tures occur at 30° and −35°, which are also the only nonzero
parts defined in M�d��, with eigenvalues 1/�1=1/1.3 and
1/�2=1/1.7, then the eigenvectors will be � �3/2

1/2
� and � 0.819

−0.574
�,

and the scaling matrix H will be � 0.688 0.141
0.0579 0.670

�. The numerical
result is shown in Fig. 2. The random walk solutions of the
multiscaling FDE �1� are verified by the numerical solutions
using the FFT of the operator-stable density Green’s func-
tions of Eq. �1�. Note again the random walk method will
allow space-dependent v and D, while the FFT method will
not.

C. Example 3: Orthogonal eigenvectors in H, M„d�…
concentrated on the eigenvectors, and variable coefficients

This example is representative of solute transport through
a structured aquifer with different spreading rates along the
longitudinal, transverse, and/or vertical directions. The ran-
dom walk algorithm is similar to that of Example 2. The
subtle difference is that here the particle has the same prob-
ability of jumping along each Cartesian axis. In other words,
pm=1/d, for m=1, . . . ,d, where d is the dimension.

For comparison, we extend Meerschaert et al.’s ADI FDM
�21� for space-variable parameters �see Appendix B�, and
solve the FF-DE �2� with both the extended ADI FDM
method and the random walk method �Fig. 3�. Two cases
with different space-dependence of D are considered. Case 1
contains a constant-in-space D �Fig. 3�a��, while case 2 has a
D�x ,y� increasing linearly with distance �Fig. 3�b��. The ADI
FDM cannot capture a nonorthogonally spreading plume,
and thus it cannot be used for any other examples discussed
in this study. It is also easy to simulate the results in Fig. 3�a�
�with constant coefficients� using semianalytic methods that
generate 1D �-stable densities. The solution is a bivariate
stable with independent components. Therefore multiplying
1D stable densities laid out along the eigenvector directions
will give the same result. However, this method cannot be
used with space-variable transport coefficients, such as those
shown in Fig. 3�b�.

FIG. 2. Example 2: Random walk approximations of plume
growth in a fractured aquifer. The velocity vx=vy =0, and the dis-
persion coefficient D=1. The governing equation is the multiscaling
FDE �1�. The initial condition is a Dirac delta function with the
instantaneous point source located at the origin. �a� Noncontinuum
conceptual model, �b� approximate operator stable parameters, and
�c� the evolution of simulated particle plume concentrations, which
also represent operator stable densities with time. The random walk
�RW� solution is shown with dark lines, and the fast Fourier trans-
form �FFT� method �22� is shown with light lines.

FIG. 3. Example 3: Numerical solutions for
the 2D FF-DE �2�, with the random walk �RW�
method �dark lines� vs the implicit Euler finite
difference method �FD �ADI�, light lines�. The
parameters are �x=1.6, �y =1.8, t=1, and the
source is located at x0=y0=0.48. In �a�, D�x�
=0.02, D�y�=0.005; while in �b�, D�x�=0.02x,
D�y�=0.005y.
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D. Example 4: Nolan’s [38] two-dimensional, nonsymmetric
stable density

Nolan’s two-dimensional, nonsymmetric stable density
surface �38� corresponds to a scalar H �i.e., H is constant in
all directions� and a mixing measure with nonsymmetric
weights and arbitrary angles. The governing equation is the
following multidimensional FDE �where H−1=� is used to
correspond with previous notation�:

�C

�t
= D�M

� C . �14�

The multiscaling space-fractional diffusion equation �1�
without the drift term reduces to Eq. �14� as a special case,
when H−1=�I. This fractional derivative is similar to the
Riesz derivative in that it has the same fractional order in all
directions, but it is not symmetric: the prefactor in any direc-
tion is given by the mixing measure M�d��.

