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[1] This paper investigates whether particle ensembles in a fractured rock domain may be
adequately modeled as an operator-stable plume. If this statistical model applies to
transport in fractured media, then an ensemble plume in a fractured rock domain may be
modeled using the novel Fokker-Planck evolution equation of the operator-stable plume.
These plumes (which include the classical multi-Gaussian as a subset) are typically
characterized by power law leading-edge concentration profiles and super-Fickian growth
rates. To investigate the possible correspondence of ensemble plumes to operator-stable
densities, we use numerical simulations of fluid flow and solute transport through large-
scale (2.5 km by 2.5 km), randomly generated fracture networks. These two-dimensional
networks are generated according to fracture statistics obtained from field studies that
describe fracture length, transmissivity, density, and orientation. A fracture continuum
approach using MODFLOW is developed for the solution of fluid flow within the fracture
network and low-permeability rock matrix, while a particle-tracking code, random walk
particle method for simulating transport in heterogeneous permeable media (RWHet),
is used to simulate the advective motion of conservative solutes through the model
domain. By deterministically mapping individual fractures onto a highly discretized finite
difference grid (1 m � 1 m � 1 m here), the MODFLOW ‘‘continuum’’ simulations
can faithfully preserve details of the generated network and can approximate fluid flow in
a discrete fracture network model. An advantage of the MODFLOW approach is that
matrix permeability can be made nonzero to account for any degree of matrix flow
and/or transport.

Citation: Reeves, D. M., D. A. Benson, and M. M. Meerschaert (2008), Transport of conservative solutes in simulated fracture

networks: 1. Synthetic data generation, Water Resour. Res., 44, W05404, doi:10.1029/2007WR006069.

1. Introduction

[2] The ability to predict large-scale transport of solutes
in fractured rock is essential for evaluating the suitability of
rock masses for long-term disposal of waste including high-
level radioactive waste. Fractures can serve as primary
pathways for fluid flow and waste migration in a low-
permeability rock mass. Transport in these ground water
flow systems is dependent on rock fracture properties such as
density, spatial location, permeability, length and orientation.
[3] The advection-dispersion equation (ADE) relies on

volume (or ensemble) averaged parameters in an attempt to
describe fractured media as an equivalent continuum [Bear,
1972]. The equivalent continuum assumption may only be
valid for fractured media at high fracture densities [Long
et al., 1982]. Instead of behaving like an equivalent
continuum, fractured rock masses, especially those pre-
ferred for waste disposal, are sparsely fractured [Renshaw
and Pollard, 1994; Munier, 2004]. Low fracture densities

restrict transport to a small subset of fractures conducive to
flow [Bour and Davy, 1997; Renshaw, 1999]. In contrast to
the ADE, which describes solute transport using symmetric
multidimensional-Gaussian (multi-Gaussian) transition den-
sities, both field and numerical studies indicate localized
transport through discrete fractures can result in asymmetric
plumes and non-Gaussian breakthrough tailing [Schwartz et
al., 1983; Berkowitz and Scher, 1997, 1998; Becker and
Shapiro, 2000; Painter et al., 2002; Kosakowski, 2004;
Zhang and Kang, 2004].
[4] As an alternative to equivalent continuum models, the

discrete fracture network (DFN) approach was developed to
address network-scale fluid flow and solute transport be-
havior. This approach assumes that fluid flow through a
low-permeability rock mass is controlled by interconnected
fractures of a network with negligible contribution from the
rock matrix [e.g., Smith and Schwartz, 1984; Parney, 1999;
Dershowitz et al., 1991]. Consequently, DFN simulations
have been used to investigate flow and transport behavior in
a wide range of fracture network types [e.g., Smith and
Schwartz, 1984; Parney, 1999; de Dreuzy et al., 2001a,
2001b; Park et al., 2001]. Since fluid flow can only occur
within fractures for a DFN simulation, detailed site charac-
terization is required for the identification and inclusion of
deterministic structures into the model domain. To enhance
connectivity of deterministic structures, stochastic introduc-
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tion of background features is commonly required for DFN
simulations [National Research Council, 1996; Munier,
2004]. Computational constraints associated with solving
flow through a series of fractures with variable lengths and
transmissivity values generally limit DFN simulations to
applications where transport scales are 100 m or less,
although extensions based on particle travel statistics have
been developed [Schwartz and Smith, 1988; Parney, 1999;
Benke and Painter, 2003; Painter and Cvetkovic, 2005].
[5] Data from natural fracture networks suggest that

above a certain lower cutoff size, fracture trace lengths
follow a power law distribution:

