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[1] In networks where individual fracture lengths follow a fractal distribution,
ensemble transport of conservative solute particles at the leading plume edge
exhibit characteristics of operator-stable densities. These densities have, as their
governing equations of transport, either fractional-order or integer-order
advection-dispersion equations. Model selection depends on the identification
of either multi-Gaussian or operator-stable transport regimes, which in turn
depends on the power law exponent of the fracture length distribution.
Low to moderately fractured networks with power law fracture length exponents
less than or equal to 1.9 produce solute plumes that exhibit power law
leading-edge concentration profiles and super-Fickian plume growth rates.
For these network types, a multiscaling fractional advection-dispersion equation
(MFADE) provides a model of multidimensional solute transport where
different rates of power law particle motion are defined along multiple directions.
The MFADE model is parameterized by a scaling matrix to describe the super-Fickian
growth process, in which the eigenvectors correspond to primary fracture group
orientations and the eigenvalues code fracture length and transmissivity. The
approximation of particle clouds by a multi-Gaussian (a subset of the operator stable) for
densely fractured networks with finite variance fracture length distributions can be
ascribed to the classical ADE where Fickian scaling rates pertain along orthogonal plume
growth directions. Fracture networks show long-term particle retention in low-velocity
fractures so that coupling of the equations of motion with retention models such as
continuous time random walk or multirate mobile/immobile will increase accuracy near
the source. Particle arrival times at exit boundaries for multi-Gaussian plumes vary with
spatial density. Generally, arrival times are faster in sparsely fractured domains
where transport is governed by a few very long fractures.
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1. Introduction

[2] The use of an analytical solution to an equation
such as the advection-dispersion equation (ADE) would be
very convenient for screening-level predictions of solute
transport in fractured media. Unfortunately, the ADE has
been shown to be inadequate for describing solute trans-
port behavior in sparsely to moderately fractured rock

masses [Schwartz et al., 1983; Smith and Schwartz, 1984;
Berkowitz and Scher, 1997; Becker and Shapiro, 2000;
Painter et al., 2002; Kosakowski, 2004; Zhang and Kang,
2004; Jiménez-Hornero et al., 2005]. At the network
scale, non-Gaussian transport behavior may be partially
explained by the fractal nature of fracture networks. The
distribution of permeability and/or trace lengths of indi-
vidual fractures or fracture zones can vary over several
orders of magnitude [e.g., Bour and Davy, 1997; Bonnet et
al., 2001; Stigsson et al., 2001; Gustafson and Fransson,
2005], resulting in highly heterogeneous flow fields where
equivalent properties cannot be defined over a larger
continuum [Long et al., 1982]. Instead of converging to
elliptical multidimensional Gaussian (multi-Gaussian)
densities, transport of particles through a restricted subset
of interconnected fractures can lead to highly asymmetric
solute plumes with anomalous scaling rates [e.g., Becker
and Shapiro, 2000; Kosakowski, 2004].
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[3] Using numerical simulations of fluid flow and solute
transport, Reeves et al. [2008] used a novel fracture
continuum method to produce ensemble particle plumes
for a wide variety of random fracture networks. These
two-dimensional (2-D) networks are generated according
to statistics that describe fracture length, transmissivity,
density and orientation. In this paper, we fit the leading
edge of ensemble particle plumes to operator-stable den-
sities in order to assess the applicability of a multiscaling
fractional-order equation for solute transport predictions in
fractured media. Model parameters describing ensemble
plume growth rates and primary directions are related to
fracture network statistics. An extensive array of fracture
network types is analyzed to identify influences of fracture
length, transmissivity, orientation, density and presence of
multiple fracture groups on transport behavior of a con-
servative solute.

2. Particle Jumps and Operator-Stable Densities

[4] The multiscaling fractional ADE (MFADE) for solute
migration is based on a random walk model:

~X ¼ RH � ~Q; ð1Þ

where a random particle jump size vector ~X is the product
of two independent random elements: a random growth and
scaling matrix RH and a random direction vector ~Q
[Schumer et al., 2003a]. The distribution of the scalar R,
where P(R > r) / r�1, is heavy-tailed [Schumer et al.,
2003a]. The matrix H rescales the distribution of jump
lengths to account for larger jumps in certain directions:

H ¼ SHoS
�1; ð2Þ

where S and Ho are, respectively, the eigenvector and
eigenvalue matrices for H [Schumer et al., 2003a]. We
address plume growth in two dimensions, which requires
only two eigenvectors to represent dominant particle
motion directions and two eigenvalues to describe jump
magnitudes (and describe plume growth rates) in all
directions. Eigenvector and eigenvalue matrices have the

form S =
e11 e21
e12 e22

� �
and Ho =

1=a1 0

0 1=a2

� �
, where

column eigenvectors ~e1 and ~e2 are defined in terms of their
vector coordinates, and their eigenvalues (1/ai) assign rates
of scaling along these directions. The probability decay of
particle jump magnitude along the ith eigenvector, Ri,
follows a power law: P(Ri > r) � r�ai. Particle motion in
noneigenvector directions scale according to a mixture of
scaling coefficients [Schumer et al., 2003a].
[5] The directional vector ~Q in (1) has a distribution

around the 2-D unit circle for two-dimensional particle
jumps. If particle motion were in three dimensions, ~Q
would be distributed around the unit sphere. The distribu-
tion of directional unit vectors, M(d~Q), is called the mixing
measure [Meerschaert et al., 2001; Schumer et al., 2003a].
M(d~Q) contains the weights or relative intensities of
directional particle movement such that

R 2p
0
M(d~Q) = 1

[Meerschaert et al., 1999]. In one dimension, mixing
measure weights describe the skewness of an a-stable
distribution [Benson, 1998]. Although mixing measure
weights can be either isotropic or anisotropic, it is assumed
that the distribution of directional particle movement is

anisotropic for solute transport in groundwater flow sys-
tems because of the influence of a regional hydraulic
gradient [Schumer et al., 2003a].
[6] The particle jumps ~X described by (1) are in an

operator-stable domain of attraction [Meerschaert and
Scheffler, 2001]. The normalized sum of these particle
jumps converge in the limit to an operator-stable random
vector [Meerschaert and Scheffler, 2001]. Operator-stable
densities are the most general case of joint a-stable distri-
butions where the rates of scaling (1/a) are different along
each primary scaling direction. If rates of scaling are equal in
all directions, as in the case of a multivariate a-stable
distribution, H reduces to a scalar equal to 1/a [Meerschaert
et al., 1999]. Multi-Gaussian densities, a subset of operator-
stable densities, result when Ho = diag(1/2, 1/2) for two-
dimensional plume growth. Multi-Gaussian densities are
characterized by elliptical plume geometry with orthogonal,
Fickian scaling rates proportional to t1/2 along eigenvectors
corresponding to the major and minor axes of an ellipse.
[7] Closed-form analytical solutions do not exist for most

operator-stable densities. The log-characteristic function of
a centered non-Gaussian operator-stable density, (i.e., the
logarithm of the Fourier transform of the density), can be
represented by Meerschaert and Scheffler [2003]:

y ~k
� �

¼ B

Z 2p

0

Z 1

0

ei
~k�rH~Q� 1� i~k � rH~Q

1þ k rH~Q k2

 !
dr

r2
M d~Q
� �

;

ð3Þ

where B > 0 provides scale to the density and ~k � rH~Q =
k1r

1/a1cos(q) + k2r
1/a2sin(q) if H is diagonal. The inner

integral describes the direction and scaling of probability
mass for an operator-stable density according to H, while
the outer integral distributes probability mass according to
weights of the mixing measure, M(d~Q). The density, f (~x)
of this operator-stable random vector ~X can be computed
by taking the inverse Fourier transform [Meerschaert and
Scheffler, 2003]:

f ~xð Þ ¼ 2pð Þ�2

Z
~k2R2

e�i~k�~xey
~kð Þd~k: ð4Þ

The fast Fourier transform [Strang, 1988] can also be
used to calculate (4).
[8] A multiscaling fractional advection-dispersion

equation (MFADE) models solute transport according to
operator-stable densities [Meerschaert et al., 2001; Schumer
et al., 2003a]:

@C ~x; tð Þ
@t

¼ �~v � rC ~x; tð Þ þ D � rH�1

M C ~x; tð Þ; ð5Þ

where solute concentration, C(~x, t) changes due to a
combination of advective, ~v � rC(~x, t) and super-Fickian
dispersive, D � rM

H�1

C(~x, t) effects. The multiscaling
fractional derivative, rM

H�1

, is parameterized via the scaling
matrix H and mixing measure M (same as M(d~Q)) to
describe directional particle movement. H is equal in (1), (3)
and (5). Values of ai in H code one-dimensional spatial
fractional-order derivatives where 0 < ai � 2. Note that
[Meerschaert et al., 2001]:

F rH�1

M C
h i

~k
� �

¼ y ~k
� �

Ĉ ~k
� �

; ð6Þ
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that is, a multiscaling fractional derivative is equivalent to
multiplying by the log characteristic function of an operator-
stable density (3) in Fourier space. Linear advective
velocity, ~v in (5) provides a vector shift to the operator-
stable density, while a constant dispersion coefficient, D,
provides scale to the mixing measure. Note that B in (3) and
D in (5) are proportional.
[9] The goal of this study is to investigate the applica-

bility of the multiscaling fractional-order ADE (MFADE) as
a suitable model for ensemble plumes in a fractured
medium. Point source solutions to the MFADE are opera-
tor-stable probability densities. Hence, we fit ensemble
plume data to the operator-stable model by estimating the
parameters H (the scaling matrix) and M(d~Q) (the mixing
measure) for each set of realizations. After carefully assess-
ing the quality of fit, we then proceed to study the
relationship, if any, between the MFADE parameters and
the statistical properties of the fracture networks.