Now Eq. �6� can be simplified further by using

X� = R1/�, where the jump direction is �m

if pm−1 � U � pm. �15�

The 2D anomalous diffusion with a discrete spectral mea-
sure is first approximated by random walks and then verified
by the multivariate stable distribution �Fig. 4� generated by
Nolan’s code “mvstable” �see �38� for the method�. The sta-
bility index � equals 1.6. The spectral measure contains 4
point masses along the directions 40°, 130°, 220°, and 330°,
with weights 0.3, 0.1, 0.2, and 0.4, respectively.

In general, the random walk solutions in these examples
compare well with the results using other numerical meth-
ods. The random walk algorithm is easy to implement and is
robust, since it can simultaneously incorporate all of the gen-
eralities of the multiscaling dispersion operator and allow
space-dependent transport coefficients. This robustness is be-
yond the capability of the other methods developed to solve
the multiscaling FDE.

IV. STREAMLINE-DEPENDENT MIXING MEASURE

The random walk method can also be extended to allow a
spatially variable mixing measure. The variability of the

mixing measure is not uncommon in hydrology. For ex-
ample, the orientation and density of fractures may change in
space due to deformation. The scaling factor of diffusion, D,
may also vary in space due to local �such as zonal� variation
of fracture geometry and connectivity. Furthermore, in clas-
sical �Fickian� dispersion in porous media, the major axis of
the dispersion tensor is aligned with, and proportional to the
magnitude of, the velocity vector, which may take any ori-
entation depending on boundary pressures or pumping
stresses. In this case, the dispersion parameters are stream-
line dependent. Generalizing to the fractional-order case, the
eigenvectors of the fractional derivative and the weights in
the mixing measure will not be fixed in space, but may vary
with streamlines or orientation of v�x�. Consequently, in ran-
dom walks, particles will randomly disperse along certain
directions moving with the streamlines while the mean flow
is advected along streamlines.

We propose a streamline-projection technique to account
for the streamline-dependency of the mixing measure. As an
illustration, 2D streamlines are shown in Fig. 5. At each time
step, the particle �initially located at point A shown in Fig. 5�
is assigned a random jump length L �with the ending point at
B�, and a random direction � relative to the local velocity
vector and the local mixing measure according to Eq. �6�.
However, along the trajectory, the particle’s deviation from
the streamline must be adjusted as it transfers to different
streamlines. To simulate this, the length L is then cut into
segments and projected into adjacent streamlines. The angle
� is adjusted according to the new direction of v�x� and
reprojected. The total length of the adjusted sum of segments
is fixed at L.

The application of the projection method is demonstrated
using one numerical example. A meandering 2D streamline
�similar to a cycled sine function, representing the stream-
lines within a simplified meandering ancient river system�
with free boundaries is shown in Fig. 6�a�. To emphasize the
effect of diffusion, here we turn off the mean advection. We
consider the mixing measure with two directions moving

FIG. 4. Example 4: Solutions, at t=1, of the multidimensional
FDE �14� �� is equal in all directions�. �a� Polar plot of the discrete
mixing measure showing four directions and weights. �b� Random
walk solution �dark lines� vs Nolan’s �38� multivariate stable distri-
bution �light lines�.

FIG. 5. Projection of one jump along adjacent streamlines. The
meaning of points A�G is explained in the text.
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with �relative to� the streamlines, as indicated by Fig. 6�a�.
Here one can divide each random particle jump �with the
jump length L and the jump time dt� by cutting either the
random jump length L or the jump time dt �note here dt is
also the time step of the particle tracking algorithm�. The
first method is to cut L into equal-length segments, while the
second method is to cut dt into equal-time intervals. Differ-
ent numbers of cuttings may result in different final location
of the particle, and thus the sensitivity of the particle location
on the cutting number can be evaluated.