P L > lð Þ ¼ wl�a; ð1Þ

where the probability of a fracture of length l, is dependent
on w, a constant that depends on minimum fracture length,
and a power law exponent, a, that ranges between 1 and 3
for natural fracture networks [Davy, 1993; Marrett, 1996;
Renshaw, 1996; Odling, 1997; Renshaw, 1999; Bonnet et
al., 2001]. Power law distributions of fracture length lead us
to examine alternative transport theories based on fractals. If
a < 2, the variance and standard deviation of the fracture
length distribution diverge, and hence these fractures do not
have a distinct characteristic length. The transport of
particles along infinite variance pathways may result in
power law probability decline similar to (1) for the largest
particle jumps. Particle jumps are defined as the distance
solute particles travel over a given time interval, and hence
are proportional in magnitude to the velocity field. In this
case, the ensemble particle plumes may not resemble a
multi-Gaussian, which is the Green’s function solution (i.e.,
statistical motion of particles from a Dirac delta function
source) of the classical, second-order, multidimensional
ADE. They may, instead, resemble operator-stable plumes,
which are the Green’s function solutions of a fractional-order
ADE [Schumer et al., 2003]. In addition to trace lengths,
there are many other complicating factors, such as random
fracture transmissivity and fracture density, that may affect
the statistics of the particle jumps or velocity field.
[6] This is the first of two papers that investigate the

applicability of alternative transport models on the basis of a
novel Fokker-Planck evolution equation of an operator-
stable density. While numerous researchers have used
numerical simulations to systematically study the influence
of network parameters on flow and transport behavior in
fractured media [e.g., Schwartz et al., 1983; Smith and
Schwartz, 1984; Koudina et al., 1998; Sahimi, 1994, 1995;
Mukhopadhyay and Cushman, 1998a, 1998b; Huseby et al.,
2001; Park et al., 2001; Kim et al., 2004], our investigation
into the role of fracture network properties on solute
transport most closely resembles the study of Schwartz et
al. [1983] and Smith and Schwartz [1984] where ensemble
particle trajectories through fracture networks with orthog-
onal fracture sets and exponentially distributed trace lengths
exhibited non-Gaussian characteristics. We expand upon the
work of Schwartz et al. [1983] and Smith and Schwartz
[1984] by investigating solute transport behavior in less
restrictive networks with heavy-tailed distributions of trace
length, variable (often nonorthogonal) fracture set orienta-
tions, and an increase in the scale of the simulations to study
plume evolution across multiple scales. In this paper we

provide a brief introduction of operator-stable plumes and
concentrate on the generation of stochastic fracture net-
works based on realistic statistics obtained from field
studies of natural rock fractures, the translation of discrete
fractures onto a finite difference grid for the solution of fluid
flow in both the fracture network and low-permeability rock
matrix, and the simulation of conservative solute motion
through the resultant velocity fields.

2. Characteristics of Operator-Stable Plumes

[7] Operator-stable densities provide a model of multidi-
mensional solute transport where solute ‘‘particles’’ undergo
power law displacements with the possibility of different
scaling exponents along multiple directions [Schumer et al.,
2003]. Lévy’s general central limit theorem [Meerschaert
and Scheffler, 2001]