3. Results and Discussion

[10] For each of 23 parameter sets, particle plumes from
500 realizations are assessed to determine whether their
relative concentration can be adequately fit by either
operator-stable or multi-Gaussian density functions. The
relative concentration of particle displacements is computed
from the difference between final and initial particle loca-
tions at a given time increment (deconvolution), so that the
resulting plume should correspond to the Green’s function
solution of the transport equation. The first 19 parameter
sets (Table 1) consist of simple networks comprising only
two fracture groups with constant orientation. The remain-
ing 4 parameter sets are used to investigate more complex
networks where fracture orientation is allowed to deviate
around a mean orientation and/or more than two fracture
groups are present. Relationships between fracture network
statistics such as fracture length, density, transmissivity,
variable fracture group orientation and the influence of

multiple fracture groups and resultant particle transport
are identified.

3.1. Analysis of Ensemble Particle Displacement
Plumes

[11] Ensemble particle plume snapshots (e.g., Figure 1)
represent a 2-D joint density and consist of all particle
displacements over a given time interval of a single
parameter set (Table 1). Fitting ensemble particle displace-
ment vectors to operator-stable densities is facilitated by
analysis of the marginal distributions of particle displace-
ment. By definition, if ensemble particle clouds can be
approximated by an operator-stable density, then marginal
distributions of particle displacement should fit a-stable
densities [Meerschaert and Scheffler, 2001]. If particle
clouds resemble a multi-Gaussian density, then marginals
will fit a normal density.
[12] To evaluate the marginal distributions of joint

ensemble particle plumes, the coordinate directions (eigen-
vectors) that dominate plume growth must be identified;
otherwise the variation in tail behavior will be masked
by the plume growth direction with the heaviest tail
[Meerschaert and Scheffler, 2003]. Meerschaert and
Scheffler [2003] propose the use of a sample covariance
matrix to estimate the eigenvectors of an operator-stable
scaling matrix. However, the computation of eigenvectors
from a sample covariance matrix leads to eigenvectors
with orthogonal orientations. Orientations of fracture
groups are not always orthogonal [e.g., Munier, 2004],
and our simulations demonstrate that nonorthogonal
fracture group orientations can lead to nonorthogonal
directions of plume growth. In the absence of a rigorous
method to identify dominant plume growth directions,
eigenvector directions are identified by visual analysis of
ensemble particle displacement plumes. A transformation
to the coordinates defined by these eigenvectors (denoted
as column vector components, eij) maps particle displace-
ment vectors, ~X , from Cartesian coordinates (X1, X2) onto a

Table 1. Network Values for Parameter Sets

Set Ta a1
b Density1

c q1
d, deg a2 Density2 q2, deg

1 TP 1.0 max/0.0075 30 1.0 max/0.0075 �60
2 TP 1.0 max/0.0018 30 1.0 max/0.0018 �60
3 TP 1.3 int/0.0065 15 1.0 int/0.0065 �30
4 LN 1.3 int/0.0065 15 1.0 int/0.0065 �30
5 TP 1.0 min/0.0080 45 1.6 max/0.0090 �45
6 TP 1.3 max/0.022 60 1.9 max/0.14 �10
7 TP 1.6 max/0.06 30 2.2 int/0.16 �30
8 LN 1.6 max/0.06 30 2.2 int/0.16 �30
9 TP 1.9 int/0.10 45 1.9 int/0.10 �45
10 TP 1.9 min/0.06 45 1.9 max/0.14 �45
11 TP 1.9 max/0.14 45 2.2 max/0.21 �45
12 TP 1.9 int/0.10 45 2.5 max/0.23 �30
13 TP 2.5 min/0.12 45 2.8 min/0.15 �45
14 TP 2.5 max/0.23 45 2.8 max/0.25 �45
15 LN 2.5 max/0.23 45 2.8 max/0.25 �45
16 TP 2.8 min/0.15 45 3.0 min/0.15 �45
17 TP 2.8 int/0.20 45 3.0 int/0.20 �45
18 TP 3.0 max/0.25 30 2.8 max/0.25 10
19 LN 3.0 max/0.25 30 2.8 max/0.25 10

aTransmissivity distribution where TP and LN denote truncated Pareto and lognormal, respectively.
bFracture length power law exponent value.
cSpatial fracture density [m/m2].
dFracture set orientation from horizontal in degrees.
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new coordinate system (Z1, Z2) [Meerschaert and Scheffler,
2003]:

Z1
Z2

� �
¼ X1

X2

� �
e11 e21
e12 e22

� ��1

: ð7Þ

The resulting marginals Z1 and Z2 can then be analyzed for
power law content. Coordinates were selected on the basis
of plume type. For plumes resembling operator-stable
densities, Z1 and Z2 represent projections along eigenvec-
tors that are the most and least positive in orientation
relative to the hydraulic gradient (e.g., Figure 1a), while Z1
and Z2 represent particle motion along major and minor
plumes axes, respectively, for multi-Gaussian plumes (e.g.,
Figure 2).

3.1.1. Estimation of Scaling Matrix, H
[13] An upper truncated Pareto (power law) model is used

to estimate tail thickness of the r largest marginal particle
jumps for super-Fickian plumes [Aban et al., 2006]:

P Z > zð Þ ¼ ga z�a � n�að Þ
1� g

n

� �a ; ð8Þ

where Z are marginal particle displacements (Z1 or Z2), g
and n are the minimum and maximum values of Z and a
describes the power law tail of the distribution. The use of a
truncated Pareto, which has finite moments of all orders,
appears to contradict the use of heavy-tailed (infinite
variance) statistics required by (5). However, the truncation
of the power law trend observed in the distribution of

Figure 1. Ensemble particle displacement plumes for set 1 at transport times of (a) 4.6, (b) 10, and
(c) 464 years along with (d) an operator-stable density based on the characterization of the ensemble
particle displacement plume shown in Figure 1a. For very sparse networks, fast particle transport is
dependent on the presence of long continuous fractures with high transmissivity values. The operator-
stable plume in Figure 1d closely resembles the ensemble plume in Figure 1a. It is anticipated that
ensemble plumes generated from a much greater number of realizations will more closely resemble the
shape of the operator-stable density. All spatial values are given in units of meters.
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marginal particle displacements naturally arises from a finite
sampling of heavy-tailed distributions of fracture lengths
within a finite model domain. Since particle transport occurs
exclusively within a subset of fractures of a network called
the hydraulic backbone, solute particles only experience a
small subset of fracture lengths and velocities. This is
particularly true for the sparsely to moderately connected
fracture networks with long fracture lengths that promote
the formation of operator-stable densities. Additional
limitations on maximum particle distance are imposed by

the distribution of fracture transmissivity and lack of within-
fracture dispersion which leads to ‘‘piston flow’’ along
dominant transport fractures [Reeves et al., 2008].
[14] A maximum likelihood estimation (MLE) estimator

[Aban et al., 2006] was coded and used to solve for the
truncated Pareto estimated parameters ĝ and â for each of
the marginal distributions:

r

â
þ
r

Z rþ1ð Þ
Z 1ð Þ

� �â
ln

Z rþ1ð Þ
Z 1ð Þ

� �
1� Z rþ1ð Þ

Z 1ð Þ

� �â �
Xr
i¼1

lnX ið Þ � lnX rþ1ð Þ
� �

¼ 0; ð9Þ

where Z(1), Z(2),. . .,Z(n) are ranked in descending order, n̂ =
Z(1) is the largest observed data value and