We first test the method with a specific case where the
mixing measure has only one point mass parallel to the
streamline. As expected, the projection method results in par-
ticle plumes with exactly the same shape as the streamline
�Fig. 6�b��. We next consider the mixing measure with two
different directions, with �1=20° and �2=−15° �relative to
v�x��, M1=0.3 and M2=0.7, �1=1.2 and �2=1.7, and D=2,
respectively. The two directions ��1 and �2� move with the
streamline, so the actual travel direction of the particle
changes with space. We divide each jump into 10 and 1000
equal-length segments, respectively. Results show that the
two simulated particle plumes �with the transport time
t=20� are similar, with subtle differences at the leading
edges �Fig. 6�c��. The nuance at the leading edges is due to
the higher sensitivity of larger jumps to the cutting number.
In the second method, we cut each time step into 1000 equal-

time intervals. Results show that the simulated particle
plume is similar to that of the equal-length cutting method
�Fig. 6�d��. The similarity might be due to the large cutting
numbers we used in both methods. When the cutting number
is large, the equal-time cutting method is more computation-
ally efficient since it takes fewer steps. Also note that in this
example, the spreading rate �1 �1.2� is much less than �2
�1.7�, resulting in a heavier leading edge along the �1 direc-
tion, even though the intensity M1 is much less than M2.

A direct verification of the projection method is impos-
sible at present, due to the lack of analytical and other nu-
merical solutions. However, this is also the motivation for
developing this method. We anticipate that the method can
be tested in a field setting, where both multiscaling disper-
sion �12� and space-variable parameters �39� have been sug-
gested as important factors in the transport of tritium in an
alluvial aquifer.

V. CONCLUSIONS

The multiscaling anomalous diffusion process governed
by the multiscaling space-fractional diffusion equation can
be approximated by simple random walks, with the particle-
tracking algorithm depending on �1� the mixing measure, �2�
the scaling matrix, and �3� spatial variability of the transport
parameters. When the spreading rate along each angle of the
mixing measure is defined explicitly, the multiscaling diffu-
sion process can be approximated by independent random
jumps along each angular direction of the mixing measure.
When the angular directions of the mixing measure are no
longer concentrated on the eigenvectors of the scaling ma-
trix, the particle will jump under a mixture of spreading rates
and the components of the jump along every eigenvector are
powers of each other. In general, the particles move along
each eigenvector of the scaling matrix with the PDF of dis-
placement satisfying the density of a Lévy noise �whose
scale index is defined by the eigenvalue of the scaling ma-
trix�, and the directional structure of particle plumes is cap-
tured by the mixture of motions in different directions de-
scribed by the mixing measure.

Dependent random variables in the domains of attraction
of �-stable random variables can be generated by taking
fractional powers of either a stable or a modified Pareto ran-
dom variable. The Pareto method converges faster and it is
more computationally efficient than the traditional
Chambers-Mallows-Stuck �stable� method since it needs
only one random number. However, the stable method is
more reliable than the Pareto method, since it does not hinge
on the proper choice of density parameters.

The random walk method developed by this study is su-
perior to other available numerical methods in characterizing
real-world superdiffusion, since it allows not only a general
mixing measure and scaling matrix, but also space-
dependent characteristic coefficients.

The streamline projection method provides us the first ap-
proximation of the multiscaling anomalous diffusion with a
streamline-dependent mixing measure. Numerical tests show
that whether the jump is projected by cutting the jump length

FIG. 6. �a� Streamline-dependent mixing measure. �b� Stream-
line �line� vs the particle plume �circles, representing 1000 par-
ticles�, when the mixing measure has one point mass in the same
direction as the streamline. �c� The simulated particle plume con-
centrations �normalized�, with the number of equal-length segments
equal to 10 �light lines� and 1000 �dark lines�, respectively. �d� The
simulated particle plume concentrations �normalized�, with the
number of equal-length segments equal to 1000 �dark lines� and the
number of equal-time intervals equal to 1000 �light lines�, respec-
tively. The star in �c� and �d� represents the location of source, and
the smooth curved lines are the streamline on which the source was
placed.
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or the jump time does not change the particle plume signifi-
cantly, as long as the cutting number is sufficiently large.
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APPENDIX A: NUMERICAL GENERATION
OF DEPENDENT �-STABLE RANDOM VARIABLES

Both the original compound Poisson model �4� and the
simplified jumps for a 2D orthogonal scaling matrix speci-
fied by Eq. �12� require us to generate dependent jump sizes
along each eigenvector and then map that to the mixing mea-
sure. We develop and compare two different numerical meth-
ods to generate dependent �-stable random variables.

