WATER RESOURCES RESEARCH, VOL. 44, W08405, doi:10.1029/2007WR006179, 2008

Click
Here
for
Full
Article

Influence of fracture statistics on advective transport

and implications for geologic repositories
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[1] Large-scale (2.5 km by 2.5 km) simulations of fluid flow and solute transport through
low-permeability fractured rock are assessed to determine suitability for hosting a nuclear
waste repository. Multiple realizations of fracture networks with statistically realistic
features are generated according to established methods. A novel continuum method
provides a basis for solving flow and simulating particle trajectories through the fracture
networks. Classical and fractional advection-dispersion models form the analytic
foundation for statistical summaries of the transport of 25,000 conservative particles
through the backbone of each network realization. Particle retention in low-velocity
fractures, fast transport, and anomalous dispersion are all observed in the simulated
plumes. Predictability is addressed by measuring the deviation of individual plumes from
their ensemble average, taken over all realizations for each set of fracture network
statistics. Fifteen sets of fracture network statistics are examined, ranging from dense
networks of relatively short fractures to sparse networks of rather long fractures. Finally,
the plume statistics are carefully examined in order to develop recommendations for
suitable geologic repositories on the basis of fracture network statistics.
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1. Introduction

[2] Proposals for the long-term disposal of high-level
radioactive wastes emphasize the role of a geologic barrier
in isolating these wastes from the biosphere. Upon release
from a repository, the likelihood that a dissolved solute will
travel to a distant receptor depends on the flow and transport
properties of a fractured medium. The high degree of spatial
variability in rock fracture properties, such as fracture
length, density, permeability and network connectivity,
results in highly heterogenous subsurface flow systems.
Complexities associated with fluid flow and solute transport
in fractured media have led to a reliance on highly detailed
numerical models that explicitly represent individual frac-
tures [e.g., National Research Council, 1996; Neuman,
2005; and references therein] for transport predictions.
Site-specific numerical models depend on extensive field
characterization efforts to collect physical and hydraulic
data on deterministic structures.

[3] Analytical approximations that model transport as an
advective-dispersive process may have advantages over
numerical models that explicitly represent fracture net-
works, as quick and inexpensive screening-level solute
transport approximations, constructed from limited field
data. Analytical solutions also have the ability to describe
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solute transport at scales that exceed computational con-
straints of numerical models, with the possible exception of
techniques that upscale transport according to “‘educated
particles” whose motion is governed by transport statistics
obtained from multiple, small-scale discrete fracture net-
work simulations [e.g., Schwartz and Smith, 1988; Painter
and Cvetkovic, 2005]. The accuracy of network-scale pre-
dictions based on advection-dispersion equations (ADEs)
depends on fulfillment of the ergodic hypothesis: Have
particles sampled enough of the heterogeneity in the system
so that their statistical properties are essentially predictable?
To address this important point, we consider classical and
fractional ADE models as a framework for assessing ergo-
dicity. We compare ensemble average plume shapes, com-
bining all fracture network realizations for a given
parameter set, to the point source solutions of these analytic
ADE models. Then we use nonparametric statistical meth-
ods to measure the deviation of each individual plume,
corresponding to one fracture network realization, from its
corresponding ensemble average, as a way of assessing
predictability.

[4] Advection-dispersion equations are closely connected
with statistical limit theorems for normalized sums of inde-
pendent and uncorrelated particle motions [Bhattacharya
and Gupta, 1990; Meerschaert and Scheffler, 2001]. In this
simplified setting, a cloud of particles will typically spread
according to a multi-Gaussian elliptical contour, whose
principal axes grow at the classical scaling rate of #'/> with
time. For particles that travel through a fracture network, the
motions are restricted to a small set of directions, which can
violate the assumption of no correlation. However, in a
dense fracture network consisting of relatively short frac-
tures, the correlations may be insignificant, so that a multi-
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Table 1. Properties of the Hydraulic Backbone

Set a a pap’ a 7 72 tion' P(4) P(B|4)" P(4B)

1 1.0 1.0 0.015 1.0 0.48 0.9-1.0 1.00 23 x 1073 0.74 1.7 x 1073
2 1.0 1.0 0.035 1.0 0.42 0.9-1.0 0.46 12 x 1072 0.84 1.1 x 1072
3 13 1.0 0.013 1.1 0.35 1.0 2.15 1.1 x 1073 0.50 5.6 x 107
4 1.0 1.6 0.17 1.2 0.27 0.9-1.1 1.00 24 %1073 0.41 9.8 x 107*
5 13 1.9 0.16 1.4 0.23 0.9-1.1 10.0 12 x 1072 0.30 3.7 % 1073
6 1.6 22 0.22 1.5 0.19 0.9-1.1 4.64 2.7 x 1072 0.20 54 %1073
7 1.9 1.9 0.20 1.5 0.23 0.9-1.0 100.0 33 x 1072 0.23 7.4 % 1073
8 1.9 1.9 0.20 15 0.20 1.0 100.0 23 x 1072 0.18 42 x 1073
9 1.9 22 0.35 15 0.60/0.18 1.0 46.4 1.9 x 107! 0.79 1.5 x 107!
10 1.9 25 0.33 1.6 0.28/0.14 0.9-1.2 100.0 8.9 x 1072 0.33 3.0 x 1072
11 2.5 2.8 0.27 1.7 0.14 1.0-1.2 2154 47 x 1072 1.7 x 1072 8.1 x 107
12 2.5 2.8 0.48 15 0.95/0.16 exp(-2) 464.2 34 x 107! 091 3.1 x 107!
13 2.8 3.0 0.30 1.7 0.12 0.9-1.0 10,000 3.7 x 1072 6.7 x 107* 25 % 107°
14 2.8 3.0 0.40 15 0.95/0.17 exp(-z) 464.2 3.7 x 107! 0.92 3.4 x 107!
15 3.0 2.8 0.50 15 0.50/0.33 1.0-1.2 464.2 2.5 % 107! 0.67 1.7 x 107!