ĝ ¼ r
1
â Z rþ1ð Þ
� �

n� n� rð Þ
Z rþ1ð Þ

Z 1ð Þ

� �â
" #1

â

: ð10Þ

[15] On the basis of (9) and (10), estimated values for â
and ĝ were found to be sensitive to the selection of the
number r of the largest tail data. To address this problem, â
and ĝ were computed using different values of r between
5% to 25% of the largest particle displacements. Within this
range, the standard deviation of â was found to vary
between 0.14 and 0.25 for our simulations. The chi-square
test was used to determine best fit estimated parameters for
the upper tail of particle displacements [Carr, 2002]
(Table 2). Mandelbrot plots are used to verify tail thickness
estimates of all power law trends (e.g., Figure 3). Mandel-
brot plots are also used to distinguish between exponential
(P(Z > z) � exp(�z)) and Gaussian (P(Z > z) � exp(�z2))
leading-edge tails (Table 2). For a Mandelbrot plot with log-
log coordinates, power law tails for the largest marginal
particle displacements have linear trends, while exponential
trends are nonlinear and the decay of the largest particle
displacements is rapid (i.e., thin tailed).
[16] Values of a corresponding to the spreading rates

along primary plume growth directions can be estimated
using [Benson et al., 2000; Schumer et al., 2003a]:

s ¼ 2Dtð Þ1=a; ð11Þ

where s is an empirical measure of plume size, based on
either standard deviation of particle jump magnitude or the
linear distance between quantile pairs (see below), and D is
a constant dispersion coefficient. Plume spreading rates for
a Fickian growth process (a = 2) are proportional to t1/2

where s is equal to the square root of the particle
displacement variance and D is a constant Gaussian
dispersion coefficient. A super-Fickian growth process,
where 0 < a < 2, has an undefined variance of particle
displacement (s remains a measure of plume size in this
case) and has spreading rates proportional to t1/a. For an
operator-stable process following (5), estimates of a from
tail (8) and plume spreading rates (11) should be equal.
[17] Several metrics are used to compute plume size,

including the standard deviation of particle jump magnitude,
Q(stdev), and quantile pairs Q(0.16,0.84), Q(0.05,0.95) and
Q(0.01,0.99) where the subscript refers to fraction of particles
behind and ahead. The linear distance between each
quantile pair (s) is plotted against time in log-log coor-
dinates (Figure 4). A linear trend on this plot will have a

Figure 2. Ensemble particle displacement plume for
(a) set 16 and (b) set 17 at transport times of 44,640 and
1000 years, respectively. The only difference between the
fractured domains is that set 16 (Figure 2a) has a lower
density than set 17 (Figure 2b). The decrease in density from
set 17 to set 16 decreases in fluid flux through the network
and enhances transverse plume spreading as particles tend to
follow fracture orientations (±45�). Both of these factors
decrease plume migration rates. In fracture networks with
short fracture lengths, fracture pathways become truncated at
higher fracture densities (i.e., set 17 (Figure 2b)), and a
fracture medium begins to approach an equivalent porous
medium. All spatial values are given in units of meters.
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slope of 1/a according to (11). Values of a for sets 1–19
are provided in Table 3. For some parameter sets, quan-
tiles cannot be determined at later time steps because too
many particles have left the model domain (a censoring
problem).
[18] Eigenvectors and eigenvalues of the scaling matrix H

in (5) code anistropic plume evolution over time as a super-
Fickian growth process. Eigenvectors, ~ei, denote primary
plume growth directions and are computed visually from
ensemble particle displacement plumes. Primary plume
growth directions are presented in degrees from horizontal
where ~ei = [cos(qi) sin(qi)]

T (Table 4). Eigenvalues (1/ai)
describe plume growth rates and are computed from mar-
ginal distributions along ~ei. Because of the inverse relation-
ship between a and rates of plume spreading (1/a), lower
values of a indicate more rapid rates of plume growth.
Estimates of ai obtained from tail and plume spreading rate
methods are both used in the determination of eigenvalues,
though, in general, values of a for operator-stable plumes
most closely reflect the fracture length exponent (Table 4).
The influence of fracture length and other network param-
eters on values of a will be discussed shortly.
3.1.2. Mixing Measure Weights
[19] When all ai < 2, the variance and covariance of

particle jumps are undefined. Instead, weights and direc-
tions of the mixing measure, M(d~Q), describe the depen-
dence structure between eigenvectors of plume growth (~e1,
~e2) and heavy-tailed particle jumps, ~X [Meerschaert and
Scheffler, 2001]. This dependence structure codes the rela-
tive likelihood of large particle motions in any direction. For
fracture networks, mixing measure weights are influenced
by the mean ensemble fluid flux through each fracture set,
and mixing measure weights are concentrated around mean
fracture group orientations. In this study, two methods are
used to estimate M(d~Q). The first method calculates M(d~Q)
a posteriori from ensemble particle displacement plumes,

Table 2. Tail Characteristics of Parameter Sets

Set Z1 Trend
a a1

b Z2 Trend a2

1 pl 0.4–0.8 pl 0.9–1.1
2 pl 1.0–1.2 pl 1.3–1.4
3 pl 0.4–0.8 pl 0.4–0.8
4 pl 0.4–0.8 pl 0.4–0.9
5 pl 0.5–0.8 pl 0.5–0.8
6 pl 1.0–1.1 pl 1.3–1.9
7 pl 1.2–1.6 pl/exp(�z) 1.8–1.9
8 pl 0.8–1.0 pl 1.0–1.2
9 pl 1.7–1.9 pl 1.7–1.9
10 exp(�z) NAc exp(�z) NA
11 pl/exp(�z) 1.8–1.9 pl/exp(�z) 1.8–1.9
12 pl 1.8–1.9 exp(�z) NA
13 exp(�z) NA exp(�z) NA

14 exp(�z2) NA exp(�z2) NA

15 exp(�z2) NA exp(�z2) NA
16 exp(�z) NA exp(�z) NA

17 exp(�z2) NA exp(�z2) NA

18 exp(�z2) NA exp(�z2) NA
19 exp(�z) NA exp(�z2) NA

aDecay trend of largest particle jumps where pl, exp(�z), and exp(�z2)
denote power law, exponential and Gaussian, respectively.

bSlope of power law decay of largest particle jumps.
cNA means not applicable.

Figure 3. Mandelbrot plots of largest ranked particle
displacements (circles) for set 2 along (a) Z1 and (b) Z2 with
best fit truncated power law (TPL) model at an elapsed time
of 0.1 years. Approximately every 1/1000 point is plotted.
Values of Z are given in units of meters.

Figure 4. Values of a1 based on scaling of plume growth
along Z1 for parameter set 2 using all four normalized
metrics. Slope of the regression lines is 1/a. Particles
leaving domain boundaries result in undefined quantile
estimates for later time steps. Estimates of a based on
Q(stdev) are very sensitive to the loss of extreme values. The
change of slope in Q(stdev) is caused by a significant loss of
particles after the fourth time step.
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while the second method estimates M(d~Q) a priori on the
basis of a simple computation of mean ensemble fluid flux
for each fracture group of a network.
3.1.2.1. A Posteriori Mixing Measure Estimation
[20] A heavy-tailed random vector in the generalized

domain of attraction of some operator-stable law, ~Y , has
the relationship [Scheffler, 1999]

~Y ¼ t ~Y
� �H~Q ~Y

� �
; ð12Þ

which describes the dependence structure for directional
particle transport, ~Q(~Y ) 2 S, according to some radius,
t(~Y ) > 0. Values of ~Q(~Y ) are defined as the position
where a rescaled particle jump vector, ~Y , with scaling

matrix, H =
1=a1 0

0 1=a2

� �
, intersects the unit circle of

a Jurek coordinate system (Figure 5) [Jurek, 1984]. A
Jurek coordinate system is an anisotropic polar coordinate
system where coordinate axes are scaled according to
power law coefficients where a1 6¼ a2 and q1

2 + q2
2 = 1.

Because of unequal scaling rates, t(~Y ) is curved. If a1 =
a2, scaling is isotropic and a Jurek coordinate system
reduces to a symmetric polar plot.

[21] Since primary plume growth directions are not
necessarily aligned with axes of a Cartesian coordinate
system for our simulations, it is advantageous to correct
for this before applying (12). By applying the change of
coordinates, ~Z = S�1~Y where S represents an eigenvector
matrix of plume growth, (12) can be expressed as

~Z ¼ t ~Z
� �H~Q ~Z

� �
: ð13Þ

Values of t(~Z) are then computed using a method presented
by Meerschaert and Scheffler [2003] where Pareto distri-
butions, P(X > x) = wx�a, are used to appropriately scale ~Z
along coordinate axes. Values of a for the Pareto distribu-
tions are estimated using (8) (Table 2), while values of w are
computed using the relationship w = ga [Aban et al., 2006].
Next, values of t(~Z) are ranked in descending order, t(~Z1),
t(~Z2),. . .,t(~Zn), where n is based on percentages used in (8)

Table 3. Plume Scaling Rates

Set

Z1 Z2

Q(stdev) Q(0.16,0.84) Q(0.05,0.95) Q(0.01,0.99) Q(stdev) Q(0.16,0.84) Q(0.05,0.95) Q(0.01,0.99)