The first method is to take the fractional power of a
known �1-stable, and we denote it as the fractional power
method. If R is a stable random variable with distribution
S���=1,= +1,�=0� �where � denotes the scale parameter,
 denotes the skewness, and � denotes the shift; also see
�40�, p. 9, for the notation of distribution S�, then sums of
independent, identically distributed �iid� random variables
distributed like sgn�R�	R	�2/�1 will converge to a stable with
index �2 and skewness +1, and the new variable
sgn�R�	R	�2/�1 is �positively� correlated to R. Since we are
unable to calculate the mean and scale parameter of
sgn�R�	R	�2/�1 analytically, we estimate them numerically.
We adopt the modified CMS method �34� to generate the
�-stable S��1, +1,0� with the stability index �1=1.5, and
then take their values to the �2 /�1 power for all �2 varying
from 0.1 to 1.9. We then take the sums of iid random vari-
ables distributed like �sgn�R�	R	�2/�1 − �̄� / �̄ to approximate
stables S�2

�1, +1,0�. Here the �̄ is the estimated mean of
sgn�R�	R	�2/�1. The �̄ is the estimated scale parameter of
sgn�R�	R	�2/�1 adjusted based on Eq. �7.21� in �35� that is
needed to approximate �=1 stables with a fractional power.
A histogram of sums of 1.7-stable variables generated by
taking the fractional power of stable S1.5�1, +1,0� is shown
in Fig. 7�b�.

The second method is to take the sum of iid Pareto ran-
dom variables, and we denote it as the Pareto method. Con-

sidering a Pareto distribution with the following density
function

f�r� = �C�−1−�, if q � r � � ,

Cr−1−�, if � � r � � ,
�

where C is a �predefined� positive constant. The CDF is of
the form

F�r� = �C�−1−��r − q� , if q � r � � ,

1 − �C/��r−�, if � � r � � .
�

By assuming F�r�=U where U is a uniform �0,1� random
number, we can approximate r using

r = ��1+�U/C + q , if U � C�−1−��� − q� ,

��1 − U��/C�−1/�, if U � 1 − �−�C/� .
�

The random variable distributed like �r−�� /� is in the do-
main of attraction of an �-stable random variable S��1,
+1,0�. Here �= C

2 �−1−���2−q2�+ C
�−1�−�+1 is the mean of r,

and �=�C��2−��

��1−�� cos ��
2 �1/�

is the scale parameter of r �ac-

cording to Eq. �7.21� in �35��. Note here that the value of �,
which is the cutoff of densities �from constant to the power-
law form�, significantly affects the rate of convergence. One
example with �=1.7 is shown in Fig. 7�a�. An optimal �
=2.2 is used. The efficiency of this method is obvious since
the sums of only 10 Pareto random variables converge very
closely to the true �-stable.

The simulated density of stable random variables using
the Pareto method converges slightly faster to the analytical
solution than that using the fractional power method. In ad-
dition, it takes four times less CPU time for the Pareto
method than the fractional power method to finish one simu-
lation. The relative computational inefficiency of the frac-
tional power method is due to the tedious computational pro-
cess of the original CSM method �see p. 50 in �34��. The
fractional power method, however, is more reliable than the
Pareto method, since it does not hinge on the proper choice
of the cutoff of densities. Therefore we suggest using the
fractional power method if the problem is relatively simple.
Otherwise, the Pareto method is a better choice, if the cutoff
is properly selected. Values near 2.0 are a good starting point
for a wide range of �.