~X1 þ ~X2 þ � � � þ ~Xn � nE~Y ð2Þ

describes convergence of an appropriately scaled sum of
a large number of independent and identically distributed
(iid) centered, heavy-tailed random particle displacement
vectors, ~X i, to an operator-stable random vector, ~Y . The
multi-Gaussian follows this law and will be described
shortly. Eigenvalues, 1/a, of the scaling matrix E are used to
describe rescaling, or growth rate in the case of a ‘‘plume’’
of particles, along the principal scaling axes (represented by
eigenvectors) of the scaling matrix.
[8] According to (2), plume growth in Rm is described by

m eigenvectors. The largest particle displacements dominate
the growth of the process. For fractured media in this study,
we focus on two-dimensional (2-D) particle motion where
only two eigenvectors are used to appropriately scale
particle displacements, ~X i. Orientation of these eigenvectors
is unrestricted, since the scaling matrix E does not need to
be symmetric. Thus, the shape of operator-stable plumes
can range from elliptical to highly asymmetric. In the
special case that the eigenvectors lie along orthogonal

coordinate axes, n�E =
n�1=a1 0

0 n�1=a2

� �
. If the particles

are conservative and do not partition to an immobile phase,
then particle motion along the ith eigenvector scales accord-
ing to t1/ai [Schumer et al., 2003]. Particle motion, or plume
growth, in noneigenvector directions scales according to a
mixture of the two scaling rates. Values of a need not be
equal along both eigenvectors, as plume growth may be
more rapid in one direction than another.
[9] If every component of ~X i has finite variance, then E =

diag(1/2, 1/2), and (2) is equivalent to the well-known
central limit theorem, where particle displacements are
described by a multi-Gaussian random vector, ~Y (~m, S),
where ~m is a mean shift vector and S is the covariance
matrix. Multi-Gaussian plumes are characterized by ellipti-
cal plume geometry with orthogonal, Fickian scaling rates
proportional to t1/2 along major and minor axes of an ellipse.
[10] The application of operator-stable densities to 2-D

transport in fractured media is based on a simple model:

~X ¼ C1~e1 þ C2~e2; ð3Þ

where particle displacement, ~X , is based on marginal
distributions of particle jumps, Ci, along principal plume
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growth directions as defined by coordinate vectors (eigen-
vectors), ~ei. If the magnitudes of the particle jumps Ci are
heavy tailed enough to converge to a-stable random
variables, then by definition, ~Y is an operator-stable random
vector. Conversely, if ~Y is multi-Gaussian, each Ci set will
converge to a Gaussian [Meerschaert and Scheffler, 2001].
For operator-stable plumes, we conjecture that the eigen-
vectors may correspond to principal fracture group orienta-
tions. Multi-Gaussian plumes require orthogonal plume
growth directions that may or may not correspond to
nonorthogonal principal fracture group orientations [Kim et
al., 2004].
[11] In summary, the distinguishing properties of a non-

Gaussian, 2-D, operator-stable plume are (1) the marginal
distributions along the eigenvectors of the scaling matrix
have power law tails, with exponents a1 and a2, and (2) the
growth rates along the eigenvectors are super-Fickian at
rates proportional to t1/a1 and t1/a2. The purpose of this study
is to investigate the operator-stable (including multi-Gauss-
ian) properties of ensemble particle motions in large-scale
fractured media simulations. If the plumes have operator-
stable properties, then there is a possibility that ensemble
transport in fractured media may be described by analytical
equations of fractional order [Schumer et al., 2003].

3. Simulation of Fractures, Flow, and Transport

[12] The numerical experiments consist of generating a
large number of random fracture networks, solving for the
velocity distributions within the fracture networks and rock
matrix, and tracking particle trajectories through the model
domains. Monte Carlo methodology is implemented to
produce ensemble particle plumes from multiple equiprob-
able realizations of fluid flow and solute transport through
the 2-D fracture networks.
[13] The fracture network geometry for each realization is

based on realistic probability distributions for fracture
placement and trace length, and an equation used to control
fracture spatial densities in the model domain. The majority
of fracture networks are simple and consist of two indepen-
dent fracture groups with different orientations, spatial
densities, and/or power law exponent for trace lengths
(Figure 1). A few additional networks consider more
complex scenarios where fracture group orientation is
allowed to deviate around a mean orientation and/or more
than two fracture groups are present.