1 1.0 1.1 1.1 1.2 1.1 1.1 1.0 1.1
2 1.0 1.1 1.1 1.2 1.0 1.1 1.1 1.2
3 1.1 1.1 1.1 1.2 1.1 1.1 1.0 1.1
4 1.0 1.1 1.2 1.1 1.1 1.1 1.0 1.3
5 1.1 1.0 1.0 1.0 1.2 1.2 1.1 1.0
6 1.8 1.3 1.4 1.4 1.4 1.2 1.3 2.2
7 1.5 1.5 1.5 2.0 1.2 1.3 1.4 1.8
8 1.5 NAa 2.0 1.7 1.2 NAa 1.6 1.8
9 1.4 1.4 1.5 1.8 1.3 1.4 1.5 2.0
10 1.5 1.4 1.5 1.9 1.5 1.3 1.5 1.9
11 1.6 1.4 1.5 1.9 1.6 1.4 1.5 1.9
12 1.6 1.4 1.6 2.1 1.6 1.4 1.6 2.3
13 1.6 1.6 1.7 2.2 1.7 1.8 1.9 2.1
14 1.3 1.4 1.4 1.6 2.3 3.1 3.4 2.2
15 1.6 1.6 1.7 2.3 1.6 1.7 1.8 2.1
16 1.6 1.6 1.7 2.3 1.9 1.9 2.0 2.2
17 1.3 1.5 1.5 1.6 2.6 3.1 3.8 3.3
18 1.5 1.4 1.5 1.9 1.3 2.4 2.6 2.8
19 1.3 1.1 1.2 1.6 1.1 1.6 1.9 2.1

aNonlinear trend in log-log space.

Table 4. Characterization of H

Set ~e1, deg a1 ~e2, deg a2

1 30 1.0–1.2 �60 1.0–1.1
2 30 1.0–1.2 �60 1.0–1.2
3 15 1.1–1.2 �30 1.0–1.2
4 15 1.0–1.2 �30 1.0–1.3
5 45 1.0–1.1 �45 1.0–1.2
6 60 1.3–1.4 �10 1.2–1.4
7 30 1.5–1.7 �30 1.8–1.9
8 30 1.5–1.7 �30 1.8–1.9
9 45 1.7–1.9 �45 1.7–1.9
10 45 1.8–1.9 �45 1.8–1.9
11 45 1.8–1.9 �45 1.8–1.9
12 0 1.7–1.9 ±90 2.0

Figure 5. Jurek coordinate system where a1 = 1.0 and
a2 = 1.3 lead to unequal directional scaling rates. The
value of q is defined as the position where the curved
radius, t, intersects the unit circle.
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for the computation of g and a. Finally, values of Q(~Z),
computed from the largest t(~Z) values, are transformed
back to the original coordinate system using the relation-
ship, ~Q(~Y ) = S~Q(~Z). Values of ~Q(~Y ) are binned into 5�
increments and normalized to provide relative weights for
M(d~Q) (e.g., Figure 6) [Scheffler, 1999].
3.1.2.2. A Priori Mixing Measure Estimation
[22] A simple relationship between fracture group orien-

tation and density may be used to estimate M(d~Q) a priori
on the basis of an idealized computation of ensemble-
averaged fluid flux:

qq ¼ rqhKqiJq; ð14Þ

where qq, the mean ensemble fluid flux occurring through
fractures oriented at q from a mean hydraulic gradient, is the
product of rq, the ratio of fracture density oriented at q to
the total network fracture density (i.e., the density over all
q), and Jq, the projected mean gradient onto fractures
oriented at q, where Jq = jjjrhjj � cos(q)j. Transmissivity
values assigned to individual fractures are independent of

fracture orientation for all simulations [Reeves et al., 2008].
Therefore, in the computation of (14), the ensemble-
averaged hydraulic conductivity hKqi is considered constant
over all q. Normalized values of qq represent M(d~Q).
[23] On the basis of (14), networks containing fracture

groups with constant orientation will contain nonzero values
of M(d~Q) only when q is equal to the orientation of a
fracture group, and the orientation of the fracture group is
nonorthogonal to the mean hydraulic gradient (e.g., Figure
6). For more complex cases when q is allowed to deviate
around a mean fracture group orientation, a probability
distribution (i.e., Fisher or Bingham [Bingham, 1964]) can
be used to define rq (e.g., Figure 7).

3.2. Influence of Fracture Length

[24] Trace lengths of natural rock joints and faults are
often observed to be distributed according to power law
models [e.g., Bour and Davy, 1997; Renshaw, 1999; Bonnet
et al., 2001]. A Pareto probability distribution is used to
assign fracture trace lengths in our simulations:

P Y > yð Þ ¼ wy�a; ð15Þ

where the power law exponent, a, typically lies between 1
and 3 [e.g., Bour and Davy, 1997; Renshaw, 1999; Bonnet
et al., 2001] and the scalar w is a function of the minimum
fracture length (5 m). In general, sample mean fracture
length and a are inversely related. For a < 2, the variance
and standard deviation of fracture length diverge and a
characteristic fracture length is undefined. If a strong
correlation exists between a and estimates of a on the
basis of both plume spreading rates and power law
probability decay of largest particle jumps, then a is the
only statistic necessary to distinguish between super-Fickian
(a < 2) and Fickian (a � 2) transport regimes.
[25] We investigate the influence of fracture length

exponent on ensemble particle transport over the range
(1.0 � a � 3.0) of power law exponent values (Figure 8).
On the basis of network connectivity studies [e.g.,
Renshaw, 1999; de Dreuzy et al., 2001], parameter sets
1–19 are divided into 3 groups on the basis of fracture
length exponent values. These groups define domains
where network properties are dominated by either long
fractures with 1.0 � a � 1.6 (sets 1–5), a combination of
both short and long fractures 1.9 � a � 2.2 (sets 9–11),
or short fractures 2.5 � a � 3.0 (sets 13–19). Parameter
sets 6, 7 and 12 are used to explore overlaps between
groups.
3.2.1. Group 1: 1.0 � a � 1.6
[26] For low values (1.0 � a � 1.6) of trace length

exponents (sets 1–5), connectivity and transport properties
are dominated by a few, very long fractures that span a large
area of the model domain. The dominance of these fractures
is apparent from the ensemble particle plumes that preserve
the features of individual transport realizations (Figure 1).
Early arrival times of particles at exit boundaries are
dependent on both the presence of very long fractures and
high fracture transmissivity values. This indicates the pres-
ence of strong sample to sample fluctuations for individual
realizations [Follin and Thunvik, 1994]. The first particles
leave the model domain for set 1 (a1 = 1.0, a2 = 1.0) at
approximately 2 years. In this particular realization, all
25,000 particles leave the northern domain boundary

Figure 6. (a) Histogram and (b) cumulative distribution
plot of mixing measure weights for set 1 at a transport time
of 0.46 years observed from the ensemble particle plume
(solid line) and predicted from the ensemble flux calcula-
tion (dashed line). Note the concentration of mixing
measure weight in the direction of fracture group orienta-
tions, 30� and �60�. The difference between the predicted
and observed weights is approximately 9%.
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through a single, highly transmissive fracture that spans the
entire model domain.
[27] The parameter a describes the power law leading

edge of the particle plume. Estimates of a for the leading
edges of the set 1 ensemble range between 0.4–0.8 for Z1
and 0.9–1.1 for Z2 (Table 2 and Figure 9). Though fracture
length exponents a1 and a2 are identical, differences in
fracture orientation relative to the hydraulic gradient (q1 =
30�, q2 = �60�) may explain higher values of a along the Z2
axis. The presence of very heavy leading-edge distribution
tails along Z1 for early time steps are close to the power law
exponent value assigned to fracture transmissivity (aT =
0.4), suggesting that tail estimates of a for networks

Figure 8. Investigated regions (crosses) into the parameter
space for fracture length exponents, a1 and a2.

Figure 7. (a) Histogram and (b) cumulative distribution
plot of mixing measure weights for set 20 at transport time
of 100 years observed from the ensemble particle plume
(solid line) and predicted from the ensemble flux calculation
(dashed line). Fisher distribution curves are presented in
Figure 7a for comparison of mixing measure weights with
the distribution of fracture orientation, according to mean
group orientations of 30� and �60�. Mixing measure
weights are clustered around the mean hydraulic gradient.
This is caused by the preferential movement of particles in
fractures that are more favorably aligned in the direction of
the mean hydraulic gradient. Note that the observed mixing
measure weights are more clustered in the direction of the
mean hydraulic gradient than predicted by the ensemble
flux calculation.