APPENDIX B: THE ADI FDM FOR SOLVING
THE 2D ORTHOGONAL FF-DE (2)

The 2D, orthogonal FF-DE with the same jump intensity
along the two axis is of the form

FIG. 7. The density of simulated S1.7�1,
+1,0� random variables vs the analytical density
using �a� the Pareto method and �b� the method of
fractional power of the stable S1.5�1, +1,0�. In
the legends, “nt” denotes the number of sums,
and “Ana” denotes the analytical solution.
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�C�x,y,t�
�t

=
�

�x
�d�x,y�

��−1C�x,y,t�
�x�−1 �

+
�

�y
�e�x,y�

�−1C�x,y,t�
�y−1 �

= d
��C

�x� +
�d

�x

��−1C

�x�−1

+ e
�C

�y +
�e

�y

�−1C

�y−1 . �B1�

It can be discretized as the implicit Euler approximation:

Ci,j
n+1 − Ci,j

n

	t
=

di+1,j − di,j

	x
��−1,xCi,j

n+1 + di,j��,xCi,j
n+1

+
ei,j+1 − ei,j

	y
�−1,yCi,j

n+1 + ei,j�,yCi,j
n+1,

�B2�

where the operators are

��−1,xCi,j
n+1 =

1

�	x��−1
k=0

i

gkCi−k,j
n+1 , �B3�

��,xCi,j
n+1 =

1

�	x��
k=0

i+1

fkCi−k+1,j
n+1 , �B4�

�−1,yCi,j
n+1 =

1

�	y�−1
k=0

j

KkCi,j−k
n+1 , �B5�

�,yCi,j
n+1 =

1

�	y�
k=0

j+1

LkCi,j−k+1
n+1 , �B6�

and the parameters gk, fk, Kk, and Lk are Grünwald weights.
According to the traditional ADI scheme, the equations

are solved by two iterative steps �21�. At each new time step
n+1, first we fix y and solve the problem in the x direction to
obtain an intermediate solution Ci,j

* from

�1 −
	t

	x
�di+1,j − di,j���−1,x − 	tdi,j��,x�Ci,j

� = Ci,j
n , �B7�

and then we fix x and solve the problem in the y direction to
obtain the solution Ci,j

n+1 from

�1 −
	t

	y
�ei,j+1 − ei,j��−1,y − 	tei,j�,y�Ci,j

n+1 = Ci,j
� .

�B8�

The stability requirement is obtained based on the stabil-
ity analysis for each 1D system. Here we use the matrix
analysis method, which is similar to Appendix B in Zhang et
al. �23�, except that here we need not consider the advection.
On the x-direction problem, Eq. �B7� can be written as

�Fy�C� = Cn. �B9�

Similar to Eq. �36� in Zhang et al. �23�, by choosing i so
that 	xi 	 =max�	xl	 : l=0,1 , . . . ,N�, the eigenvalue of matrix
�Fy� is

� = 1 − Di
	t

h��g1 + 
j=0,j�i

i+1

gi−j+1
xj

xi
� −

Di − Di−1

	x

	t

h�−1

�� f0 + 
j=0,j�i

i−1

f i−j
xj

xi
� . �B10�

Note that Di=dij where j is fixed. Thus � has real part ex-
ceeding 1 if

Re�− Di
	t

h��g1 + 
j=0,j�i

i+1

gi−j+1
xj

xi
� − �Di − Di−1�

	t

h�

�� f0 + 
j=0,j�i

i−1

f i−j
xj

xi
�� � 0. �B11�

By rearrangement, the above inequality is equivalent to

Re�− Dig1 − �Di − Di−1�f0 + 
j=0,j�i

i−1

�− Digi−j+1

− �Di − Di−1�f i−j�
xj

xi
− Dig0

xi+1

xi
� 0� . �B12�

Therefore if Di−1�Di, an argument similar to Appendix
A.2 in �23� shows that the finite difference equation will be
stable. The same stability requirement can be found in the
y-direction problem.
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