3.1. Fracture Group Orientation

[14] These 2-D fracture network simulations are meant to
approximate horizontal (map view) flow, so that each
fracture is assumed to be vertical. The fracture orientations
refer to the angle between the fracture and the hydraulic
gradient applied at the boundaries of the model domain.
Natural networks typically consist of two [e.g., LaPointe
and Hudson, 1985; Barton, 1995; Ehlen, 2000] or several

Figure 1. Fracture network samples representing
(a) sparsely fractured domains dominated by very long
fractures, (b) moderately fractured domains comprising
short and long fractures, and (c) densely fractured domains
dominated by short fractures. For illustration purposes, the
higher-density values used in Figures 1b and 1c require
smaller subdomains. All values are in meters.
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fracture groups [e.g., Billaux et al., 1989; Gillespie et al.,
1993; Odling, 1997], with most fractures in a group oriented
in nearly the same direction. To test a simple case, the
majority of our fracture networks consist of two fracture
groups with fixed orientations. Four simulations involve
more complex networks with more than two fracture groups
where the orientation of individual fractures can deviate
from the dominant fracture group direction.

3.2. Fracture Trace Length

[15] Several analyses of field data from natural rock
fracture networks indicate trace lengths of natural rock
joints (opening/mode I) and faults (shear/mode II) are
distributed according to power law models [Davy, 1993;
Marrett, 1996; Renshaw, 1996, 1999; Odling, 1997; Bonnet
et al., 2001]. A Pareto probability distribution (1) is used in
this study to assign fracture trace length. The use of a power
law distribution for fracture trace length results in higher
frequencies of smaller fractures with decreasing frequencies
of longer fractures. To be consistent with the field studies of
Davy [1993], Renshaw [1999] and Bonnet et al. [2001],
values for the power law exponent range between 1 and 3.
In general, mean fracture length and the exponent (a) are
inversely related; networks with a = 1 are dominated by
long domain-spanning fractures, while networks with a = 3
are dominated by very short fractures. A minimum fracture
length of five times the cell length of 1 m was used in the
model. This value is used in (1) for the computation of w.

3.3. Spatial Distribution of Fractures

[16] Numerical and field studies suggest that mechanical
crack interaction plays a central role during fracture prop-
agation and may control both fracture lengths and spacing
in natural fracture networks [Segall and Pollard, 1983;
Olson, 1993; Ackermann and Schilsche, 1997; Darcel et
al., 2003]. As a stochastic model, we chose to ignore the
complexities of mechanical crack interaction as fracture
lengths in natural fracture networks follow power law
distributions. On the basis of field studies that suggest
fracture spacing is an exponentially distributed random
variable [Rives et al., 1992; Brooks et al., 1996; Wines
and Lilly, 2002], a joint uniform U(0, 2500) distribution is
used to randomly assign the location of fracture centers
within the model domain as a Poisson process [Ross, 1985].
This is because the spacings between iid uniform random
variables are exponentially distributed [Ross, 1985].

3.4. Fracture Spatial Density

[17] Fractures are input into the model until a specified
spatial density criteria is fulfilled. The spatial fracture
density is computed by

r2D ¼ 1

A

Xn
i¼1

li; ð4Þ

where the density of fractures in a two-dimensional domain
is computed from the sum of fracture trace lengths, li, and
normalized by area, A. Spatial density values for the model
domains are divided into three general groups: minimum,
intermediate, and maximum, on the basis of the value of the
power law exponent. Minimum values correspond to
networks that are at, or just above, the percolation threshold
and were determined from MODFLOW solutions (i.e.,

nonzero values for network flow and visual displays of head
output). On the basis of field mapping studies in fractured
rock, a spatial density value of 2.5 [Renshaw, 1997] and a
fractal dimension of 1.8 [Ehlen, 2000] were used to assign
maximum spatial density. Note that the maximum density
value from Renshaw [1997] is a slightly different density
metric and requires conversion to (4). Fractal dimensions of
the networks were computed using a standard box counting
method [Barton, 1995]. The use of both spatial density and
fractal dimension was required because of the large range in
power law exponents used to control fracture lengths. In
general, the spatial density value was used as the maximum
spatial density criteria for networks with lower power law
exponent values, while fractal dimension was used for
networks with higher power law exponents.