Figure 9. Mandelbrot plots of largest ranked particle
displacements (circles) for set 1 along (a) Z1 and (b) Z2 with
best fit truncated power law (TPL) model at an elapsed time
of 0.1 years. Fast transport in very sparse networks is
dominated by long, domain-spanning fractures; therefore,
the influence of the transmissivity distribution can be
observed at very early transport times. Values of a
estimated from particle displacements are lower than the
fracture length exponents used to generate the network (a1 =
a2 = 1.0) and to reflect the tail of the transmissivity
distribution (aT = 0.4). Approximately every 1/1000 point is
plotted. Values of Z are given in units of meters.
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dominated by very long fractures primarily reflect the
distribution of fracture transmissivity. Early time tail
estimates for set 1 are dependent only on the distribution
of fracture transmissivity, since the upper tail of marginal
particle displacements consists of realizations where particle
transport occurs through only one or a few fractures that
span the entire domain. Interaction between these long,
dominant fractures and other less significant fractures with
shorter lengths and lower transmissivity values are minimal.
This is further supported by estimates of a based on plume
spreading rates and the distribution of mixing measure
weights. Values of a based on plume spreading rates are
near 1.0, indicating ballistic transport along long fractures
where little or no mixing occurs between flow paths. This is
analogous to differential advection in a stratified aquifer
[Mercado, 1967].
[28] Both observed (measured from ensemble plumes)

and predicted (estimated from fluid flux) mixing measure
weights are highly concentrated along primary fracture
group orientations (q1 = 30�, q2 = �60�) for all time steps
(Figure 6). The difference between observed and predicted
mixing measure weights is small (approximately 9%). The
observed mixing measure weight may be overestimated for
particles traveling along the fracture group oriented at 30�,
since these weights are calculated using the greatest 10% of
the ensemble particle displacements, and particles traveling
along the fracture group oriented at 30� can travel a greater
distance before exiting the model domain than those in the
fracture group oriented at �60�. Furthermore, particles
leaving the model domain cause the observed mixing
measure weights to vary over time, suggesting that a priori
estimates of mixing measure weights based on fluid flow
are more reliable.
[29] The operator-stable density shown in Figure 1 ade-

quately captures the most significant features of ensemble
particle displacements for set 1, including: nonelliptical
plume geometry, where plume growth directions correspond
to fracture group orientations; power law tails of the largest
particle displacements; and super-Fickian plume growth
rates. Since there are significant differences between individ-
ual realizations, these plumesmay be considered pre-ergodic.
A detailed study of the approach to ergodic conditions is the
subject of another paper (D.M. Reeves et al., The influence of
fracture statistics on advective transport and implications for
geologic repositories, submitted toWaterResourcesResearch,
2007).
[30] Parameter sets 3 (a1 = 1.3, a2 = 1.0) and 5 (a1 = 1.0,

a2 = 1.6) within this group emphasize the influence of
different fracture length exponents on solute transport. The
separation distance between fracture length exponents is 0.3
for set 3 and 0.6 for set 5. Tail values of a for Z1 and Z2 are
similar for both sets and range between 0.4–0.8 for set 3
and 0.5–0.8 for set 5. Again, low tail estimates reflect the
influence of a heavy-tailed transmissivity distribution (aT =
0.4). Relatively equal tail estimates of a along Z1 and Z2
indicate that differences in fracture length exponents for
fracture networks, where fracture length exponents for both
sets are in group 1, do not significantly influence rates of
particle transport. Estimates of a based on plume spreading
rates (1.0–1.2) for sets 3 and 5 are higher than tail estimates
and indicate ballistic transport where minimal flow path
mixing occurs. This mismatch between the tail power law

and the power law rate of spreading also shows that the
operator-stable process does not capture the ensemble
plume near the source area. Addressing this shortcoming
using a more sophisticated model that also accounts for
particle retention is the subject of future work. The
measured mixing measure weights for sets 3 and 5 are
similar to set 1, where M(d~Q) is concentrated along fracture
group orientations.
3.2.2. Group 1 and Group 2 Mix
[31] Sets 6 (a1 = 1.3, a2 = 1.9) and 7 (a1 = 1.6, a2 = 2.2)

explore the transition between fracture length exponent
group 1 (1.0 � a � 1.6) and group 2 (1.9 � a � 2.2).
Networks for sets 6 and 7 both contain fracture groups
where one fracture group primarily consists of long frac-
tures while the other consists of a combination of short and
long fractures. To study contributions of each fracture group
on overall particle transport, fracture group orientations
(q1 = 60�, q2 = �10�) for set 6 are intended to minimize
the influence of the mean hydraulic gradient along the
fracture group with the lower fracture length exponent
value (a1 = 1.3), while maximizing the influence of the
mean hydraulic gradient along the fracture group with the
higher fracture length exponent value (a2 = 1.9). This
contrast is not reflected in the leading edges, since
estimated values of a along Z1 and Z2 range between
1.0–1.1 and 1.3–1.9, respectively. These numbers are
more consistent with fracture length exponents. With the
exception of Q(0.01,0.99), plume spreading a estimates (a1 =
1.3–1.4, a2 = 1.2–1.4) are in general agreement with tail
values along Z1 and are generally lower than predicted by
the tail for Z2.
[32] Since the primary metrics used to quantify plume

spreading rates are based on the distance between par-
ticles representing quantile pairs (Q(0.16,0.84), Q(0.05,0.95),
Q(0.01,0.99)), lower estimates of a for plume spreading rates
than tail estimation methods are most likely caused by
particle retention in low-velocity fractures. Retention of
particles within the source area increases interquantile
distance, which results in lower estimates of a on the basis
of growth rate (i.e., the plume appears to grow more rapidly
than the leading half of the plume would indicate). The a
estimates based on the leading tails are not sensitive to
retention, since these particles spend little or no time in slow
fractures [see also Schumer et al., 2003b]. Similarly, our
estimates of the mixing measure are based on the fastest
particles and are not affected by the retention. However,
particle retention in low-velocity segments of the hydraulic
backbone dictates that increased accuracy of prediction near
the source would be achieved by coupling our solutions to
either a continuous time random walk (CTRW) model
[Berkowitz and Scher, 1997; Scher et al., 2002; Dentz and
Berkowitz, 2003; Bijeljic and Blunt, 2006] or a multirate
mobile-immobile model [Haggerty and Gorelick, 1995;
Haggerty et al., 2000; Schumer et al., 2003b; Baeumer et
al., 2005]. A detailed study of the long-term particle
retention and the validity of the ergodic hypothesis is
investigated in another study (Reeves et al., submitted
manuscript, 2007).
[33] Set 7 (a1 = 1.6, a2 = 2.2) contains one fracture group

with infinite variance lengths and another with finite
variance. Estimates of a reflect this contrast as tail estimates
for Z1 range between 1.4 and 1.6, while tails along Z2 vary
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between a very weak power law (1.9) and exponential
decay. The marginal jumps in the Z2 direction did not
converge to a Gaussian, but power law content was sharply
reduced. Consistent with an operator-stable model, the
jumps in the two directions are independent and the finite
variance fracture group (Z2) did not strongly influence
particle motion along the infinite variance fracture group
(Z1). With the exception of Q1(0.01,0.99), estimates of a based
on plume spreading rates along Z1 (1.5) are in agreement
with tail estimates (1.4–1.6). Lower values of a for plume
spreading rates along Z2 (1.2–1.8) indicate particle
retention in fractures with low transmissivity values.
3.2.3. Group 2: 1.9 � a � 2.2
[34] Group 2 (1.9 � a � 2.2) represents a transition

between the infinite variance of group 1, and the finite
variance fracture lengths of group 3, although the lower end
of the fracture length exponent range is near the finite
variance threshold (2.0). Parameter sets 9 and 11 are used

to further investigate the transition between heavy-tailed and
exponential to Gaussian transport. Similar to group 1
networks, eigenvectors of plume growth in sets 9 and
11 correspond to fracture group orientations. However, the
primary difference between group 1 and group 2 networks is
that the leading plume edge may exhibit either a slight power
law or exponential tail (Table 2).
[35] Tail estimates (1.8–1.9) for set 9 (a1 = 1.9, a2 = 1.9)

confirm that particles traveling through networks containing
fracture groups with fracture length exponents near the
finite variance cutoff (a = 2) can experience heavy-tailed
transport. Tails of the largest particle displacements for set
11 (a1 = 1.9, a2 = 2.2) appear to show a transition between a
weak power law and exponential trend (Figure 10). Though
a strong power law trend is not observed in the leading
plume edge for set 11, the plume most closely resembles an
operator-stable density (Figure 10b) with a values of 1.8.
Estimates of a from plume growth rates show large vari-