“Power law fracture length exponent.

®Average spatial fracture density value in model domain (m/m>).
‘Spreading-rate exponent along primary plume growth direction.
dPower law decay of particles remaining in source area.

“Power law decay of 1/v.

Time of first solute particle “slug” reaching a transport distance of 1 km (years).

EProbability of a solute particle entering hydraulic backbone.

f‘Probability of a solute particle in hydraulic backbone traveling > 1 km in 10* years.
iConditional probability of a solute particle both entering the hydraulic backbone and traveling >1 km in 10* years.

Gaussian plume can emerge. An alternative fractional
ADE for vector jumps employs a fractional derivative in
place of the usual second derivative, or Laplacian, in space
[Meerschaert et al., 2001; Schumer et al., 2003a]. This
model pertains when the particle motions are heavy tailed,
with a jump length probability that falls off like a power
law. Since fracture statistics (length and transmissivity) are
power law, it is reasonable to explore these alternative
models. The point source solutions to the fractional ADE
in multiple dimensions are called operator-stable densities
[Jurek and Mason, 1993; Meerschaert and Scheffler, 2001,
Schumer et al., 2003a]. They provide an alternative analytic
model for particle plumes representing an accumulation of
temporally uncorrelated heavy tailed jumps. The parameters
defining an operator-stable density include the primary
growth coordinates, which need not be perpendicular, and
a power law growth index for each coordinate. For the
multi-Gaussian, actually a special case of the operator
stables, the primary growth directions are the principal axes
of the ellipse. However, the shape of an operator-stable
plume can also be strongly nonelliptical.

[s] Reeves et al. [2008a, 2008b] reported a detailed
simulation study that forms the basis for this work. Fifteen
parameters sets, representing a range of realistic fracture
statistics, were studied. For each set, 500 realizations of a
fracture network were simulated. For each realization, a
novel fracture continuum approach was used to solve for the
flow field over the 2.5 km by 2.5 km domain, and a standard
particle-tracking code was employed to trace 25,000 par-
ticles in advective motion starting in a 100 m by 100 m
source release area. Ensemble plumes, taken over all real-
izations of the fracture network for a given parameter set,
were found to closely resemble operator-stable or multi-
Gaussian shapes. Analysis of ensemble plumes suggests
that measurable statistical properties of the fracture net-
works, particularly the distribution of fracture length and

values of fracture density, can be used for ADE model
selection (classical versus fractional) and ADE parameter
estimation. The multiscaling fractional-order ADE requires
only a few more parameters than the classical ADE,
specifically the principal scaling directions and rates of
plume growth [Meerschaert et al., 2001; Schumer et al.,
2003a; Reeves et al., 2008b].

[6] Ensemble plumes produced from sparsely to moder-
ately fractured networks with relatively long fractures (sets
1-9, Table 1) reflect many characteristics of operator-stable
densities including power law tails, super-Fickian plume
growth rates (plume spreads faster than ¢'/?), different
growth rates in each coordinate corresponding to fracture
orientations, and nonelliptical shape with distinct multidi-
mensional skewness (Figure 1). Ensemble solute transport
through moderately to densely fractured networks with rela-
tively short fractures (sets 10— 15, Table 1) resulted in elliptical
plumes resembling multi-Gaussian densities (Figure 9).

[7] In addition to an analysis of deviations between en-
semble plumes and individual realizations to assess the
degree that plumes are ergodic (predictable), a probabilistic
framework based on advective particle transport is adopted to
recommend fracture statistics of low-permeability rock
masses that are most suitable for the disposal of high-level
radioactive waste. For this characterization, properties of the
hydraulic backbone are evaluated, including (1) the proba-
bility that a solute particle will enter the hydraulic backbone,
(2) the probability that solute particles undergo large net
transport distances >1 km, (3) the propensity for fast particle
transport, and (4) the statistical nature of particle retention.
The organization of this paper reflects these objectives by
describing, for each hypothetical fracture network parameter
set, transport statistics of particle plumes traveling through
the hydraulic backbone, and quantification of realization-to-
realization plume variability. Finally, we summarize those
results, to identify the sets of realistic fracture network
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(a) Ensemble particle displacement plume for set 8 statistics (Table 1) exhibits several

characteristics of (b) an operator-stable density including power law leading plume edges (not shown)
and super-Fickian plume growth rates along primary plume growth directions (denoted Z; and Z,).
Though growth rates in Figure 1b are equal (o = 1.9), asymmetry in the operator-stable density reflects a
higher probability for particle transport in the fracture group with greater fracture density (oriented at
—45°). Concentration levels in Figure 1b are powers of 10. All spatial values are in units of meters.

statistics most suitable for a geologic repository in low-
permeability fractured rock.

2. Numerical Simulations of Flow and Transport

[8] We present a brief summary of the numerical simu-
lations here; see Reeves et al. [2008a] for details. The large-
scale (2.5 km by 2.5 km) fluid flow and solute transport
simulations provide synthetic data used for these analyses. A
total of 15 parameter sets, defined as a group of values used to
assign fracture length, density, and orientation, represent a
wide variety of fracture network types (Table 1). Five
hundred equiprobable fluid flow and solute transport realiza-
tions were generated for each parameter set. Ensemble
plumes were constructed from all individual realizations of
a parameter set (e.g., Figure 1a).