3.5. Fracture Transmissivity

[18] We are unaware of a study that measures both the
length and transmissivity of fractures. Therefore, we assume
that these quantities are uncorrelated. On the basis of results
from recent hydraulic testing on boreholes at the Äspo Hard
Rock Laboratory [Gustafson and Fransson, 2005], we use a
transmissivity distribution similar to (1) with a power law
exponent of aT = 0.4 along with minimum and maximum
values of 10�11 m2/s and 10�2 m2/s to randomly assign
transmissivity values to individual fractures. The upper limit
on transmissivity is maintained by discarding values greater
than 10�2 m2/s. For comparison purposes, a subset of
simulations assign transmissivity values to individual frac-
tures according to a lognormal distribution with distribu-
tional parameters estimated from the same Äspo data set.

3.6. Fracture Continuum Modeling

[19] Several researchers have used fracture continuum
(FC) models to numerically simulate flow and transport in
fractured media [Neuman, 1987; Widén and Walker, 1999;
Svensson, 2001a, 2001b; McKenna and Reeves, 2006; Ando
et al., 2003; Langevin, 2003; Pohlmann et al., 2004].
Instead of representing discrete fractures as continuous line
elements in 2-D or planes in 3-D, FC models are based on
the conversion of discrete fractures, or more commonly
fracture zones, to permeability structures on a model grid.
This conceptualization is supported by field observations
that rock volumes are often intersected by a few dominant
fractures [Neuman, 2005]. Often, the selection between a
DFN and FC model is dependent on scale; DFN models are
favored at smaller scales where they remain computation-
ally feasible and FC models are used for larger-scale
models. However, comparisons between DFN and FC
models have shown that both methods are equally capable
of capturing key aspects of flow and transport in fractured
crystalline rock masses [Svensson, 2001b; Selroos et al.,
2002; Ando et al., 2003].
[20] The large domain size (2.5 km by 2.5 km) used in

this study is well beyond computational limits of DFN
models. To assess the influence of rock fractures on plume
growth, we designed a method that combines elements of
both. Individual fractures are deterministically mapped onto
a highly discretized finite difference grid (i.e., each cell
measures 1 m � 1 m � 1 m) (Figure 2) and a four order-of-
magnitude permeability contrast exists between the simu-
lated rock matrix and the least transmissive rock fractures.
The small cell size preserves details of the generated net-
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works across all scales and the permeability contrast
between the rock matrix and fractures restricts fluid flow
to the fracture network. Since matrix flow is allowed, each
simulation has 6.25 million active cells. MODFLOW
[McDonald and Harbaugh, 1988] is used to solve for
two-dimensional fluid flow in both the matrix and the
fracture network.
[21] Though conceptually similar to a DFN simulation,

mapping fractures onto a finite difference grid can enhance
the connectivity of individual fractures that would otherwise
not be connected in a DFN simulation. For example, two
parallel unconnected fractures placed in the same finite
difference cell are made connected. For our simulations,
enhanced connectivity is not a concern since the cell size is
much smaller than the average fracture spacing [e.g.,
Svensson, 2001b]. To further minimize the connectivity
between fractures, a percolation algorithm could have been
used to limit the simulations only to the individual fractures
that form a hydraulic backbone. However, this would have
been computationally expensive since the dense networks
with short fractures can contain as many as 400,000
fractures per realization. Instead, interconnected fracture-
occupied cells on a grid with a constant cell size of 1 m �
1 m � 1 m that meet a Darcy velocity criteria define the
hydraulic backbone. At cells containing more than one
fracture, two rules are used: (1) when fracture orientations
are equal, individual fractures are parallel and fracture
transmissivity values are added together to form a larger
equivalent fracture, and (2) when fractures of different
orientations intersect, the resultant transmissivity is based
on the largest individual fracture transmissivity value. The
addition of an active low-permeability matrix dramatically
decreases computational demands for solving flow in the
interconnected fracture network while adding only minor
contributions of flow to the model domain. However, the
use of a continuum grid allows us to include the effects of
matrix interaction in future studies.
[22] The use of a finite difference grid to simulate

discharge in a fracture that is not aligned with the grid

requires an adjustment to account for longer flow paths
(Figure 3). Although head values in the model domain are
unaffected by the configuration of the fracture equivalents,
longer flow paths due to both horizontal and vertical flow
components reduce the hydraulic gradient from cell to cell
along the ‘‘stair step’’ pattern. Transmissivity values must
be increased to correct for the gradient so that proper
discharge values can be obtained in each fracture. In two
dimensions, the transmissivity input into MODFLOW is

TMODFLOW ¼ sin jqj þ cos jqj½ � � Tfracture; ð5Þ

Figure 2. Finite difference representation of a hypothetical rock fracture network. Rock fractures (line
segments) are overlain onto a finite difference grid. Fracture-occupied cells (gray) are assigned hydraulic
properties on the basis of fracture properties, while hydraulic properties of the matrix are assigned to
nonfracture-occupied cells (white). Grid discretization is for illustration purposes only.