Figure 10. (a) Ensemble particle displacement plume for set 11 at a transport time of 21 years along
with (b) best fit operator-stable density and Mandelbrot plots of largest ranked particle displacements
(circles) along (c) Z1 and (d) Z2 with best fit truncated power law (TPL) and exponential (exp(�z))
models. Networks containing a combination of infinite variance and finite variance distributions of
fracture length (a1 = 1.9, a2 = 2.2) produce solute plumes with super-Fickian growth rates and leading
plume edges that appear to show a transition between power law and exponential decay of the largest
particle jumps.
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ability along the two primary growth directions (1.4–1.9),
but are in general agreement with thea value used to generate
the operator-stable plume (1.8). This suggests that super-
Fickian transport predominantly occurs for group 2 networks.
3.2.4. Group 2 and Group 3 Mix
[36] Only one parameter set, set 12 (a1 = 1.9, a2 = 2.5)

was designed to investigate networks containing fracture
groups with fracture length exponent values in the range of
both group 2 and group 3. The level sets of the ensemble
particle plume for this parameter set are approximately
elliptical (not shown), with a strong power law trend of the
decay of largest particle displacements (a = 1.8–1.9) in the
longitudinal direction (Z1) and more exponential tailing in
the transverse (Z2) direction (Figure 11). The different type
of tail decay in each direction can be attributed to the
difference that exists between fracture length exponents
(0.6). The fracture group with shorter fractures (a2 = 2.5)
essentially enhances connectivity between longer fractures

of the other set (a1 = 1.9), allowing transport to occur
predominantly along Z1. Thus, the influence of longer
fractures on solute transport is preserved. An ADE with
fractional-order derivatives in the longitudinal direction and
integer-order derivatives in the transverse direction can
describe this motion process [Schumer et al., 2003a].
3.2.5. Group 3: 2.5 � a � 3.0
[37] Multi-Gaussian transport occurs in networks where

fracture length exponents are in group 3 (2.5 � a � 3.0)
(sets 13–19). Differences between Gaussian and operator-
stable motion processes are easily observable. First,
correlations between fracture group orientations and
eigenvectors of plume growth become weak to nonexistent.
This leads to orthogonal scaling directions according to the
major and minor plume axes (Figure 2). Second, exponen-
tial or Gaussian tails are observed for all sets (Table 2).
Plume spreading rates (1/a) for all sets in group 3 (13–19)
suggest that fractures with low transmissivity values act as a
retention mechanism, and especially affect rates of solute
transport in the longitudinal direction, Z1 (Table 3).
Estimates of a < 2 would usually indicate super-Fickian
transport; however, in this case, the tendency of particles to
remain near the source increases interquantile distances, and
consequently rates of scaling [see Berkowitz and Scher,
1995, 1997; Baeumer et al., 2005]. Spreading rates in the
transverse direction, Z2, are not as heavily influenced.
[38] The fit between empirical distributions of marginal

particle jumps and a theoretical Gaussian varies and is
heavily influenced by the retention of particles in short
fractures with low transmissivity values, especially for
transport in the longitudinal direction (Figures 12 and
13). In addition to particle retention near the source,
fracture spatial density was found to determine whether
the distribution of marginal particle jumps follow either an
exponential or Gaussian trend. This subject will be further
discussed in the next section.

3.3. Influence of Spatial Fracture Density

[39] Fracture spatial density, r2D, is highly dependent on
the distribution of fracture lengths in a model domain
[Renshaw, 1999] and is defined as the ratio between the sum
of individual fracture lengths, li and domain area, A:

r2D ¼ 1

A

Xn
i¼1

li: ð16Þ

For each power law exponent, spatial density values are
assigned to represent sparsely (min), moderately (int) and
densely (max) fractured domains (Table 1). Values for
spatial density range from at, or slightly above, the
percolation threshold for the sparely fractured domains to
maximum reported density values [Renshaw, 1997; Ehlen,
2000] for the densely fractured domains. Density values
assigned to moderately fractured domains lie directly
between values representing sparsely and densely fractured
domains. To investigate the influence of spatial density on
particle transport, values of fracture length exponents and
orientations are kept constant for each set in the following
pairs: sets 1–2, 9–10, 13–14, and 16–17. Only values of
spatial density are changed.
[40] Sets 1 and 2 are used to analyze influences of density

values for networks dominated by very long fractures

Figure 11. Mandelbrot plots of largest ranked particle
displacements (circles) for set 12 along (a) Z1 with best fit
power law (TPL) and exponential (exp(�z)) and (b) Z2 with
best fit exponential (exp(�z)) and Gaussian (exp(�z2)) at an
elapsed time of 1 year. Note that the largest ranked particle
displacements show a power law trend along Z1 (a1 = 1.9),
while an exponential decay is observed along Z2 (a2 = 2.5).
Approximately every 1/1000 point is plotted. Values of Z
are given in units of meters.
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(group 1, 1.0 � a � 1.6). To test the hypothesis that
truncation of particle pathways may lead to Fickian
transport at very high spatial densities for group 1 networks,
the spatial density value assigned to set 2 is well beyond the
maximum density assigned to this distribution of fracture
length exponents. When spatial density is dramatically
increased from set 1 to set 2, the tail exponent estimates
along Z1 and Z2 increase from 0.4–0.8 and 0.9–1.1 to 1.0–
1.2 and 1.2–1.4, respectively (Figures 9 and 3). Higher tail
estimates of a for set 2 are caused by the greater number of
fractures that are connected to the hydraulic backbone
within the release area. The release of particles into more
fractures for set 2 leads to a greater sampling of fracture
flow paths so that a values (a1 = 1.0–1.2, a2 = 1.2–1.4)
more closely represent the distribution of fracture lengths
(a1 = 1.0, a2 = 1.0). If truncation of fracture lengths was a
controlling factor on transport rates, much higher tail
estimates (i.e., closer to the finite variance threshold) would

be expected because of the extremely high spatial density
assigned to the network. Values of a based on plume
spreading rates for set 2 match both tail estimates and
fracture length exponent values. Therefore, convergence to
an operator-stable density is much more likely in the highly
fractured domain. The influence of density between sets 1
and 2 is also reflected in the timing and location of particles
exiting model domain boundaries. For a total simulation
time of 10,000 years, more than twice the number of
particles leave the model domain boundary for set 2 because
of the increased number of high-velocity pathways available
for transport. The distribution of estimated mixing measure
weights is unaffected by spatial density (not shown).
[41] The influence of density for fracture length expo-

nent group 2 (1.9 � a � 2.2) on particle motion is
observed in sets 9 and 10 where both a1 and a2 equal
1.9. Set 9 contains intermediate density values for both
fracture groups, while set 10 contains a network where
fracture groups contain minimum (Z1) and maximum (Z2)
densities. Tails of marginal particle displacements for set 9
are power law with tail thickness estimates of 1.8–1.9. By
increasing spatial density for one of the fracture groups in

Figure 12. (a) Histogram and (b) Gaussian probability
plot along Z1 (longitudinal direction) of set 14 at a transport
time of 100 years. The solid line represents a theoretical
Gaussian trend along with upper and lower 95% confidence
bounds. The deviation between the theoretical Gaussian
trend and marginal particle displacements near the origin is
attributed to anomalous subdiffusion (slow particle move-
ment). Note also the heavier tail than the Gaussian trend at
the leading edge. Approximately every 1/1000 point is
plotted. Spatial values are given in units of meters.

Figure 13. (a) Histogram and (b) Gaussian probability
plot along Z2 of set 14 at a transport time of 1000 years. The
solid line represents a theoretical Gaussian trend along with
upper and lower 95% confidence bounds. Spreading
transverse to the ensemble plume is slighter heavier in both
tails than a Gaussian. Approximately every 1/1000 point is
plotted. Spatial values are given in units of meters.
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parameter set 10, power law trends along both Z1 and Z2 are
lost and the decay of the largest marginal particle
displacements follows an exponential trend (Table 2).
Regardless of tail behavior, the plume spreading rates for
sets 9 and 10 are super-Fickian.
[42] Two pairs of parameter sets, sets 13–14 and

sets 16–17, are used to investigate the influence of
spatial density on solute transport for networks dominated
by short fractures. These simulations show a general trend
where spatial density controls the distribution of marginal
particle displacements, the degree to which a plume spreads
transverse to the hydraulic gradient, and transport times to
model boundaries for group 3 networks. Compared to the
more densely fractured networks (sets 14 and 17,
Figure 2b), the networks with lower values of spatial
density (sets 13 and 16, Figure 2a) lead to greater lateral
spreading, exponential decay of marginal particle jumps
(Figure 14), and longer particle arrival times to model
boundaries.
[43] Increasing the network density from 0.27 m/m2 in set

13 to 0.48 m/m2 in set 14 results in Gaussian marginal

displacement distributions (Figures 12 and 13) and
decreases the time it takes the first particles to leave the
down-gradient model boundary from 10,000 years (set 13)
to 2154 years (set 14). A greater contrast in first particle
arrival times to model boundaries (approximately two
orders of magnitude decrease) is observed when the net-
work density is increased from 0.30 m/m2 for set 16 to
0.40 m/m2 for set 17 as transport times to model boundaries
decrease from 100,000 to 2154 years. Similar to set 14,
Gaussian marginal displacement distributions were also
observed for set 17 (not shown).
[44] While increases in fracture density were found to

increase the mean network fluid flux by approximately an
order of magnitude in both cases, the decrease in particle
arrival time is primarily caused by the lack of transverse
solute spreading. Lower spatial densities promote both a
higher degree of spreading transverse to the hydraulic
gradient and longer travel times to model boundaries, as
lower spatial densities increase the tendency of particles to
stay within individual fracture segments, allowing fracture
orientation to exert more influence. At higher spatial den-
sities, the intersection of individual fractures is enhanced,
resulting in the truncation of pathways for solute migration
and less transverse dispersion since more pathways aligned
in the direction of the hydraulic gradient are available. This
allows particles to move more rapidly toward the down-
gradient model boundary.