[9] A Pareto distribution, P(Y > y) = wy “, was used to
control fracture trace lengths (above a certain cutoff) by
allowing the value of the power law exponent, a, to vary
between 1 and 3 [Davy, 1993; Renshaw, 1999; Bonnet et al.,
2001]. In general, sample mean fracture length decreases as
a increases. The distributional properties of fracture trans-
missivity and placement (or spacing) were the same for all
parameter sets. Transmissivity values assigned to individual
fractures were heavy tailed on the basis of an upper
truncated Pareto distribution where values were allowed to
range from 10" to 1072 m%/s according to a power law
exponent of 0.4 [ Gustafson and Fransson, 2005; Kozubowski
et al., 2008]. Fracture length and transmissivity were
assumed uncorrelated in the simulations. Fracture centers
were uniformly scattered across the model domain, resulting
in a spatial Poisson point process with exponential spacing
between fractures [Ross, 1985; Rives et al., 1992; Brooks et al.,
1996; Wines and Lilly, 2002]. Fractures were placed into the
model domain until a specified spatial density (p,p [m/m?]),

defined by the sum of fracture lengths per unit area, was
reached. For the simulated networks, values of spatial
density required to reach the percolation threshold increase
with increasing values of a. This is related to the decrease in
typical fracture length as a increase from 1 to 3. A positive
correlation between fracture density and the power law
index a was observed in natural fracture networks by
Renshaw [1997, 1999], which may be related to the role
of fluid pressure during fracture propagation. If fluid pres-
sure is a driving force behind fracture propagation, the
release of excess fluid pressure at the percolation threshold
may cause fracturing to cease [Renshaw, 1996].

[10] Using a novel continuum algorithm [Reeves et al.,
2008a], the fracture networks were translated onto a finite
difference grid of equal cell size (1 m by 1 m by 1 m) and
MODFLOW [McDonald and Harbaugh, 1988] was used to
solve for fluid flow, in both the fracture network and the less
permeable matrix. To restrict the transport of solutes to
fractures, a matrix transmissivity of 107'> m?/s was
assigned to cells not occupied by fractures. This resulted
in, essentially, solution of a discrete network, which is a set of
linear equations of pressures at intersections. MODFLOW
solves a similar set along entire fractures and also allows for
detailed modeling of fracture/matrix interaction by increas-
ing matrix transmissivity. All model domain boundaries are
constant head, inducing mean fluid flow from left to right
according to a linear hydraulic gradient of 0.01. The
boundary configuration represents an unbounded fractured
rock mass where both fluid and solutes can exit any down-
gradient boundary. Random walk particle method for sim-
ulating transport in heterogeneous permeable media
(RWHet) (E. M. LaBolle, RWHet: Random walk particle
model for simulating transport in heterogeneous permeable
media, version 2.0 user’s manual and program documenta-
tion, 2000) was used to simulate trajectories of conservative
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Figure 2.
exponent values of 1.5 with (b) subsection of domain subject to particle release corresponding to shaded
area in Figure 2a, (c) finite difference grid representation of Figure 2b, and (d) cells representing
hydraulic backbone within source release area. Other fractures within source release area not included in
Figure 2d are either isolated from the hydraulic backbone or do not meet the Darcy cell velocity criterion
(e.g., dead-end segments). Spatial dimensions of the network are in meters.

solute particles through the fracture networks as an advec-
tive process. Diffusion into the matrix was excluded from
these simulations, since our main goal was to study the
leading plume edge. Particles travel through individual
fractures as individual piston flow slugs with a small
amount of numerical (within-fracture) dispersion that varies
according to fracture orientation. Values of within-fracture
dispersivity are less than 1/1000 of the scale of transport
indicating that numerical dispersion does not influence
overall solute transport behavior [Reeves et al., 2008a].
[11] To mimic a geologic repository where the release of
contaminants over a large spatial area is possible, 25,000
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(a) Fracture network realization consisting of two fracture sets oriented at £45° with length

particles were placed into a 100 m by 100 m box that
extends from 100 m to 200 m in the x direction and 1200 m
to 1300 m in the y direction (Figure 2). The hydraulic
backbone of each network realization was not defined prior
to mapping onto the finite difference grid. Instead, we
allowed MODFLOW to solve the Darcy flow equation in all
fracture segments. Only cells corresponding to interconnected
fracture segments of the backbone contain values of Darcy
cell velocity significantly greater than the background matrix
(Figure 2). Solute particles were released only into these
“backbone” cells within the release area. The Darcy cell
velocity criteria was not the same for all parameter sets.
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Figure 3. Influence of spatial density (p,p) on the

probability of a solute particle entering the hydraulic
backbone, P(4). Note that spatial density is defined as the
sum of fracture lengths normalized by the area of the
domain. Values of P(4) increase with density in a nonlinear
trend. A best fit exponential trend line is presented for
comparison.

Preliminary simulations (sets 5, 8—10, and 13—14) used a
Darcy cell velocity cutoff of 2 orders of magnitude greater
than the average matrix value to define a hydraulic backbone.
For all other subsequent simulations, the Darcy cell velocity
cutoff was increased to 3 orders of magnitude to minimize
particle retention in less transmissive fractures. Particle dis-
placements were recorded for 16 equally spaced log cycle
time increments that spanned 5 orders of magnitude.

3. Properties of the Hydraulic Backbone

[12] The likelihood of a solute particle leaving a fractured
rock mass and entering the biosphere depends on the
properties of the hydraulic backbone, a subset of
interconnected fractures that is responsible for preferential
fluid flow and solute transport within a rock mass. Conser-
vative solute particles are released into all fractures of the
hydraulic backbone within the release area. The probability
that a contaminant particle will reach the biosphere depends
on two events: (1) a particle in the release area must
encounter a fracture on the backbone and (2) once in the
backbone, the particle must move a significant distance
(1 km here). A sparse network with longer fractures may
have a low probability that backbone fractures are present in
the source area, but once a particle enters the backbone, the
probability is high that the particle will travel large dis-
tances. The probability that a particle enters the biosphere is
the product of these two probabilities, which we estimate
from the particle-tracking simulations.

3.1. Probability of Entering the Hydraulic Backbone

[13] The probability of a contaminant entering the hy-
draulic backbone is quantified by simply counting the
number of backbone cells in the particle release area.
Particles are subsequently released uniformly into these
cells (the source is not flux weighted). A more complex
initial condition might allow the particles to diffuse within
the rock matrix toward the active fractures [e.g., Berkowitz
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and Scher, 1996]. Not all realizations contain cells on the
hydraulic backbone in the particle release area; hence,
transport does not occur in these realizations. On the basis
of a total of 500 network realizations per parameter set, the
number of realizations that contribute to transport (contain
at least one backbone cell in the release area) range between
189 to 500. To compute the probability of the event “A”,
defined as a solute particle entering the hydraulic backbone,
the total number of backbone cells for each parameter set is
computed and normalized by the total number of cells in the
release area. Note that the computation of P(4) includes all
500 realizations of a parameter set regardless of contribution
to transport.