Figure 3. Flow through a fracture equivalent on a finite
difference grid consisting of both horizontal and vertical
flow components (denoted by arrows) resulting in a ‘‘stair
step’’ pattern and a longer flow path than that of the original
fracture, Lf. The relationship between the equivalent flow
path, Le, for a fracture of length Lf oriented q degrees from
horizontal is Le = Lf [sinjqj + cosjqj].
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where q is fracture orientation from the horizontal gradient.
Once fracture transmissivity is adjusted, the measured error
between flow for a straight-line fracture and its MODFLOW
equivalent is less than 0.2% (Table 1). Given a four order-
of-magnitude contrast between transmissivity values for
matrix and fracture cells (i.e., the smallest transmissivity
contrast possible for these simulations), the flow solution
accurately matches the analytical flow value for a single
fracture. This indicates that the flow fields produced by the
fracture continuum method in this study can be used to
accurately simulate both trailing and leading edges of a
contaminant plume.
[23] All model domain boundaries are constant head,

inducing mean fluid flow from left to right according to a
linear hydraulic gradient of 0.01. The boundary configura-
tion represents an unbounded fractured rock mass where
both fluid and solutes can exit any down gradient boundary.
Because of the large-scale nature of these simulations (over
6 million cells), the Advanced Computing in the Environ-
mental Sciences (ACES) supercomputer located at the
Desert Research Institute, Reno, Nevada, was used to solve
the steady state groundwater flow equation for multiple
fracture network realizations.

3.7. Particle Tracking

[24] The random walk particle method for simulating
transport in heterogeneous permeable media (RWHet)
solves an advection-dispersion equation on a finite differ-
ence grid using a random walk particle method [LaBolle et
al., 1996; E. M. LaBolle, RWHet: Random walk particle
model for simulating transport in heterogeneous permeable
media, version 2.0 user’s manual and program documenta-
tion, 2000]. The advective motion implemented by RWHet
consists of the calculation of a series of independent,
conservative solute particle trajectories based on bilinear
interpolation of the velocity field with respect to particle
location [LaBolle et al., 1996].

[25] We use RWHet to track particles through the flow
fields using advective transport only. The bilinear interpo-
lation scheme introduces microdispersion due to differential
velocities within single fractures, while macrodispersion is
caused by the wide range of flow velocities for individual
fractures and geometry of the hydraulic backbone. Within-
fracture dispersion increases with transport distance and
varies according to orientation. On the basis of particle-
tracking tests through a single fracture, within-fracture
longitudinal dispersivity at a transport scale of 100 m ranges
from 10�8 m for fractures aligned with the hydraulic
gradient to a maximum of 10�1 m for fractures oriented at
45� from the gradient. These values are essentially negligi-
ble and particles migrate as near piston flow ‘‘slugs’’
through individual fractures (Figure 4). The particle loca-
tions are recorded for 16 time steps on the basis of equal log
cycle time increments for 6 log cycles. Emphasis is placed
on early time steps when particles with rapid trajectories are
still within the model domain. Actual log cycle times
depend on distributions of trace length; particle positions
are first recorded at 0.1 years for sets dominated by longer
fractures and 10 years for all other sets.
[26] A unique transmissivity value is assigned to each

finite difference cell containing at least one fracture. Since a
rock fracture physically occupies only a small volume of a
1m by 1m by 1m cell, a porosity relationship for each
fracture-occupied cell is computed on the basis of cell size
and transport aperture (Figure 5). For our simulations,
porosity is equivalent to transport aperture. We use
Dershowitz et al.’s [1999] empirical quadratic law