3.4. Influence of Fracture Transmissivity

[45] Two substantially different probability density
functions (pdfs) were selected to identify the role of the
distribution of transmissivity values on ensemble solute
transport rates. The primary transmissivity distribution is
based on hydraulic testing on boreholes at the Äspo Hard
Rock Laboratory, where transmissivity values recorded in
3 m intervals, match a Pareto distribution similar to (15)
with a power law exponent of aT = 0.4 along with
minimum and maximum values of 10�11 and 10�2 m2/s
[Gustafson and Fransson, 2005]. For the same data,
parameters for a lognormal distribution were estimated
by forcing the data to a lognormal model resulting in a
log10(T) mean of �9.0 and standard deviation of 1.1.
These values are very similar, especially in terms of
standard deviation, to another hydraulic testing data set at
Äspo Hard Rock Laboratory described by Stigsson et al.
[2001] where the log10(T) mean and standard deviation
were estimated at �8.2 and 1.05, respectively. The
truncated Pareto and lognormal (�9.0, 1.1) distributions
are used to randomly assign fracture transmissivity to
individual fractures. Fracture length and transmissivity are
assumed uncorrelated.
[46] Four pairs of parameter sets, sets 3–4, 7–8, 14–15

and 18–19, are used to study the role of fracture transmis-
sivity on particle transport rates. The first parameter set in
each group assigns fracture transmissivity according to a
truncated Pareto pdf (e.g., set 3), while the second param-
eter set assigns transmissivity using a lognormal pdf (e.g.,
set 4). With the exception of the transmissivity distribution,
parameter sets and fracture realizations for each group are
identical, even down to the random seed used to position the
random number sequence.
[47] Estimates of a for sets 3 and 4 are almost identical

for both tail and plume spreading methods. In the fracture

Figure 14. Mandelbrot plots of largest ranked particle
displacements (circles) for set 13 along (a) Z1 and (b) Z2
with best fit exponential (exp(�z)) trend at an elapsed time
of 105 years. Approximately every 1/1000 point is plotted.
Values of Z are given in units of meters.
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length discussion (section 3.2.1), we attributed the very
heavy tailing observed for set 3 to both fracture length
exponent values and a heavy-tailed distribution for fracture
transmissivity. Set 4 indicates that this may only be partially
correct. It is true that the very low fracture length exponent
values (a1 = 1.0, a2 = 1.0) result in very long fractures that
span the entire domain. Particles moving in these fractures
are not influenced by other fractures so that fracture
transmissivity governs the ensemble particle transport rates.
However, both distributions allow transmissivity values to
vary by orders of magnitude. Since particles traveling
through only a few, very long fractures with high
transmissivity values create the tail of the distribution, we
hypothesize that for group 1 networks, heavy tails of
marginal particle displacements can result from any trans-
missivity distribution that encompasses several orders of
magnitude.
[48] The effect of different transmissivity distributions

result in significant contrasts in tail estimates for sets 7
and 8 (a1 = 1.6, a2 = 2.2), though plume spreading rates
and early particle arrival times are unaffected. While tail
estimates for set 7 (Pareto-T) range between 1.2–1.6 and
1.9–exponential for Z1 and Z2, tail estimates for set 8
(lognormal-T) are significantly lower, 1.0–1.2 and 0.8–1.0.
Particles first leave the model domain boundary at
10 years for both sets. Plume growth rates for both sets
are very similar indicating that differences in tail estimates
have little effect on overall plume growth. The major
differences between the two parameter sets is demonstrated
by the loss of particles at model domain boundaries. Over
the course of 10,000 years, 2.5 times more particles leave
the model domain for set 8 than for set 7. This is caused
by the lognormal distribution having a higher median
transmissivity than the truncated Pareto distribution. This
effect was also observed for sets 18–19 where 20% more
particles leave the model domain boundary for set 19
(lognormal-T). Upper tails of marginal particle displace-
ments for sets 13–14 and 18–19 follow similar
exponential and Gaussian probability decay trends,
respectively.

3.5. Complex Networks

[49] Natural fracture networks typically consist of two
[e.g., LaPointe and Hudson, 1985; Barton, 1995; Ehlen,
2000] or more fracture groups [e.g., Billaux et al., 1989;
Gillespie et al., 1993; Odling, 1997] that cluster around
distinct mean orientations. Fracture networks for sets 1–
19 are restricted to two fracture groups with constant
fracture orientation. Four additional parameter sets (sets
20–23) are used to evaluate more complex fracture
networks. Fractures are allowed to deviate around mean
orientations for sets 20, 21 and 23. Parameter sets 22
and 23 contain three fracture groups. Instead of investi-
gating these influences over a wide range of fracture
network statistics, we focus on network statistics that
promote super-Fickian plume growth rates. This way
the applicability of (5) to describe more complex ensem-
ble particle displacement plumes as operator-stable
densities is evaluated. Besides, previous simulations
demonstrate that the convergence of ensemble particle
displacements to symmetric, multi-Gaussian densities is
limited to very dense networks with short fracture
lengths.

[50] Deviations in fracture orientation about each mean
are assigned according to a Fisher distribution [Fisher,
1953; Butler, 1992]:

f qð Þ ¼ K
k � ek�cos qð Þ

4p sinh kð Þ ; ð17Þ

where the deviation of fracture orientation from the mean,

�p
2
< q < p

2
, is related to a dispersion parameter, k. Low

values of k in (17) describe a large variability of fracture
orientation from the mean, while large values indicate a
tight clustering around the mean orientation (Figure 15).
Values of k for natural rock fractures range between 10 and
300 [Kemeny and Post, 2003; Munier, 2004]. A positive

constant, K, ensures that
R p=2
�p=2 f (q)d(q) = 1. Since we use

the rejection method [Ross, 1985] to generate Fisher random
variables, K need not be computed explicitly.
[51] Sets 20 and 21 allow for deviations about two mean

fracture orientations (based on fracture group orientations
for set 1, q1 = 30�, q2 = �60�) according to Fisher
dispersion parameters of k = 10 and k = 50, respectively.
With the exception of variable fracture group orientations,
sets 20 and 21 are identical to set 1 (Table 1), which is a
very sparse network (r2D = 0.015 m/m2) with very long
fracture lengths (a1 = 1.0, a2 = 1.0). Thus, variability in
fracture orientation should have the most pronounced effect
on these networks.
[52] As expected, plume growth directions for ensemble

plumes for sets 20 and 21 are variable about the mean
orientation, with more pronounced variability for the set
with the lowest k (Figure 16a). Since (17) symmetrically
describes variability in fracture orientation about a mean
orientation (Figure 15), we assume that eigenvector coor-
dinates and mean fracture group orientations are correlat-
ed. Tail estimates of a for both sets 20 and 21 range 0.5–
0.8 for Z1 and 1.0–1.2 for Z2, respectively. The range of a
based on plume growth rates is narrow with estimates of
1.0–1.1 for each eigenvector. Estimates based on tail and
plume growth methods are identical to results for set 1,
indicating that deviations in fracture group orientation do
not influence rates of particle transport. However, the
influence of variability in fracture orientation for set 20 is
reflected in both the observed and predicted distribution of
mixing measure weights, where a greater variability of
weights occurs along each eigenvector (Figure 7). The
preferential movement of particles in fractures that are
more favorably aligned in the direction of the mean
hydraulic gradient cause a shift in mixing measure weights
toward the mean down-gradient direction. This shift is more
pronounced in the observed mixing measure weights
computed from the ensemble particle displacement plumes
(Figure 7b).
[53] Operator-stable densities for set 20, generated

according to identical eigenvectors and eigenvalues, both
illustrate the influence of the mixing measure on operator-
stable densities and the utility of a multiscaling fractional
advection-dispersion equation in describing highly irregular
plumes (Figures 16b and 16c). The operator-stable density
generated according to the observed mixing measure
weights (Figure 16b) fails to capture the full degree of
plume spreading observed in the ensemble displacement
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plume (Figure 16a) and indicates that weights of the mixing
measure are overestimated in the down-gradient direction.
The operator-stable density based on the predicted mixing
measure weights (Figure 16c) better captures the shape of
the ensemble particle displacement plume, suggesting that
this simple a priori method for computing mixing measure
weights on the basis of mean ensemble fluid flux performs
remarkably well.
[54] Networks for sets 22 and 23 contain three fracture

groups oriented at ±45� and 90� with fracture length
exponents of 1.6 and equal values of spatial density