[14] Values of P(A4) are low (<25%) for all simulations
indicating that only a small subset of cells in the particle
release area (even for very dense networks) are on the
hydraulic backbone (Table 1). The probability of a particle
entering a backbone cell is primarily controlled by values of
spatial fracture density (Figure 3). Note that spatial density
values, defined as the sum of fracture lengths normalized by
the area of the domain, are correlated with the distribution
of fracture length in our simulations. Networks with longer
fractures reach the percolation threshold at lower densities,
and conversely, networks with shorter fractures require
much higher densities to percolate. As a general trend, the
lowest probabilities (on the order of 10~°) correspond to
sparse networks containing very long fracture lengths
(sets 1, and 3—4) and the highest probabilities (on the order
of 107" correspond to very dense networks with short
fracture lengths (sets 9, 12, and 14—15) (Figure 3). Note
that the density used in set 2 (second point from left in
Figure 3) is artificially high (well above percolation) for the
fracture length distribution. This network had a probability
roughly 10 times that of similar networks. If P(4) was the
only criterion for repository selection, the sparsest networks
with fewer, longer fractures would be preferred.

3.2. Transport of Conservative Particles

[15] After the backbone cells are counted in the source
area, we uniformly place 25,000 particles in those cells, and
track their net displacement using a standard particle-tracking
code (RWHet). We then calculate the conditional probability
of event “B” defined as a particle displacement >1 km,
given that the particle has entered the backbone in the
source area. A net vector displacement of 1 km is used to
define particles that undergo large net transport distances,
since the simulated fracture sets possess multiple configu-
rations of orientation. This measured probability, P(B|4), is
the likelihood that a solute particle will be transported over a
large distance within the same time period (10,000 years)
that was used previously for performance assessments of the
Yucca Mountain proposed repository [Ewing et al., 1999].
Rather than emphasizing fast or slow particle transport
which may only affect a small subset of ensemble solute
particles, the use of this statistic evaluates the potential that
any particle of an ensemble plume undergoes large dis-
placement. Note that only conservative transport is consid-
ered; inclusion of reactive transport processes and
radioactive decay would reduce P(B|A).

[16] A clear trend between values of P(B|4) and fracture
network statistics is not apparent (Table 1 and Figure 4).
Generally, P(B|4) is high and on the order of 107",
indicating that, within percolating networks, it is likely that
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Figure 4. The influence of mean fracture length exponent
(a) and spatial density (p,p) on the probability of a solute
particle traveling at least 1 km in 10,000 years (P(B|A)). The
size of the dot is proportional to the value of P(B|A4).

a solute particle will travel a long transport distance if
introduced into a segment of the hydraulic backbone. The
highest values (P(B|4) > 0.70) occur for sets 1 and 2 (sparse
domains with very long fractures) and sets 12 and 14 (very
dense networks with very short fractures) (Figure 4). A high
value (0.79) also occurs for set 9 (very dense domain with
intermediate fracture lengths). Though set 15 (P(Bl|4) =
0.67) describes networks similar to sets 12 and 14, the lower
value of P(B|A) may be explained by fracture set orienta-
tion. Unlike the ensemble plumes for sets 12 and 14,
fracture set orientations for set 15 (6, = 30°, 6, = 10°)
produce an ensemble plume (not presented) that is not
aligned in the direction of the hydraulic gradient causing
slower particle migration rates. The lowest P(B|4) values
occur for sets 11 and 13 which have probabilities on the
order 10~* and 102, respectively (Figure 4). These param-
eter sets describe networks that are dominated by very short
fractures at densities that are just above the percolation
threshold. As reflected in the #y, statistic (Table 1), the
combination of spatial density values near the percolation
threshold and very short fracture lengths enhances plume
spreading transverse to the hydraulic gradient, and conse-
quently, reduce particle migration rates.

[17] Once a solute particle is introduced into the hydraulic
backbone, the probability that it leaves a fractured rock
mass and enters the biosphere is controlled by transport
properties of the network. Reeves et al. [2008b] computed
estimates of the scaling exponent («) for all networks (sets
1-15) according to [Benson et al., 2000; Schumer et al.,
2003a]:

oot/ (1)

where o is an empirical measure of plume size and «
governs the rate of spreading (Table 1). For dense networks
of shorter fractures (¢ > 2), ensemble particle plumes
follow elliptical contours whose principal axes are ortho-
gonal, and weakly aligned with fracture set orientations. For
these plumes (sets 10—15), values of « in Table 1 represent
the rate of growth along the longitudinal plume axis, and
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reflect our interest in early breakthroughs. Fickian growth
(ao = 2) was typically observed along the transverse axis in
these networks of shorter, denser fractures [Reeves et al.,
2008b].

[18] Sparse fracture networks with long fractures (a < 2)
produce ensemble plumes that exhibit super-Fickian growth
rates (a < 2) (Figure 1a). These plumes have unique rates of
spreading (o, ;) along each primary growth direction that
contribute to the leading plume edge. Since the spreading of
a solute plume along a principal growth direction is pro-
portional to 7% lower values of «; correspond to faster
plume growth rates. We average the two values of «; into a
single metric, «, that is used in a latter section to evaluate
the propensity for rapid early time breakthroughs (Table 1).
Note that the averaging of «; and a, only occurs for
nonelliptical plumes resembling operator-stable densities
(sets 1-9).