b ¼ 0:25T
1
2; ð6Þ

where b [m] is the transport aperture, and T [m2/s] is the
transmissivity of a fracture occupied cell, which the authors
argue gives better estimates of transport aperture than the
cubic law.
[27] Similar to the calculation of discharge in a finite

difference setting, an adjustment is needed to correctly
calculate the particle velocity. Since the particle must travel
a longer path in the model than in the ‘‘real’’ fracture, it
must be sped up by the length ratio of the hypotenuse to the
sides of a right triangle. This speed is adjusted through each
cell’s porosity. The correction factor used in (5) overesti-
mates a typical particle’s path length since it assumes that a
particle goes around corners at right angles. We correct the
distance by assuming that the mean particle path is semi-
circular around corners (Figure 3) with a length of p/4 times
the cell length. The total correction for a fracture oriented q
degrees from horizontal mapped onto a grid with a cell size
of 1 m by 1 m by 1 m (Figure 6) is

f ¼ Le

Lf
¼ p=2þ tan jqjð Þd�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan jqjð Þ2dþ1

q ; ð7Þ

where d = �1 when �45� � q � 45� and d = 1 when 45� <
q < 90� or �90� < q < �45�. Using (7), effective porosity
values for RWHet are then computed:

ne ¼ F � b: ð8Þ

Table 1. Flux Comparison Between a Discrete Fracture and a

Finite Difference Fracture Equivalent

q,a deg qfracture
b qMODFLOW

c Percent Error

0 1.000 � 10�10 1.001 � 10�10 0.01
5 9.962 � 10�11 9.968 � 10�11 0.06
10 9.848 � 10�11 9.852 � 10�11 0.05
15 9.659 � 10�11 9.668 � 10�11 0.09
20 9.397 � 10�11 9.406 � 10�11 0.10
25 9.063 � 10�11 9.072 � 10�11 0.10
30 8.660 � 10�11 8.670 � 10�11 0.12
35 8.192 � 10�11 8.199 � 10�11 0.09
40 7.660 � 10�11 7.666 � 10�11 0.07
45 7.071 � 10�11 7.078 � 10�11 0.10
50 6.428 � 10�11 6.430 � 10�11 0.04
55 5.736 � 10�11 5.736 � 10�11 0.01
60 5.000 � 10�11 4.999 � 10�11 0.02
65 4.226 � 10�11 4.227 � 10�11 0.02
70 3.420 � 10�11 3.421 � 10�11 0.03
75 2.588 � 10�11 2.589 � 10�11 0.04
80 1.736 � 10�11 1.743 � 10�11 0.04
85 8.716 � 10�12 8.760 � 10�12 0.05

aFracture orientation from hydraulic gradient.
bDischarge [m/s] through a discrete fracture with K = 1.0 � 10�8 m/s and

a hydraulic gradient of 0.01.
cDischarge [m/s] through a MODFLOW fracture equivalent.
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[28] Numerical tests on individual fractures show that
errors for velocity using (8) vary according to the position
of a particle relative to the cell boundaries but are less than
10%. These errors manifest themselves as the aforemen-
tioned numerical ‘‘microdispersivity’’ ranging from 10�8 to
10�1 m.
[29] The placement of particles in the model domain is

intended to be representative of a repository scenario where
the possibility of the release of contaminants over a large
spatial area is possible. For each realization, 25,000 con-
servative particles are uniformly distributed into cells rep-
resenting fractures in the model domain in the form of a
100 m by 100 m box that extends from 100 m to 200 m in
the x direction and 1200 m to 1300 m in the y direction
(Figure 7). Particles are only placed into ‘‘active’’ cells
located within this zone. The hydraulic backbone, which
consists of the interconnected fracture network where fluid

flow occurs, was not rigorously defined in this study.
Criteria for ‘‘active’’ cell designation consists of both
occupation of a cell by a fracture and cell Darcy velocities
that are at least two or three orders of magnitude greater
than the average matrix value. Solute particles are evenly
distributed among all active cells located within the particle
release area (i.e., the amount of particles released into active
cells are independent of flux).