(r2D = 0.025) for a total network density of 0.075 m/m2.
Fracture orientations for set 22 are constant, while fracture
group orientations for set 23 are allowed to deviate accord-
ing to a Fisher dispersion constant k of 50. The orientation
of the third fracture group (90�) relative to the hydraulic
gradient is intended to investigate the role of a third fracture

group on connectivity between the two fracture groups that
are more preferably aligned with the hydraulic gradient.
[55] Ensemble particle displacement plumes (e.g.,

Figure 17a) confirm that the fracture group oriented at 90�
does enhance connectivity (and solute mixing) between the
other two fracture groups oriented at ±45� that are respon-
sible for the majority of particle transport. However, a lower
percentage of solute particles are transported normal to
the gradient because of the combination of ‘‘pipe flow’’
methodology which propagates a regional gradient
through all interconnected fractures regardless of orienta-
tion, and constant head conditions at all lateral bound-
aries. Since particle movement is two-dimensional, the
two directions with the heaviest tails (lowest a values) are
used to describe plume growth. This occurs along the
fracture groups oriented at ±45�. Estimates of a based on
both tail (0.9–1.2) and plume growth rate (1.1–1.3)
methods are similar for both sets. However, the primary

Figure 15. Probability histogram of 105 randomly generated Fisher deviates according to dispersion
parameters of (a) k = 10 and (b) k = 50. Note the effect of k on deviations about the mean, 0�.
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difference between ensemble particle displacement plumes
and an operator-stable density is the motion of particles via
vertical transport in the fracture group oriented at 90�
(Figure 17a). Both predicted and observed mixing measure
weights did not account for particle motion in the vertical

direction and the use of either of these mixing measure
distributions results in an operator-stable density with
symmetric growth along the eigenvectors (Figure 17b).
By using mixing measure weights to describe a small
amount of solute flux in the vertical direction, an operator-
stable density can account for transport in the vertical
direction (Figure 17c). This example demonstrates that
predicted mixing measure weights must be adjusted to
allow for a minimal amount of solute flux for fractures that
are oriented orthogonal to a mean hydraulic gradient.

4. Conclusion

[56] Data from fluid flow and particle-tracking simula-
tions in networks with fractal length distributions dem-
onstrate that ensemble particle displacement vectors have
many characteristics of operator-stable densities including
(1) power law tails of the largest particle displacements,
(2) super-Fickian plume growth rates, (3) different growth
rates in each coordinate, where coordinates correspond to
the two main fracture orientations, and (4) nonelliptical
plumes consistent with distinct (and discrete) directional
measures describing plume shape. Particle motion in
densely fractured domains with short fracture lengths
result in roughly multi-Gaussian densities (an operator-
stable subset) where elliptical plumes have, depending on
values of fracture density, either exponential or Gaussian
tailing. The motion process that describes the leading
plume edges for particle displacement densities can be
modeled using either integer-order or fractional-order
ADEs, which describe ensemble transport according to
a multi-Gaussian (a special case of operator stable) and
operator-stable densities, respectively. However, the pres-
ence of particle retention in low-velocity segments of the
hydraulic backbone was observed for all network types,
and indicates that memory functions that govern the
distribution of waiting times between particle jumps must
be incorporated into the motion processes described by
fractional-order and integer-order ADEs. This could be
achieved by using either a continuous time random walk
(CTRW) model [Berkowitz and Scher, 1997; Scher et al.,
2002; Bijeljic and Blunt, 2006] or a mobile-immobile model
[Schumer et al., 2003b; Baeumer et al., 2005].
[57] Selection of a representative ADE to model the

spatial transport characteristics of a fractured medium
depends on transport regime. Quantifiable properties of
the fractured medium, such as distributional properties of
fracture length and values of spatial density, can be used to

Figure 16. (a) Ensemble displacement plume for set 20 at
a transport time of 10 years along with best fit operator-
stable densities according to (b) observed and (c) predicted
mixing measure weights. Note the influence of mixing
measure on the geometry of the operator-stable densities
shown in Figures 16b and 16c. The operator-stable density
with predicted mixing measure weights better captures the
spread observed in Figure 16a caused by the deviation in
fracture orientation about the mean fracture groups, Z1 and
Z2. All spatial values are given in units of meters. The
pronounced ‘‘fingering’’ in the �8 contour is caused by
multiple mixing measure directions. Contour intervals in
Figures 16b and 16c are logarithmic.
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distinguish between multi-Gaussian and operator-stable
transport regimes (Figure 18). The transport regime is most
heavily influenced by the distribution of fracture trace
lengths, while spatial density plays a secondary role when
fracture lengths are near, or just above, the finite variance

threshold (a = 2). On the basis of comparisons between a
heavy-tailed and thin-tailed transmissivity distribution, the
distribution of fracture transmissivity does not significantly
influence transport regime as long as fracture transmissivity
is allowed to vary over several orders of magnitude.
[58] Operator-stable densities exclusively occur when

power law fracture length exponent a is in the range
1.0 � a � 1.6 even when spatial density values exceed
natural limits. Although not specifically tested, this range
most likely extends to 1.0 � a � 1.8. For these network
types, tail estimates of the operator-stable tail index a are
lower than fracture length exponents and reflect the
additional influence of a wide distribution of fracture
transmissivity. Estimates of a based on plume spreading
rates are higher than tail estimates and indicate ballistic
transport where a is at, or slightly above, 1.0. Multi-
Gaussian transport only occurs for networks when frac-
ture lengths are in the range 2.5 � a � 3.0 where the

Figure 17. (a) Ensemble particle displacement plume for
set 22 at a transport time of 100 years and (b and c)
corresponding operator-stable densities based on ensemble
plume characterization. An operator-stable density with
mixing measure weights along the eigenvectors only
(Figure 17b) is a good match for most of the ensemble
plume but cannot adequately capture particle transport in
the vertical fracture set. By allowing a small amount of
solute flux in the vertical direction through the use of
mixing measure weights, an operator-stable density
(Figure 17c) can account for transport in the vertical
fracture set. All spatial values are in meters. Contour
intervals in Figures 17b and 17c are logarithmic.

Figure 18. Correlation between fracture length exponent,
fracture density, and resultant longitudinal plume growth
rates (values of a inside diamonds) for individual fracture
groups within sets 1–19. A clear threshold between
operator-stable and multi-Gaussian transport regimes is
not present. However, operator-stable transport regimes may
be defined in fractured rock masses where individual
fracture groups have fracture length exponent and density
values less than 1.9 and 0.14 m/m2, respectively. Note that
particle retention results in super-Fickian plume growth
rates (a < 2) for all network types.
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combination of short fracture lengths and high fracture
densities promote the formation of elliptical plumes with
orthogonal growth directions. For shorter fracture
lengths, values of spatial density exert a significant
amount of control over particle arrival times at model
boundaries and whether marginal particle displacements
follow exponential or Gaussian trends. When the density
is increased, with all other characteristics held constant,
the likelihood of long segments in the transverse
direction decreases; hence, particles move preferentially
in the downstream direction, and particle arrivals at
model boundaries can be up to two orders of magnitude
faster.
[59] The threshold between multi-Gaussian and opera-

tor-stable transport regimes closely follows the boundary
between infinite variance and finite variance distributions
of fracture length. Moderately fractured networks with
fracture lengths in the range 1.9 � a � 2.2 can lead to
marginal distributions of the largest particle displacements
that can be either power law, Gaussian, or a combination
of the two. For fracture groups where values of fracture
length exponents equal 1.9, lower spatial densities (r2D <
0.14 m/m2) preserve the infinite variance nature of solute
pathways resulting in power law tails, while higher spatial
densities (r2D > 0.14 m/m2) result in the truncation
of solute pathways and exponential probability decay at
leading plume edges.
[60] Our findings demonstrate that the distribution of

fracture length exerts a strong influence over solute
movement in rock fracture networks, where unequal
fracture length exponents for individual fracture groups
can lead to plumes with dramatically different plume
spreading rates along eigenvectors of plume growth. This
is a departure from previous studies which only assign a
single length exponent value to the entire network
[Renshaw, 1999; Zimmermann et al., 2003]. Renshaw
[1999] proposed that fracture length exponent values for
natural fracture networks are in the range 1.4 � a � 2.2.
This suggests that a super-Fickian model of transport
such as the multiscaling fractional advection-dispersion
equation may be applicable to more field sites than the
conventional ADE, which has shown poor performance for
sparsely fractured domains dominated by long fractures.
The use of an analytical equation for solute transport
predictions provides advantages over numerical simulations
as less intensive field characterization is needed to produce
screening-level predictions. In general, for operator-stable
plumes eigenvectors correspond to principal fracture set
orientations, power law fracture length exponent values
provide a good estimate for values of a, and the distribution
of mixing measure weights can be defined from the a priori
method introduced in 3.1.2.2. This result implies that first-
cut transport approximations for the leading plume edge in
fractured media can be constructed from fracture network
statistics. Significant differences between individual realiza-
tions call into question the assumption of an ergodic
process. We investigate the goodness of fit between
individual realizations and the ensemble in another paper
(Reeves et al., submitted manuscript, 2007).
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