[19] Super-Fickian transport rates were observed for all
ensemble plumes resembling multi-Gaussian densities
(Table 1). We attribute this to particle retention in low-
velocity fractures near the source area [Berkowitz and Scher,
1997]. It is interesting that the multi-Gaussian plume shapes
correspond to fracture length exponents a > 2.0, since this
is also the theoretical cutoff for multi-Gaussian central limit
theorem behavior [Meerschaert and Scheffler, 2001].
3.2.1. Fast Particle Transport

[20] Values of the spreading rates « are similar for several
of sets 1 -5, and do not necessarily reflect transport times of
the fastest particles over a specified distance (Figure 5).
Travel time of the fastest particle out of an ensemble to
reach a net radial distance of 1 km, ¢, (years) is computed
as an additional metric of fast particle transport (Table 1).
Though these times are based on the fastest particle, the
combination of releasing 25,000 particles into a much
smaller subset of backbone cells within the release area
(as demonstrated by values of P(4)) and minimal within-
fracture dispersion [Reeves et al., 2008a]) causes particles to
migrate as near piston flow “slugs” through individual
fractures. Essentially, values of 7, describe the fastest slug
of particles out of a total of 500 individual realizations. Note
that ¢4, values are constrained to logarithmic time steps.
Though values of #,;,, provide sufficient information on fast
particle transport for comparisons of our networks, a finer
level of discretization in time would yield more precise
values.

[21] Transport times based on the #,,, metric demonstrate
that both the distribution of fracture lengths (as denoted by
a;) and density control fast solute particle motion. Times for
particle slugs to reach a displacement of 1 km range from
only 0.46 years for set 2 (a; = 1.0, a, = 1.0) to 10,000 years
for set 13 (a; = 2.8, a, = 3.0). When fracture lengths are
equal (sets 1-2, 11-12, and 13—14), higher-density values
decrease transport times. For sparse networks containing
relatively long fractures (sets 1 and 2), the contrast in
transport times is related to the increase in likelihood that
long fractures with high velocities will intersect the particle
release area. For networks comprising shorter fractures (sets
11 and 12 and sets 13 and 14), the influence of spatial
density on transport time is related to flow path tortuosity.
Fewer flow paths are available to solute particles at lower
densities, causing a higher degree of solute spreading
transverse to the hydraulic gradient. As spreading transverse
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Figure 5. A weak positive relation exists between the time
that it takes for the fastest particle slug to reach a radial
distance of 1 km (#14,) and the mean value of o, a measure
of the rate of plume growth.

to the gradient increases, fy, transport times increase.
Lower values of spatial density in set 11 result in a t,
of 2154 years, while a 0.21 m/m? (44%) increase in density
decreases t,, to 464 years for set 12. A 0.10 m/m? increase
in density (25%) from the value used in set 13 decreases
transport times in set 14 by nearly 2 orders of magnitude
(10,000 to 464 years).

3.2.2. Particle Retention

[22] A large portion of solute mass remains in, or near,
the source release area for the majority of individual plume
realizations and all ensemble realizations, regardless of
network type. Velocities of independent particle trajectories
demonstrate that slow particles are not erroneously placed
into the simulated rock matrix, but are actively migrating
through low-velocity segments of the hydraulic backbone.
The fact that the release area is in a fixed locale means that a
large number of particles are placed into fractures with very
low velocities that would not receive as much flux off of the
backbone. Though solute particles are transported exclu-
sively by advection in the numerical simulations, the
movement of particles inside low-velocity fractures is very
slow compared to the “mobile” portion of the plume.

[23] To characterize particle retention, we first consider
the number of particles remaining in the source area, and
then we analyze the velocity of particles that have moved
outside the source area. The total number of particles in the
source area exhibits power law decay (Figure 6a). Values
of v, the power law index, are in the range of 0.10 < ~; <
0.95, although decay rates for the majority of network types
fall within the range, 0.10 < ~; < 0.50 (Table 1). Values
of ~y; for the upper endpoint (0.95) correspond to very dense
networks dominated by short fractures (sets 12 and 14).
With the exception of higher ~; values for the densest
network end-members, values of «; do not appear to reflect
network type and decay rates are not always constant as
multiple slopes are observed in some plots; however, these
values indicate that solute retention occurs for all network
types. We conclude that any transport model for fracture
networks should include retention.

[24] The inverse of particle velocity (1/v) is commonly
used as a measure of “residence time” of slow particles.
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The distribution of inverse velocity can be fit to a proba-
bility distribution which can then be represented as a
memory function in a continuous time random walk
(CTRW) [Berkowitz and Scher, 1997; Painter et al., 2002;
Scher et al., 2002] or similar model of particle retention
[Schumer et al., 2003b; Baeumer et al., 2005]. In our case, we
analyze the distribution of inverse velocity for particles
outside the source area. With the exception of sets 12 and
14 (dense networks with short fracture lengths), the largest
residence time values, 1/v exhibit power law decay over
several orders of magnitude (Figure 6b). The slope of the
power law trend, 7y, is equal to or near 1.0 for all time steps
tested (Table 1). The presence of power law distributions of
1/v for the majority of our simulations are similar to the
findings of Painter et al. [2002] and Meerschaert and
Scheffler [2003] where power law distributions (1.1 < v <
1.8) of both 1/v and 1/bv were found in discrete fracture
network simulations with lognormal (finite variance) distri-

6.5

log(particles)

5.5

0.1 + m

0.01 -

w

=10 — .

PIV-1> v1]
3
T

o
Sy
T
|

110°

1.10—6 | | | | | | | |

1 10 100 110 1-10* 1.10° 1.10° 1.107 1.10° 1-10°

v

Figure 6. Slow particle transport is characterized by
(a) power law decay of particles remaining in the source
area where concentration at the source for a given time,
C(#), is proportional to ¢~ and (b) power law residence
time distributions of 1/v. Values of v describe the slope of
the power law trends.
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(a)
5 17 22
13 15
TRQW 7 25 19
2 1
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(0,0)
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—
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28 46 87 104 149

23 41 82 82 105

TROW 10 28 54 54 77

10 21 22 22 26
8 19 19 19 23
(0,0)
Column
—

Figure 7. Computation of a bivariate CDF is similar to its
univariate analog. (a) Number of particles per cell is
adjusted to reflect (b) a cumulative particle total where the
cumulative number of particles per cell increases in
response to its row and column position on the grid. A
bivariate CDF is obtained by dividing the cumulative
number of particles in Figure 7b by the total number of
particles (in this case 149).

butions of fracture length and aperture (b). The largest
values of inverse velocity for sets 12 and 14 did not follow
a power law, indicating that slow particle movement outside
the release area is less prevalent for these two networks.