4. Ensemble Particle Displacement Plumes

[30] A total of 23 parameter sets, defined as a set of
statistics used to define fracture length, orientation, and
density, were generated to investigate the transport behavior
in a wide variety of network types (refer to companion
paper for parameter set values). The total number of
realizations per parameter set is limited to 500 because of

Figure 4. Normalized particle breakthrough curves for fractures with equivalent length (50 m),
transmissivity (1.0 � 10�8 m2/s), and transport aperture (2.5 � 10�5 m) oriented at (a) 0� and (b) 45�
demonstrate that particles migrate as near-piston flow ‘‘slugs’’ through individual fractures. Note that the
lighter curve in Figure 4b represents a best fit Gaussian with a mean and standard deviation of 1.0 and
5.5 � 10�2 dimensionless time units, respectively.
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the large-scale nature of the simulations. All 500 individual
realizations are used to form a single ensemble data set for
the study of ensemble particle behavior and construction of
ensemble concentration plumes (Figure 8).
[31] Three ensemble concentration plumes, representing

each endpoint and a middle value of fracture length expo-
nent and spatial density values, show that sparsely to
moderately fractured domains engender non-Gaussian
plume geometry (Figures 8a and 8b). The primary growth
directions of both plumes correspond to the fracture group
orientations. The combination of short fractures with high
spatial density values leads to the formation of elliptical,
Gaussian-like plumes (Figure 8c). The disconnected
‘‘blobs’’ in Figures 8a and 8b are from individual realiza-
tions and demonstrate the high degree of transport variabil-
ity in sparsely to moderately fractured media. The presence
of these isolated concentration contours suggests that more
than 500 realizations are needed to form an ensemble
concentration density with continuous contours.
[32] The process of subtracting initial particle location

from final particle location deconvolves the shape of the
initial particle input from a relatively large spatial area to a

point source. These deconvolved particle displacements
represent the Green’s function of the motion process. The
distributional properties of the plumes can then be analyzed
by transforming the particle jumps from joint (2-D) densi-
ties to marginal densities along the eigenvectors of the
plume growth. Analyses of ensemble particle displacement
plumes is covered in the companion paper.

5. Conclusion

[33] Standard numerical simulators designed to model
fluid flow and solute transport in porous media were used
to generate synthetic data for an investigation into the
influence of power law fracture trace length distributions
and fracture density on ensemble plume behavior in frac-
tured media. Fracture networks with physically realistic
properties were generated according to distributions of
fracture length, transmissivity, density and orientation.
MODFLOW was used to solve for fluid flow in both the
fracture network and rock matrix, defining an approach that
combines the strengths of both continuum and DFN meth-

Figure 6. Idealized particle trajectories (dashed lines) in relation to straight-line distance (solid line) for a
given orientation, q. Mean curved segment length is assumed to be p/4.

Figure 5. Porosity of fracture-occupied cell in relation to
cell size and transport aperture, b. For our simulations, cell
porosity = Vvoid/Vsolid = b since dx = dy = dz = 1.

Figure 7. Fracture network domain with shaded region
representing area of domain subject to introduction of solute
particles. The down-gradient position of the box was
selected to avoid potential boundary effects. Not all
realizations have fractures of the hydraulic backbone
present in the particle release area. All values are given in
units of meters.
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odology. A very small cell size preserves details of fracture
networks, while a permeability contrast between fractures
and the matrix restricts most of the flow to fracture net-
works. The use of a correction factor based on fracture
orientation negates error (<0.2%) between flow through a
MODFLOW finite difference fracture equivalent and a
discrete fracture. A random walk particle-tracking code,
RWHet, was used to track advective particle trajectories
through the fracture equivalents according to a bilinear
velocity interpolation scheme. A correction factor based
on curved streamlines was used to correct for particle
velocity. After this correction, velocity error is less than
10% and is manifested as local numerical dispersion. The
longitudinal dispersivity at a transport scale of 100 m ranges
between 10�8 and 0.1 m. Ensemble particle displacement
plumes, consisting of 500 possible realizations each, range
from elliptical in shape with orthogonal principal axes to
asymmetric ‘‘boomerang’’ shapes with nonorthogonal arms.
Analysis of the convergence of ensemble particle jumps to
either operator-stable or multi-Gaussian random vectors is
the subject of a companion paper.
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