[25] Enhanced retention in the source area can be attrib-
uted to preferential paths. In the absence of mechanisms that
promote solute mixing across streamlines, streamline rout-
ing at fracture intersections causes particles originally
located in low-velocity segments in the source region to
preferentially move into higher-velocity fractures. Once out
of the source region, particles tend to stay in higher-velocity
segments. Values of 7, may measure the influence of low-
velocity segments which serve as critical links between
higher-velocity segments. With the exception of the densest
networks with short fractures (sets 12 and 14) where solute
particles experienced the least amount of retention, our
results indicate no clear relation between retention and
fracture network statistics.

4. Ergodicity and Concentration Field Variability

[26] The purpose of this paper is to link ensemble plume
statistics to quantifiable properties of a fractured medium, in
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order to inform waste repository design. For each set of
fracture statistics, 500 fracture network realizations were
produced, and the statistical analysis of the resulting en-
semble plume, combining all of those particle plumes, was
the subject of the previous section. In this section, we
consider the important question of ergodicity: How closely
do the individual plumes resemble their ensemble average?
If deviations between ensemble and individual plumes are
sufficiently small, ergodic conditions are present, and plume
statistics computed from ensemble averages are useful for
predicting individual plume behavior [Black and Freyberg,
1987; Neuman et al., 1987; Dagan, 1989, 1990; Graham
and McLaughlin, 1989; Gelhar, 1993]. Conversely, if
deviations between ensemble and individual plume realiza-
tions are significant, solute transport predictions based on
ensemble statistics are tenuous. With the exception of Follin
and Thunvik [1994], who found that ergodic conditions
were not achieved in a continuum model of highly hetero-
geneous crystalline rocks, the validity of the ergodic hy-
pothesis for transport in fractured media has not been
extensively tested.

[27] Although ergodicity in solute transport studies is
traditionally defined according to spatial plume moments
[Black and Freyberg, 1987; Neuman et al., 1987; Dagan,
1989, 1990; Graham and McLaughlin, 1989; Gelhar,
1993], an analysis of ergodicity based on spatial moments
is inappropriate for our data for several reasons. First,
Reeves et al. [2008b] demonstrate that heavy tailed distri-
butions of fracture trace length can lead to heavy tailed
distributions of particle jumps, where the observed second
moment of plume growth is not a reliable predictor of
spread [McCulloch, 1997]. Second, the formation of immo-
bile zones in low-velocity fractures results in particle
retention near the source area, which distorts the moment
estimates. Third, power law fracture length distributions do
not have a ““characteristic” fracture length. Instead, we use
Kolmogorov distance to provide a nonparametric measure
of variability between ensemble particle plumes and indi-
vidual particle plume realizations [Conover, 1999]:

D(F,G) = max |F (X) — G(Y)| (2)

where D(F,G) represents the largest distance between
cumulative distribution functions F(X) for the ensemble
and G(Y) for individual particle plumes. The nonparametric
Kolmogorov distance is valid for any distribution, including
those with power law heavy tails. Particle jumps represent
random displacement vectors in 2-D networks so that F(X)
and G(Y) are bivariate CDFs. The bivariate CDF F(X)
counts the fraction of particles in a rectangle with X
defining the upper right-hand corner. The computation
of a bivariate CDF is similar to its univariate analog
(Figure 7). To simplify computation, cells of the original
domain (1 m by 1 m by 1 m) are combined into larger cells
(50 m by 50 m by 1 m). A sensitivity analysis showed that a
smaller cell size (10 m by 10 m by 1 m) did not significantly
affect the Kolmogorov distance. Comparisons were made
between all ensemble and individual plumes for each
parameter set. The number of comparisons between
individual and ensemble plumes are not equal, as some
network types may not contain segments of a hydraulic
backbone in the particle release area. The number of
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Table 2. Kolmogorov Distance Statistics

Set a’® as pon° i o Range
1 1.0 1.0 0.015 0.75 0.03 0.65
2 1.0 1.0 0.035 0.68 0.03 0.79
3 1.3 1.0 0.013 0.77 0.03 0.63
4 1.0 1.6 0.17 0.74 0.03 0.69
5 1.3 1.9 0.16 0.61 0.02 0.77
6 1.6 2.2 0.22 0.58 0.02 0.81
7 1.9 1.9 0.20 0.57 0.03 0.75
8 1.9 1.9 0.20 0.61 0.03 0.77
9 1.9 2.2 0.35 0.45 0.02 0.75
10 1.9 2.5 0.33 0.47 0.02 0.76
11 2.5 2.8 0.27 0.49 0.02 0.76
12 2.5 2.8 0.48 0.33 0.02 0.78
13 2.8 3.0 0.30 0.48 0.02 0.78
14 2.8 3.0 0.40 0.31 0.02 0.70
15 3.0 2.8 0.50 0.24 0.01 0.69

“Power law fracture length exponent.
bAverage spatial fracture density value in model domain (m/m?).

individual plume realizations for each parameter set ranges
between 189 to 500; hence, no transport occurred at all for
some realizations.

[28] To study the distribution of Kolmogorov distance for
each parameter set, the minimum, maximum, range equals
maximum minus minimum, mean (), and standard devia-
tion (o) of D(F,G) was computed for each of 16 time steps.
Table 2 lists these values for the time step with the largest
values of u. Data used to compute F(X) and G(Y) become
censored at later time steps, when particles leave the model
domain, and can no longer be tracked. One approach to data
censoring would be to preserve the location where particles
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leave the model domain. Unfortunately, these locations
were not recorded for these simulations. Censoring does
not affect the results reported here, since the largest values
of D(F,G) (for the time steps tested) occur near the source
area, where particle concentrations are highest because of
retention in low-velocity fractures (e.g., Figures 8 and 9).
Since Kolmogorov distance weights each particle equally, it
is most sensitive to deviations in the area of highest
concentration.

[29] By selecting the maximum value of the mean Kol-
mogorov distance, ., between individual realizations and
their ensemble average (out of 16 time steps) for each
network type, a trend emerges between network type and
the degree of variability between ensemble plumes and
individual plume realizations (Figure 10). In general, values
of p for each parameter set are largest for sets 1-5 (0.61 <
w < 0.77), intermediate for sets 6—10 (0.45 < p < 0.61),
and smallest for sets 11-15 (0.24 < u < 0.49). More
specifically, values of 1 confirm that the higher the fracture
length exponent (shorter fracture lengths) and spatial density,
the less “heterogeneous” a fractured medium becomes.
Since Kolmogorov distance is not commonly used to study
concentration, we provide two examples of ensemble plumes
along with several individual plume realizations and
corresponding values of D(F,G) for visual inspection
(Figures 8 and 9). Individual plume realizations are based
on values of D(F, G) and correspond to minimum, maximum,
and quantiles, O s, Qo.s0 and Oy 75. The two network types
(sets 5 and 15) represent the two end-members of our
analysis. Set 5 is the network type with the highest degree

min, D(F,G)=0.39 max, D(F,G)=1.0

1000 ensemble
10
500 1E-01
IR Y 1E-02
0 { - -
- | 1E-03
L
-500 1E-04
) 1E-05
-1000
0 500 1000 1500 2000 2500

Qq.25, D(F,G)=0.57

Qq.50 D(FG)=0.71

Qo.75, D(F,G)=0.82

Figure 8. Ensemble plumes with selected individual plume realizations for set 5 at a transport time of
100 years. Sparse domains dominated by long fractures lead to a high degree of variability between
ensemble and individual plumes. All particles have left the domain for the plume realization representing
the maximum deviation from the ensemble. All spatial values are in units of meters.
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1E-05
-1000
0 500 1000 1500 2000 2500
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45!"‘"5’ ﬁ/ Hsg"'"

Figure 9. Ensemble plumes with selected individual plume realizations for set 15 at a transport time of
1000 years. Dense networks with short fractures lead to a lower degree of variability between ensemble
and individual plumes. All spatial values are in units of meters.

of variability between ensemble and individual plume real-
izations (Figure 8). The fracture length combination (a; = 1.3,
a, = 1.9) and low spatial density results in extremely low
predictability from one realization to the next. In fact, the
realization representing the maximum D(F,G) for set 5 is a
simulation where all particles have already left the domain by
a transport time of 100 years. The dominance of short
fractures and high density in set 15 results in fracture
networks with the lowest degree of variability between
individual realizations and the ensemble. The individual
plume realizations exhibit nearly elliptical shapes (Figure 9).

[30] The standard deviation of D(F,G) follows a similar
trend as p, but was not found to be a useful metric. The
range of D(F,G) is similar for all parameter sets indicating
that large deviations occur between individual realizations
and the ensemble for all network types. The large range in
individual values of D(F,G) demonstrate that ensemble
particle motions in all networks of this study are pre-
ergodic. Two primary explanations may account for the
pre-ergodic nature of these plumes: the presence of particle
retention at the source area limits the motion of a subset of
particles (required for the fulfillment of mathematical limit
theorems) and heavy tailed plumes in fractured media are
highly variable. The first explanation is supported by
Margolin and Barkai [2005] where significant deviations
occurred between individual realizations and the ensemble
of a heavy tailed retention (CTRW) process. A third
possible explanation may be the result of the mixing
assumption used in the particle-tracking simulations. At
cells where fractures intersect, RWHet (E. M. LaBolle,

RWHet: Random walk particle model for simulating trans-
port in heterogeneous permeable media, version 2.0 user’s
manual and program documentation, 2000) computes par-
ticle trajectories on the basis of streamline routing (i.e.,
bilinear interpolation of the velocity field). The lack of
solute particle mixing at fracture intersections reduces the
number of flow paths sampled by particles, thus, increasing
interrealization variability. This suggests that the selection

3.00
2.80 1 @ D(FG) =075

2607 @ D(FG)=050 ®
2.40 -

2.20 @
a 2.00 e

1.80
1.60 o
®

1.40

1.20
1.00 & ‘ ; : :
0 0.1 0.2 0.3 0.4 0.5
p2p [m/m2]

Figure 10. Mean Kolmogorov distance (proportional to
size of dots) in relation to mean fracture length exponent a
and spatial density p,p. Note that mean Kolmogorov
distance decreases as mean fracture length exponent and
density increase.
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of a mixing assumption may be more important than
previously thought [e.g., Park et al., 2001].

[31] As indicated by ballistic rates of plume growth (« is
near 1.0) [Mercado, 1967], solute particles in individual
realizations of sparsely fractured networks with relatively
long fractures experience very little mixing between fracture
flow paths. It is interesting that these individual plume
realizations combine in the ensemble to resemble an
operator-stable plume, the solution to a multiscaling frac-
tional ADE, even though the individual plumes are much
more irregular and unpredictable. For denser networks of
shorter fractures, much less variability is observed between
individual and ensemble plumes. Though pre-ergodic, mean
values of Kolmogorov distance near 0.30 describe a medium
where individual realizations are reasonably similar to the
ensemble (e.g., Figure 9). Further development of stochastic
theories based on realistic heavy tailed statistics are vital to
characterize the between-realization variability more com-
pletely [Berkowitz and Scher, 1997; Scher et al., 2002;
Schumer et al., 2003b; Baeumer et al., 2005; Bijeljic and
Blunt, 2006; Le Borgne et al., 2007]. The lack of ergodicity
for all fracture network types demonstrates that additional
information on deterministic features of a fractured rock mass
is useful to condition predictions of solute plume concen-
trations on the basis of ADEs. Classical and fractional-order
ADEs, which model the ergodic limit, cannot account for the
variability shown in individual realizations. However, those
analytical equations remain useful for fractured media stud-
ies, as a way to characterize ensemble plume behavior, or the
overall average risk of contamination at a preliminary phase,
before detailed geologic information is available. This can
be particularly useful for designing a monitoring well
network for a geologic repository, where contours of either
an operator-stable or multi-Gaussian density denote the
likelihood of encountering a contaminant release. Uncer-
tainty within these densities can be reduced through the
identification and placement of monitoring wells on major
deterministic structures.

5. Rock Mass Statistics and Geologic Repositories

[32] Geologic repositories designed for long-term storage
of nuclear waste generally incorporate a dual barrier
approach for waste containment that consists of an engi-
neered component (waste form, canisters, backfill) and a
geological component (rock mass and its geochemical,
hydraulic, and structural properties) [e.g., Long and Ewing,
2004; Research, Design and Development Programme,
2004]. We adopt a contaminant transport perspective to
identify fracture network statistics that are more favorable
for a geologic repository. We evaluate (1) the probability that
a solute particle enters the hydraulic backbone (P(4)), (2) the
probability that a solute particle in the hydraulic backbone
will undergo large transport distances within a repository
timescale (P(B|A4)), (3) the tendency for fast particle transport
(a; t1om), (4) the degree of particle retention in a network (),
and (5) between-realization variability (Kolmogorov dis-
tance). The first four criteria of this analysis were presented
in section 3.0, while the last criterion was presented in section
4.0. For ease of comparison, P(4) and P(B|A) are combined
into the joint probability, P(4B) (Table 1). P(AB) defines the
probability that a solute particle will both enter a hydraulic
backbone and experience a displacement of at least 1 km in
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10,000 years. Other geologic repository criteria are not
considered [e.g., National Research Council, 1978; Ewing
etal., 1999].

[33] Currently, rock masses with moderate fracture
lengths and densities just above the percolation threshold
(similar to sets 5—8) are being evaluated for their potential
as geologic repositories (e.g., Aspd Hard Rock Laboratory,
Yucca Mountain). This network type selection is based on
the principle that fractures serve as preferential pathways for
fluids and solute in an otherwise impermeable rock matrix;
fewer fracture pathways are thought to decrease the chance
of contaminant transport. Values of P(4B) on the order of
10~* to 10 indicate that solute particles traveling through
networks near the percolation threshold (sets 3, 4, 11 and
13) are least likely to exit a repository rock mass and enter
the biosphere. For these network types, the hydraulic
backbone is sparse and contains very few backbone cells
in the particle release area (i.e., P(4B) is dominated by
P(4)). Longer fracture lengths for sets 3 and 4 result in a
more sparse backbone than for sets 11 and 13. This is
indicated by a lower probability of a particle entering the
hydraulic backbone for sets 3 and 4 (P(4) = 10~°) than for
sets 11 and 13 (P(4) = 107?). Sparse backbones may also
potentially lead to enhanced particle retention. If a solute
particle is introduced into a low-velocity segment, large
distances between the intersection of a low-velocity seg-
ment and a higher-velocity segment may isolate the particle
from the rest of the plume. Though a trend between values
of v and network statistics was not found, this may partially
explain why some networks have different rates of power
law decay of particles from the source area. Outside of the
source area, waiting time distributions between particle
jumps are consistent for all networks (except sets 12 and 14).

[34] The primary difference between sets 3 and 4 and sets
11 and 13 is the distribution of fracture length. Longer
fracture lengths for sets 3 and 4 lead to heavy tail leading
plume edges, near ballistic transport rates (« is near 1.0)
along primary plume growth directions, and a high tendency
for very fast transport (¢4, < 2.2 years). For sets 11 and 13,
the combination of very short fractures and densities just
above the percolation threshold result in elliptical plumes
with thin-tailed leading plume edges and very slow trans-
port rates (¢1;, values are 2154 and 10,000 years, respec-
tively). Additionally, the influence of very long fracture
lengths in sets 3 and 4 result in extreme variability between
individual realizations and the ensemble (mean Kolmogorov
distance is >0.7), where shorter fracture lengths in sets
11 and 13 promote moderate variability between the
ensemble and individual realizations (mean Kolmogorov
distance is ~0.5). Overall, sets 11 and 13 indicate that the
combination of short fracture lengths and densities near the
percolation threshold are most suitable for geologic repos-
itories, because this set of statistics promotes slow overall
transport (P(B|4) = 1072 to 10™%; 2150 < #;4,, < 10,000)
and moderate predictability (mean Kolmogorov distance is
approximately 0.5).

[35] Though sets 11 and 13 represent the best set of
statistics for a geologic repository, more densely fractured
domains with the same distributions of fracture length (sets
9, 12, and 14—15) are much less desirable. If a rock mass is
fractured well beyond the percolation threshold, the proba-
bility of a solute particle entering the biosphere is very high
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(P(4B) = 107"). Aside from a high probability that solute
particles will enter the hydraulic backbone exist, once in the
backbone, higher densities result in both a decrease in the
degree of transverse plume spreading [Reeves et al., 2008b]
and decreased retention times for particles in the source
area. While fast particle transport times for these dense
networks are intermediate (100 < 1y, < 464), the proba-
bility of a solute particle in the backbone experiencing a net
displacement of at least 1 km within 10,000 years is
extremely high (P(B) > 0.7). A positive aspect of the
combination of high fracture densities and short fracture
lengths is that particle motion in these networks exhibit low
between-realization variability and higher levels of predict-
ability. In contrast, chances of detecting a contaminant in
networks with long fracture lengths (regardless of density)
are very low, as the motion of particles in these networks is
inherently unpredictable. Field-scale flow and transport
studies in highly fractured rock masses are needed to
validate these conclusions.
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